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ABSTRACT 
Individual-based models have become important tools in the global battle against infectious diseases, yet 
model complexity can make calibration to biological and epidemiological data challenging. We propose a 
using a Bayesian optimization framework employing Gaussian process or machine learning emulator 
functions to calibrate a complex malaria transmission simulator. We demonstrate our approach by 20 
optimizing over a high-dimensional parameter space with respect to a portfolio of multiple fitting 
objectives built from datasets capturing the natural history of malaria transmission and disease 
progression. Our approach quickly outperforms previous calibrations, yielding an improved final goodness 
of fit. Per-objective parameter importance and sensitivity diagnostics provided by our approach offer 
epidemiological insights and enhance trust in predictions through greater interpretability. 25 

INTRODUCTION	

Individual-based	models	of	infectious	diseases	
Over the last century, mathematical modelling has become an important tool to analyze and understand 
disease- and intervention-dynamics for many infectious diseases. Individual-based models (IBMs), where 
each person is simulated as an autonomous agent, are now widely used. These mathematical models 30 
capture heterogeneous characteristics and behaviors of individuals, and are often stochastic in nature. 
This bottom-up approach of simulating individuals and transmission events enables detailed, robust and 
realistic predictions on population epidemic trajectories as well as the impact of interventions such as 
vaccines or new drugs (1, 2). Going beyond simpler (compartmental) models to capture stochasticity and 
heterogeneity in populations, disease progression, and transmission, IBMs can additionally account for 35 
contact networks, individual care seeking behavior, immunity effects, or within-human dynamics (1-3). As 
such, well-developed IBMs provide opportunities for experimentation under relatively naturalistic 
conditions without expensive clinical or population studies. Prominent recent examples of the use of IBMs 
include assessing the benefit of travel restrictions during the Ebola outbreak 2014–2016 (4) and guiding 
the public health response to the Covid-19 pandemic in multiple countries (5). IBMs have also been 40 
applied to tuberculosis (6), influenza (7), dengue (8), and many other infectious diseases (2). Within the 
field of malaria, several IBMs have been developed over the last 15 years and have been used to support 
understanding disease and mosquito dynamics (9-11), predict the public health impact or carry out 
economic analyses of (new) interventions (12-15); and investigate drug resistance (16). Many have had 
wide-reaching impact, influencing WHO policy recommendations (12, 17-19) or strategies of national 45 
malaria control programs (20).  

Calibration caveats and the curse of dimensionality 
For model predictions to be meaningful, modelers need to ensure their models accurately capture 
abstractions of the real world. The potential complexity and realism of IBMs often come at the cost of 
long simulation times and potentially large numbers of input parameters, whose exact values are often 50 
unknown. Parameters may be unknown because they represent derived mathematical quantities that 
cannot be directly measured or require elaborate, costly experiments (for example shape parameters in 
decay functions (21)), because the data required to derive them in isolation is incomplete or accompanied 
by inherent biases, or because they interact with other parameters. 
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Calibrating IBMs poses a complex high-dimensional optimization problem and thus algorithm-based 55 
calibration is required to find a parameter set that ensures realistic model behavior, capturing the 
biological and epidemiological relationships of interest. Local optima may exist in the potentially highly 
irregular, high-dimensional goodness-of-fit surface, making iterative, purely sampling-based algorithms 
(e.g. Particle Swarm Optimization or extensions of Newton-Raphson) inefficient and, in light of finite 
runtimes and computational resources, unlikely to find global optima. Additionally, the curse of 60 
dimensionality means the number of evaluations of the model scales exponentially with the number of 
dimensions (22). As an example, for the model discussed in this paper, a 23-dimensional parameter space 
at a sampling resolution of one sample per 10 percentile cell in each dimension, would yield 10number of 

dimensions = 1023 cells. This is larger than number of stars in the observable Universe (of order 1022 (23)). 
Furthermore, most calibrations are not towards one objective or dataset. For multi-objective fitting, each 65 
parameter set requires the evaluation of multiple outputs and thus multiple simulations to ensure that all 
outcomes of interest are captured (in the model discussed here epidemiological outcomes such as 
prevalence, incidence, or mortality patterns).  

In this study, we applied a new approach to calibrate a well-established and used IBM of malaria dynamics 
called OpenMalaria. Malaria IBMs in particular are often highly complex (e.g. containing multiple sub-70 
modules and many parameters), consider a two-host system influenced by seasonal dynamics, and often 
account for multifaceted within-host dynamics. OpenMalaria features within-host parasite dynamics, the 
progression of clinical disease, development of immunity, individual care seeking behavior, vector 
dynamics and pharmaceutical and non-pharmaceutical antimalarial interventions at vector and human 
level (https://github.com/SwissTPH/openmalaria.wiki.git) (3, 21, 24). Previously, the model was 75 
calibrated using an asynchronous genetic algorithm (GA) to fit 23 parameters to 11 objectives 
representing different epidemiological outcomes, including age-specific prevalence and incidence 
patterns, age-specific mortality rates and hospitalization rates (3, 21, 24) (see Supplementary Texts 1 and 
2 for details on the calibration objectives and data). However, the sampling-based nature and sequential 
function evaluations of GAs can be too slow for high-dimensional problems in irregular spaces where only 80 
a limited number of function evaluations are possible and valleys of neutral or lower fitness may be 
difficult to cross  (25), (26) . 

Other solutions to fit similarly detailed IBMs of malaria employ a combination of directly extracting 
parameter values from the literature where information is available, and fitting the remainder using multi-
stage, modular Bayesian Markov Chain Monte Carlo (MCMC)-based methods (27-32). For these models, 85 
multiple fitting objectives are often not addressed simultaneously. Rather, to our knowledge, most other 
malaria IBMs are divided into functional modules (such as the human transmissibility model, within-host 
parasite dynamics model, and the mosquito or vector model), which are assumed to be influenced by only 
a limited number of parameters each. The modules are then fit independently and in a sequential manner 
(28-32). Modular approaches reduce the dimensionality of the problem, allowing for the use of relatively 90 
straightforward MCMC algorithms. However, these struggle with efficiency in high dimensions as their 
Markovian nature requires many sequential function evaluations (104–107 even for simple models), 
driving up computing time and computational requirements (33). Additionally, whilst allowing for the 
generation of posterior probability distributions of the parameters (31), the modular nature makes 
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sequential approaches generally unable to account for interdependencies between parameters assigned 95 
to different modules and how their co-variation may affect disease dynamics.  

Emulators and Bayesian Optimization 
Progress in recent years on numerical methods for supervised, regularized learning of smooth functions 
from discrete training data allows us to revisit calibration of detailed mathematical models using Bayesian  
methods for global optimization (34). Current state-of-the art calibration approaches for stochastic 100 
simulators are often based around Kennedy and O'Hagan`s approach (35) (KOH), where a posterior 
distribution for the calibration parameters is derived through a two-layer Bayesian approach involving 
cascade of surrogates (usually GPs) (36). A first GP is used to model the systematic deviation between the 
simulator and the real process it represents, while a second GP is used to emulate the simulator (37). 
However, this approach is computationally intense when scaling to high-dimensional input spaces and 105 
multi-objective optimization. A fully Bayesian KOH approach is likely computationally heavy (37) for the 
efficient calibration of detailed malaria simulators like OpenMalaria. Single-layer Bayesian optimization 
with Gaussian processes (GPs) on the other hand have gained popularity as an efficient approach to tackle 
expensive optimization problems, for example in hyperparameter search problems in machine learning 
(38, 39). Assuming that the parameter-solution space exhibits a modest degree of regularity, a prior 110 
distribution is defined over a computationally expensive objective function by the means of a light-weight 
probabilistic emulator such as a Gaussian process. The constructed emulator is sequentially refined by 
adaptively sampling the next training points based on acquisition functions derived from the posterior 
distribution. The trained emulator model is used to make predictions over the objective functions from 
the input space with minimum evaluation of the expensive true (simulator) function. Purely sampling-115 
based iterative approaches (like genetic algorithms) are usually limited to drawing sparse random samples 
from proposals located nearby existing samples in the parameter space. In contrast, the use of predictive 
emulators permits exploration of the entire parameter space at higher resolution. This increases the 
chances of finding the true global optimum of the complex objective function in question and avoiding 
local optima.  120 

Here, we use a single-layer Bayesian optimization approach to solve the multidimensional, multi-objective 
calibration of OpenMalaria (Fig. 1). Employing this single-layer Bayesian approach further allows for the 
direct comparison to previous calibration attempts for OpenMalaria as the objective functions are 
retained. We prove the strength and versatility of our approach by optimizing its 23 input parameters 
using real-world data on 11 epidemiological outcomes in parallel. To emulate the solution space, we 125 
explore and compare two prior distributions, namely a GP emulator and a superlearning algorithm in form 
of a Gaussian process stacked generalization (GPSG) emulator. We first use a GP emulator to emulate the 
solution space. Whilst GP emulators provide flexibility whilst retaining relative simplicity (39) and have 
been used previously as priors in Bayesian optimization (38), stacked generalization algorithms have not. 
They provide a potentially attractive alternative as they have been shown to outperform GPs and other 130 
machine learning algorithms in capturing complex spaces (14, 40).  The stacked generalization algorithm 
(40) builds on the idea of creating ensemble predictions from multiple learning algorithms (level 0 
learners). The cross-validated predictions of the level 0 learners are incorporated into a general learning 
system (level 1 meta-learner). This allows for the combination of memory-efficient and probabilistic 
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algorithms in order to reduce computational time, whilst retaining probabilistic elements required for 135 
adaptive sampling. Here, we showcase the efficiency and speed of the Bayesian optimization calibration 
scheme and propose a novel modus operandi to parameterize complex mathematical models that 
harvests recent computational developments and is scalable to high dimensions in multi-objective 
calibration. 

 140 
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Fig. 1. Overview of model calibration approaches by Bayesian optimization using Gaussian process and 
machine learning emulators. A. General Framework. The input parameter space is initially sampled in a 
space-filling manner, generating the initial core parameter sets (initialization). For each candidate set, 
simulations are performed with the model, mirroring the studies that yielded the calibration data. The 
deviation between simulation results and data is assessed, yielding goodness of fit scores for each 145 
parameter set. An emulator (C or D) is trained to capture the relationship between parameter sets and 
goodness of fit and used to generate out-of-sample predictions. Based on these, the most promising 
additional parameter sets are chosen (adaptive sampling by means of an acquisition function), evaluated, 
and added to the training set of simulations. Training and adaptive sampling are repeated until the 
emulator converges and a decision on the parameter set yielding the best fit is made. B. Acquisition 150 
Function. The acquisition function is used to determine new parameter space locations. Thus,	" is a vector 
of input parameters (23-dimensional for the model described here) to be evaluated during adaptive 
sampling. It incorporates both predictive uncertainty of the emulator and proximity to the minimum. C. 
Gaussian process emulator. A heteroscedastic Gaussian process is used to generate predictions on the 
loss functions, #$!"("), for each input parameter set ".  D. Gaussian process stacked generalization 155 
emulator. Three machine learning algorithms (level 0 learners: bilayer neural net, multivariate adaptive 
regression splines and random forest) are used to generate predictions on the individual objective loss 
functions #$##, #$$	 and #$%&  (collectively 	#$$' ) at locations " . These predictions are inputs to a 
heteroscedastic (level 1 learner) which is used to generate the stacked learner predictions #$!"(!  and 
derive predictions on the overall goodness of fit ($)*+) . 160 

RESULTS 
Calibration	workflow			
The developed model calibration workflow approach is summarized in Fig. 1A. In brief, goodness of fit 
scores were first derived for randomly generated, initial parameter sets. The goodness of fit scores were 
defined as a weighted sum of the loss functions for each of 11 fitting objectives. These span various 165 
epidemiological measures capturing the complexity and heterogeneity of the malaria transmission 
dynamics, including the age-prevalence and age-incidence relationships, and are informed by a multitude 
of observational studies (see methods and Supplementary Text 2). Next, GP and GPSG emulators were 
trained on the obtained set of scores and used to approximate the relationship between parameter sets 
and goodness of fit for each objective. After initial investigation of different machine learning algorithms, 170 
the GPSG was constructed using a bilayer neural net, multivariate adaptive regression splines and random 
forest as level 0 learners and a heteroscedastic Gaussian process as level 1 learner (Fig. 1C-D, see methods 
and supplement). Using a lower confidence bound acquisition function based on the emulators’ point and 
uncertainty predictions for proposed new candidate parameter sets, the most promising sets were 
chosen. These parameter sets were simulated and added to the database of simulations for the next 175 
iteration of the algorithm. At the next iteration, the emulators are re-trained on the new simulation 
database and re-evaluated (Fig. 1B). This iterative process of simulation, training and emulation was 
repeated until a memory limit of 1024GB was hit. Approximately 130,000 simulations were completed in 
up to this point.  
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 180 

Fig. 2. Emulator performance. A. Example of emulator predictions vs true values on a 10% holdout set. 
Predictions are shown for the final iteration of each optimization (iteration 30 for GP-BO and iteration 23 
for GPSF-BO). Here, emulator performances are shown for objective 4 (the age-dependent multiplicity of 
infection,),) and the weighted sum (. Plots for all other objectives are provided in the supplement. GP = 
Gaussian process emulator, GPSG = Gaussian process stacked generalization emulator B. Convergence.  185 
Weighted sum of loss functions over 11 objectives associated with the current best fit parameter set by 
time in seconds. Satisfactory fit of OpenMalaria refers to a weighted sum of loss functions value of 73.2 
(as defined previously (21)). Previous best fit for OpenMalaria was achieved by the genetic algorithm had 
a loss function value of 63.7. Our new approach yields a fit of 58.2 for GP-BO in iteration 21 within in 
1.02*6 seconds (~12 days) and 59.6 for GPSG-BO in iteration 10 in 6.00e5 seconds (~7 days). GP-BO = 190 
Gaussian process emulator Bayesian optimization, GPSG-BO = Gaussian process stacked generalization 
emulator Bayesian optimization). C. Example log prior parameter distributions and posterior estimates. 
The most influential parameters on the weighted sum of the loss functions are shown here (see Fig. 3C). 
All other plots can be found in the supplement. The posterior estimates for GP-BO and GPSG-BO are 
shown in relation to those previously derived through optimization using a genetic algorithm (GA-O) 195 

Algorithm	performance	by	iteration	and	time	and	convergence	
Both emulators adequately captured the input-output relationship of the calculated loss-functions from 
the simulator, with better accuracy when close to minimal values of the weighted sum of the loss 
functions, (	(Fig. 2A). This is sufficient as the aim of both emulators within the Bayesian optimization 
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framework is to find minimal loss function values rather than an overall optimal predictive performance 200 
for all outcome values. Examples of truth vs predicted estimates on a 10% holdout set are provided in Fig. 
2A (additional plots for all objectives can be found in Supplementary Fig.s S2-S5). A satisfactory fit of the 
simulator was previously defined by a loss function value of ( = 73.2	(21). The previous best model fit 
derived using the GA had a weighted sum of the loss functions of ( = 63.7 (21). Satisfactory fit was 
achieved by our approach in the first iteration of the GPSG-based Bayesian optimization algorithm (GPSG-205 
BO), and after six iterations for the GP-based algorithm (GP-BO) (Fig. 2B). The current best fit was 
approximately retrieved after six iterations for the GPSG-BO algorithm and after nine iterations for GP-
BO, and was improved by both algorithms after ten iterations (returning final values (	 = 	58.3 for GP-BO 
and 59.6 for GPSG-BO). This shows that the Bayesian optimization approach with either of our emulators 
very quickly achieves a better simulator fit than obtained with a classical GA approach that was previously 210 
employed to calibrate OpenMalaria. Of the two emulators, the GP approach finds a parameter set 
associated with a better overall accuracy and the GPSG reaches satisfactory values faster (both in terms 
of iterations and time). A likely explanation for this is that the GPSG-BO is unable to propagate its full 
predictive variance into the acquisition function. Only uncertainty stemming from the level 1 probabilistic 
learner (GP) is therefore captured in the final prediction. This leads to underestimation of the full 215 
predictive variance, and a bias towards exploitation in the early stages of the GPSG-BO algorithm (as 
illustrated by early narrow sampling, see Supplementary Fig.s S6-7).  

Fig. 2C shows examples of the posterior estimates returned by the optimization algorithms in context of 
the log prior distributions for the parameters with the greatest effects on (  (see also Fig. 3C). All 
algorithms return parameter values within the same range and (apart from parameter 4), clearly distinct 220 
from the prior mean. The fact that highly similar parameter values are identified by multiple algorithms 
strengthens confidence in the final parameter sets yielded by the algorithms. 

Optimal	Goodness	of	Fit	
The best fit parameter sets yielded by our approach are provided in the supplement (Table S2). 
Importantly, after ten iterations of the GPSG-BO algorithm (approximately 7 days), and 20 iterations for 225 
the GP-BO algorithm (approximately 12 days), both approaches yielded similar values of the 11 objective 
loss functions, along with similar weighted total loss function values, and qualitatively similar visual fits 
and predicted trends to the data (Fig. 3A-B and supplement). We found this to be an unexpectedly fast 
result of the two algorithms. Details of the algorithm’s best fits to the disease and epidemiological data 
are shown in Supplementary Fig.s S8-S18. Overall, several objectives had visual and reduced loss-function 230 
improvements, for example to the objective on the multiplicity of infection (Fig. 3A). 
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Fig. 3. A. Multiplicity of infection by age.  Comparison of simulator goodness of fit for objective 4, the age-
specific multiplicity of infection (number of genetically distinct parasite strains concurrently present in one 
host). Simulations were carried out for the same random seed for all parameterizations and for a 235 
population size of N=5,000. B. Simulated epidemiological relationship between transmission intensity 
(entomological inoculation rate, EIR) and P. falciparum prevalence (PfPR2-10). Simulated epidemiological 
relationship between the transmission intensity (EIR in number of infectious bites per person per year) and 
infection prevalence in individuals aged 2-10 years (PfPR2-10) under the parameterizations achieved by the 
different optimization algorithms. Lines show the mean across 100 random seed simulations for a 240 
simulated population size N=10,000 and the shaded area shows the 95% confidence interval. C. Parameter 
effects on the objective variance. Using the GP emulator, a global sensitivity analysis (Sobol analysis) was 
conducted. The tile shading shows the total effect indices for all objective functions and parameters 
grouped by function. SEN= Senegal, TZN = Tanzania. 
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Impact	/	Parameter	sensitivity	analysis	&	External	validation	245 
An additional benefit of using emulators is the ability to understand the outcome’s dependence on and 
sensitivity to the input parameters. To identify the most influential parameters for each of the 11 fitting 
objectives, we used the GP emulator trained on all available training simulation results from the 
optimization process (R2=0.53 [objective 7] - 0.92 [objective 3]) to conduct a global sensitivity analysis by 
variance decomposition (here via Sobol analysis (41)). Fig. 3C shows Sobol total effect indices quantifying 250 
the importance of individual parameters and describing each parameter’s contributions to the outcome 
variance for each objective. Our results indicate that most objectives are influenced by multiple 
parameters from different groups, albeit to varying degrees, thus highlighting the importance of 
simultaneous multi-objective fitting. Clusters of influential parameters can be observed for most 
objectives; for example, parameters associated with incidence of acute disease influence clinical incidence 255 
and pyrogenic threshold objectives. Some parameters have strong influence on multiple objectives, such 
as parameter 4, the critical value of cumulative number of infections and influences immunity acquisition; 
and parameter 10, a factor required to determine the pyrogenic threshold, which we find to be a key 
parameter determining infections progressing to clinical illness.  

Algorithm	validation	260 
In order to test if our algorithms can recover a known solution, the final parameter sets for both 
approaches were used to generate synthetic field data sets, and our approaches were subsequently 
applied to recover the known parameter set. For the GP, 13 of the 23 parameters were recovered 
(Supplementary Fig. S19A). Those not recovered largely represented parameters to which the weighted 
loss function was found to be insensitive (Fig. 3C). Thus, rather than showing a shortcoming of the 265 
calibration algorithm, this suggests a potential for dimensionality reduction of the simulator and re-
evaluation of its structure.  

Comparison	 of	 key	 epidemiological	 relationships	 and	 implications	 for	
predictions	
The new parameterizations for OpenMalaria were further explored to assess key epidemiological 270 
relationships, in an approach similar multiple- model comparison in Penny et al. 2016 (12). We examined 
incidence and prevalence of disease, as well as incidence of mortality for multiple archetypical settings, 
considering a range of perennial and seasonal transmission intensity and patterns. The results are 
presented in Fig. 3B and Supplementary Fig.s S20-30. The new parameterizations result in increased 
predicted incidence of severe episodes and decreased prevalence for all transmission intensities (thus 275 
also slightly modifying the prevalence-incidence relationship). While we found that the overall 
implications for the other simulated epidemiological relationship were small, the differences in 
predictions for severe disease may carry important implications for public health decision making. We 
conclude that our new parameterizations do not fundamentally bring into question previous research 
conducted using OpenMalaria, but we do suggest re-evaluation of adverse downstream events such as 280 
severe disease and mortality. 
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DISCUSSION	
Calibrating individual-based models can be challenging as many techniques struggle with high 
dimensionality, or become infeasible with long model simulation times and multiple calibration 
objectives. However, ensuring adequate model fit to key data is vital, as this impacts the weighting, we 285 
should give model predictions in the public health decision making process. The Bayesian optimization 
approaches presented here provide fast solutions to calibrating individual-based models while improving 
model accuracy, and by extension prediction accuracy. 

Using a Bayesian optimization approach, we calibrated a detailed simulator of malaria transmission and 
epidemiology dynamics with 23 input parameters simultaneously to 11 epidemiological outcomes, 290 
including age-incidence and -prevalence patterns. The use of a probabilistic emulator to predict goodness-
of-fit, rather than conducting sparse sampling, allows for cheap evaluation of the simulator at many 
locations and increases our confidence that the final parameter set represents a global optimum. Our 
approach provides a fast calibration whilst also providing a better fit compared to the previous 
parameterization. We are further able to define formal endpoints to assess calibration alongside visual 295 
confirmation of goodness of fit (21, 28), such as the emulator’s predictive variance approaching the 
observed simulator variance. The emulator’s ability to quantify the input stochasticity of the simulator 
also enables simulation at small population sizes, contributing to fast overall computation times.  

Despite the demonstrated strong performance of stacked generalization in other contexts such as 
geospatial mapping (14, 40, 42-45), we found that using a superlearning emulator for Bayesian 300 
optimization was not superior to traditional GP-based methods. In our context using GPSG sped up 
convergence of the algorithm, but both approaches, GP and GPSG, led to equally good fits. Each approach 
does however, have different properties with context-dependent benefits: The dimensionality reduction 
provided by GPSG approaches may lead to computational savings depending on the level 0 and level 1 
learners. At the same time, only level 1 learner uncertainty is propagated into the final` ` 305 
predictions, which affects the efficacy of adaptive sampling and may lead to overly exploitative behavior, 
where sampling close to the point estimate of the predicted optimum is overemphasized, rather than 
exploring the entire parameter space (see supplements S2 and S3 on selected points). On the other hand, 
exploration/exploitation trade-offs for traditional GP-BO algorithms have long been examined and no 
regret solutions have been developed (46). 310 

The methodology presented here constitutes a highly flexible framework for individual based model 
calibration and aligns with the recent literature on using emulation in combination with stochastic 
computer simulation experiments of infectious diseases (47). Both algorithms can be applied to other 
parameterization and optimization problems in disease modelling and also in other modelling fields, such 
as physical or mobility and transport models.  Furthermore, in the GPSG approach, additional or 315 
alternative level 0 can be easily incorporated. Possible extensions to our approach include combination 
with methods to adaptively reduce the input space for constrained optimization problems (48), or other 
emulators may be chosen depending on the application. For example, homoscedastic GPs, which are 
faster than the heteroscedastic approach presented here, may be sufficient for many applications (but 
not for our IBM in which heteroscedastic was required due to the stochastic nature of the model). 320 
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Alternatively, the computational power required by neural net algorithms scales only linearly (compared 
with a nominal cubic scaling for GPs) with the sample size, and we envisage wide applications for neural 
net-based Bayesian optimization in high dimensions. In our example, the bilayer neural net algorithm 
completed training and prediction within seconds whilst maintaining very high predictive performance. 
Unfortunately, estimating the uncertainty required for good acquisition functions is difficult in neural 325 
networks, but solutions are being developed (39, 49). These promising approaches should be explored as 
they become more widely available in high-level programming languages. With the increased availability 
of code libraries and algorithms, Bayesian optimization with a range of emulators is also becoming easier 
to implement.  

The probabilistic, emulator-based calibration approach is accompanied by many benefits, including 330 
relatively quick global sensitivity analysis. As explored in this work, GP-based methods are easily coupled 
with sensitivity analyses, which provide detailed insights into a model’s structural dependencies and the 
sensitivity of its goodness of fit to the input parameters. To the best of our knowledge, no other individual-
based model calibration study has addressed this. In the case of malaria models, we have shown the 
interdependence of all OpenMalaria model components and a relative lack of modularity. In particular, 335 
within-host immunity-related parameters were shown to influence all fitting objectives, including 
downstream events such as severe disease and mortality when an infection progresses to clinical disease. 
Thus, calibrating within-host immunity in the absence of key epidemiology and population outcomes can 
lead to suboptimal calibration and ultimate failure of the model to adequately capture disease biology 
and epidemiology. 340 

We have employed a different approach to calibrating OpenMalaria compared with previous methods but 
reach broadly similar comparisons to the natural history of disease. We also attainted a slightly improved 
but similar goodness of fit, the main benefit being improved fitting times and the ability to measure 
parameter importance. Given the high number of influential parameters for each epidemiological 
objective in our parameter importance investigations, and the overlap between parameter-objective 345 
associations, we argue that, where possible, multi-objective fitting should be preferred over purely 
sequential approaches. Our approach confirms that using a parallel approach to parameterization rather 
than a modular, sequential, one captures the joint effects of all parameters and ensures that all outcomes 
are simultaneously accounted for. To the best of our knowledge, no model of malaria transmission of 
comparable complexity and a comparable number of fitting objectives was simultaneously calibrated to 350 
all its fitting objectives. Disregarding the joint influence of all parameters on the simulated outcomes may 
negatively impact the accuracy of model predictions, in particular on policy-relevant outcomes of severe 
disease and mortality. 

Despite providing relatively fast calibration towards a better fitting parameter set, several limitations 
remain in our work. We have not systematically tested that a global optimum has been reached in our 355 
new approach, but assume it is close to a global minimum for the current loss-functions defined, as further 
iterations did not yield changes, and both the GP and GPSG achieved similar weighted loss function and 
parameter sets. We aimed to improve the algorithm to calibrate detailed IBM, but we did not incorporate 
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new data, which will be important moving forward as our parameter importance and validation analysis 
highlights several key epidemiological outcomes on severe disease and mortality are sensitive to results. 360 

The key limitations of Bayesian optimization, particularly when using a Gaussian process emulator, are 
the high computational requirements in terms of memory and parallel computing nodes due to increasing 
runtimes and cubically scaling memory requirements of GPs. For this reason, we opted to not employ fully 
Bayesian KOH methods, which would double the number of GPs that would need to be run. Yet, memory 
limits may be reached before the predictive variance approached its limit. Furthermore, we chose an 365 
acquisition function with high probability to be no regret (46), but this likely overemphasizes exploration 
in the early stages of the algorithm considering the dimensionality of the problem and finite runtime. We 
opted here for pure exploitation every 5 iterations, but a more formal optimization of the acquisition 
function should be explored. The GPSG approach presented here can partially alleviate this challenge, 
depending on the choice of learning algorithms, but the iterative nature and need for many simulations 370 
remain. Memory- and time-saving extensions are thus worth exploring, such as incorporating GPU 
computing or adaptively constraining the prior parameter space, dimensionality reduction, or addressing 
alternative acquisition functions. Additionally, as with all calibration methodologies, many choices are left 
to the user, such as the size of the initial set of simulations, the number of points added per iteration, or 
the number of replicates simulated at each location. There is no general solution to this as the optimal 375 
choices are highly dependent on the problem at hand, and we did not aim to optimize these. Performance 
might be optimized further through a formal analysis of all these variables, however the methodology 
here is already fast, effective, and highly generalizable to different types of simulation models and 
associated optimization problems. Improving the loss-functions or employing alternative Pareto front 
efficiency algorithms was not the focus of our current study but would be a natural extension of our work, 380 
as would be alternative approaches to the weighting of objectives, which remains a subjective component 
of multi-objective optimization problems (50).  

A model’s calibration to known input data forms the backbone of its predictions. The workflow presented 
here provides great advances in the calibration of detailed mathematical models of infectious diseases 
such as IBMs. Provided sufficient calibration data to determine goodness-of-fit, our approach is easily 385 
adaptable to any agent-based model and could become the new modus operandi for multi-objective, 
high-dimensional calibration of stochastic disease simulators. 

 

METHODS	

Preparation	of	calibration	data	and	simulation	experiments		390 
Disease transmission models generally have two types of parameter inputs: core parameters, inherent to 
the disease and determining how its natural history is captured, and simulation options characterizing the 
specific setting and the interventions in place (Fig. 1A in the main manuscript). The simulation options 
specify the simulation context such as population demographics, transmission intensity, seasonality 
patterns and interventions and typically vary depending on the simulation experiment. In contrast, the 395 
core parameters determine how its epidemiology and aetiopathogenesis are captured. These include 
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parameters for the description of immunity (e.g. decay of maternal protection), or for defining clinical 
severe episodes (e.g. parasitemia threshold). To inform the estimation of core parameters, 
epidemiological data on the natural history of malaria extracted from published literature and collated in 
previous calibrations of OpenMalaria(3, 21, 24) were re-used in this calibration round. These include 400 
demographic data such as age-stratified numbers of host individuals which are used to derive a range of 
epidemiological outcomes such as age-specific prevalence and incidence patterns, mortality rates and 
hospitalization rates.  

 Site-specific OpenMalaria simulations were prepared, representing the studies that yielded these 
epidemiological data in terms of transmission intensity, seasonal patterns, vector species, intervention 405 
history, case management, and diagnostics (24). The mirroring of field study characteristics in the 
simulation options ensured that any deviation between simulation outputs and data could be attributed 
to the core parameters. Age-stratified simulation outputs to match to the data include numbers of host 
individuals, patent infections, and administered treatments. A summary of the data is provided in the 
Supplementary text 2.  410 

General	Bayesian	Optimization	framework	with	emulators	
In our proposed Bayesian optimization framework (Fig. 1) we evaluated the deviation between simulation 
outputs and the epidemiological data by training probabilistic emulator functions that approximate the 
relationship between core parameter sets and goodness of fit. To test the optimization approach in this 
study we considered the original goodness of fit metrics for OpenMalaria detailed in (21) and in 415 
Supplementary Text 2, which uses either Residual Sum of Squares (RSS) or negative log-likelihood 
functions depending on the epidemiological data for each objective (21, 24). The objective function to be 
optimized is a weighted sum of the individual objectives’ loss functions. 

We adopted a Bayesian optimization framework where a probabilistic emulator function is constructed 
to make predictions over the loss functions for each objective from the input space, with a minimum 420 
amount of evaluations of the (computationally expensive) simulator.  

We compared two emulation approaches. Firstly, a heteroskedastic Gaussian process (GP) emulator and 
secondly a stacked generalization emulator (40). For approach 1 (GP-BO), we fitted a heteroskedastic 
Gaussian process with the input noise modelled as another Gaussian process (51) with a Matérn 5/2 kernel 
to account for the high variability in the parameter space (Fig. 1C) (38, 52). For approach 2 (GPSG-BO), we 425 
selected a two-layer neural network (53-55), multivariate adaptive regression splines (56), and a random 
forest algorithm (57, 58) as level 0 learners. 

With each iteration of the algorithm, the training was extended using adaptive sampling based on an 
acquisition function (lower confidence bound) that accounts for uncertainty and predicted proximity to 
the optimum of proposed locations (Fig. 1B). As the emulator performance improves (as assessed by its 430 
predictive performance on the test set) we gain confidence in the currently predicted optimum.  
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Malaria	transmission	and	disease	simulator	
We applied our novel calibration approach to OpenMalaria (https://github.com/SwissTPH/openmalaria), 
an open-source modelling platform of malaria epidemiology and control. It features several related 
individual-based stochastic models of P. falciparum malaria transmission and control. Overall, the 435 
OpenMalaria IBM consists of a model of malaria in humans linked to a model of malaria in mosquitoes 
and accounts for individual level heterogeneity in humans (in exposure, immunity, and clinical 
progression) as well as aspects of vector ecology (e.g. seasonality and the mosquito feeding cycle). 
Stochasticity is featured by including between- and within-host stochastic variation in parasite densities 
with downstream effects on immunity (24). OpenMalaria further includes aspects of the health system 440 
context (e.g. treatment seeking behavior and standard of care) (3, 24) with additional probabilistic 
elements such as treatment seeking probabilities or the option for stochastic results of diagnostic tests. 
An ensemble of OpenMalaria model alternative variants is available defined by different assumptions 
about immunity decay, within-host dynamics, heterogeneity of transmission, along with more detailed 
sub-models that track parasite genetics, and pharmacokinetic and pharmacodynamics. The models allow 445 
for the simulation of interventions, such as the distribution of insecticide treated nets (ITNs), vaccines, or 
reactive case detection (59, 60), in comparatively realistic settings. Full details of the model and the history 
of calibration can be found in the original publications (3, 21, 24) and are summarized in Supplementary 
Texts 1 and 2. In our application, we use the term simulator to refer to the OpenMalaria base model 
variant (21).  450 

Calibrating	OpenMalaria:	loss	functions	and	general	approach	
Aim 

Let #(") denote a vector of loss functions obtained by calculating the goodness of fit between simulation 
outputs and the real data (full details of loss function can be found in supplementary Text 2). In order to 
ensure a good fit of the model, we aim to find the parameter set " that achieves the minimum of the 455 
weighted sum of 11 loss functions (corresponding to the 10 fitting objectives)	((") = ∑ 4-)

..
-/. - ("), 

where )-(") is the value of objective function 5 at " and 4-  is the weight assigned to objective function 5:  

argmin
0

<=4-)-

..

-/.
(")> 

The weights are kept consistent with previous rounds of calibration and chosen such that different 
epidemiological quantities contributed approximately equally to ((") (see Supplementary Text 2). 460 

Step 1: Initialization. Let ? = 23 denote the number of dimensions of the input parameter space @ and 
A = 11  the number of objective functions 	)-(C), 5 = 1,… , 11 . Prior distributions consistent with 
previous fitting runs (21) were placed on the input parameters. As each parameter is measured in different 
units, we sampled from the ?-dimensional unit cube @ and converted these to quantiles of the prior 
distributions (21) (Supplementary Text 2and Supplementary Fig. S6). Previous research suggests that in 465 
high-dimensional spaces quasi-Monte Carlo (qMC) sampling outperforms random or Latin Hypercube 
designs for most function types and leads to faster rates of convergence (61, 62). We therefore used Sobol 
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sequences to sample 1,000 initial locations from @. The GP can account for input stochasticity of the 
simulator. For each sample, we simulated 2 random seeds at a population size of 10,000 individuals. 
Additionally, 100 simulations were run at the centroid location of the unit cube to gain information on the 470 
simulator noise. Using small noisy simulations with small populations speeds up the fitting as the noisy 
simulations are less computational expensive than larger population runs. Replicates were used to detect 
signals in noisy settings and estimate the pure simulation variance (51).  The 2000 unique locations were 
randomly split into a training set (90%) and a test set (10%). All simulator realizations at the centroid were 
added to the training set. 475 

Step 2: Emulation 

2.1: Emulator Training 

Each emulator type for each objective function was trained in parallel to learn the relationships between 
the normalized input space @, and the log-transform of the objective functions	#("). In each dimension 
E ∈ ?, the mean G1  and standard deviation H1  of the training set were recorded, E = 1,… , 23. 480 

2.2 Posterior prediction 

We randomly sampled 500,000 test locations in @ from a multivariate normal distribution with mean "234 
and covariance matrix I, where "234 is the location of the current best location and I is determined based 
on previously all sampled locations, and scaled each dimension to mean G1  and standard deviation H1. 
The trained emulators were used to make predictions  J(")K  of the objective functions J(") at the test 485 
locations. Mean estimates, standard deviations, and nugget terms were recorded. The full predictive 
variance at each location " ∈ @ corresponds to the sum of the standard deviation and nugget terms. From 
this, we derived the weighted sum (") = ∑ 4-)

..
-/. - (") , using weights L consistent with previous fitting 

runs (Smith 2012) with greater weighting for further downstream objectives. The predicted weighted loss 
function at location " was denoted ($(") with a predicted mean	Ĝ5(") and variance HN5("). Every 15 490 
iterations, we increase the test location sample size to 5 Million to achieve denser predictions. 

Step 3: Acquisition. We chose the lower confidence bound (LCB) acquisition function to guide the search 
of the global minimum (63). Lower acquisition corresponds to potentially low values of the weighted 
objective function, either because of a low mean prediction value or large uncertainty (64). From the 
prediction set at iteration	O, we sample without replacement 250 new locations	" = argmin6	{Ĝ5(", O) −495 

RST7		HN7(", O)}, with the hyperparameter S = 1	and T7 = 2log	(X7
8/:;:Y/	3[), where X7 is the number 

of previous unique realisations of the simulator at iteration t, and [ = 0.01 is a hyperparameter (46). We 
choose this method as with high probability it is no regret (46, 64). With increasing iterations, confidence 
bound-based methods naturally transition from mainly exploration to exploitation of the current 
estimated minimum. In addition to this, we force exploitation every 10 iterations by setting	T7 = 0).  500 

Step 4: Simulate. The simulator was evaluated at locations identified in step 3 and the realisations were 
added to the training set. Steps 2-4 were run iteratively. The Euclidian distance between locations of 
current best realisations was recorded.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2021. ; https://doi.org/10.1101/2021.01.27.21250484doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.27.21250484
http://creativecommons.org/licenses/by-nc/4.0/


17 

 

Step 5: Convergence. Convergence was defined as no improvement in the best realisation,	argmin&	J. 

Emulator	definition	505 
We compared two emulation approaches. Firstly, a heteroskedastic GP emulator and secondly a stacked 
generalization emulator (40) using a two-layer neural net, multivariate adaptive regression splines (MARS) 
and a random forest as level 0 learners and a heteroskedastic GP as level 1 learner: 

1.1.1 Heteroskedastic Gaussian Process (hetGP) (65).  

We fitted a Gaussian process with the input noise modelled as another Gaussian process (51). After initial 510 
exploration of different kernels, we chose a Matérn 5/2 kernel to account for the high variability in the 
parameter space. A Matérn 3/2 correlation function was also tested performed equally. Each time the 
model was built (for each objective at each iteration), its likelihood was compared to that of a 
homoscedastic Gaussian process and the latter was chosen if its likelihood was higher. This resulted in a 
highly flexible approach, choosing the best option for the current task.  515 

1.1.2 Gaussian Process Stacked Generalization (GPSG). 

Stacked generalization was first proposed by Wolpert 1992 (40) and builds on the idea of creating 
ensemble predictions from multiple learning algorithms (level 0 learners). In superlearning, the cross-
validated predictions of the level 0 learners are fed into a level 1 meta-learner. We compared the 10-fold 
cross-validated predictive performance of twelve machine learning algorithms on the test set. All 520 
algorithms were accessed through the mlr package in R (66). We compared two neural network algorithms 
(brnn (54) for a two layer neural network and nnet  for a single-hidden-layer neural network (67)), five 
regression algorithms (cvglmnet (68) for a generalised linear model with LASSO or Elasticnet 
Regularization and 10-fold cross validated lambda, glmboost (69) for a boosted generalized linear model, 
glmnet (68) for a regular GLM with Lasso or Elasticnet Regularisation, mars for multivariate adaptive 525 
regression splines (70), and cubist for rule-and instance-based regression modelling (71)), three random 
forest algorithms (randomForest (58), randomForestSRC (72) and ranger (73)), and a tree-like node 
harvesting algorithm (nodeHarvest (74)). Extreme gradient boosting and support vector regression were 
also tested but excluded from the comparison due to its long runtime. Their performance was compared 
with regards to runtimes, and correlation coefficients between predictions on the test set and the true 530 
values. Based on these, we selected the two-layer neural network (brnn) (55), multivariate adaptive 
regression spline (mars) (70), and random forest (randomForest) (58) algorithms. This ensemble of 
machine learning models constituted the level 0 learners and was fitted to the initialization set. Out-of-
sample predictions from a 10-fold cross validation of each observation were used to fit the level 1 
heteroskedastic Gaussian process. As in approach 1, we opted for a Matérn 5/2 kernel and retained the 535 
option of changing to a homoscedastic model where necessary. 

Emulator	performance	
We ascertained that both emulators captured the input-output relationship of the simulator by tracking 
the correlation between true values #  and predicted values #$  on the holdout set of 10% of initial 
simulations with each iteration (truth vs predicted R2 0.51-0.89 for GP vs 0.37-0.77 for GPSG after 540 
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initialization, see supplement S1). Transition from exploration to exploitation during adaptive sampling 
was tracked by recording the distribution of points selected during adaptive sampling in each iteration 
(Supplementary Fig.s S2 and S3). 

Sensitivity	analysis	
A global sensitivity analysis was conducted on a heteroskedastic GP model with Matérn 5/2 kernel that 545 
was trained on all training simulation outputs (n=5,400) from the fitting process. We used the Jansen 
method of Monte Carlo estimation of Sobol’ sensitivity indices for variance decomposition (75, 76) with 
20 000 sample points and 1000 bootstrap replicates. Sobol’ indices were calculated for all loss functions 
# as well as for their weighted sum J and in all dimensions. Whilst keeping the number of sample points 
to as low as possible for computational reasons, we ascertained that first-order indices summed to 1 and 550 
total effects >1. We further ensured that the overall results of the Sobol’ analysis were consistent with 
the results of other global sensitivity analyses, namely the relative parameter importance derived from 
training a random forest (Supplementary Fig. S32).  

Synthetic	data	validation	
Synthetic field data was generated by forward simulation using the final parameter sets from each 555 
optimization process. The two optimization algorithms were run anew using the respectively generated 
synthetic data to calculate the goodness of fit statistics. The parameter sets retrieved by the validation 
were compared against the parameterization yielded by the optimization process.  

Epidemiological	outcome	comparison			
We conducted a small experiment to compare key epidemiological outcomes from the new 560 
parameterizations with the original model and that detail in a four malaria model comparison in Penny et 
al. 2016 (12). We simulated malaria in archetypical transmission and seasonality settings using the 
different parameterizations. The experiments were set up in a full-factorial fashion, considering the 
simulation options described in Table 1. Monitored outcomes were the incidence of uncomplicated, 
severe disease, hospitalizations, and indirect and direct malaria mortality over time and by age, 565 
prevalence over time and by age, the prevalence-incidence relationship, and the EIR-prevalence 
relationship. Simulations were conducted for a population of 10,000 individuals over 10 years. 

Number of stochastic 
realization 

Seasonality Transmission (EIR) Parameterization 

10 
  

Perennial 
Seasonal (sinusoidal) 

0.25, 0.5, 0.75, 1, 1.1, 1.25, 1.35, 
1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 
10, 12, 14, 16, 18, 20, 22, 25, 30, 
35, 40, 45, 50, 64, 73, 80, 100,  
128,  150, 200, 256,  512 

GA 
GP-BO 
GPSG-BO 

Table 1: Full experimental design in setting archetypes. Experiments were run at 36% probability that 
an infected individual receives effective care within 14 days. 
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Software	
Consistent with previous calibration work, we used OpenMalaria version 35, an open-source simulator 570 
written in C++ and further detailed in full in the supplement, OpenMalaria wiki 
(https://github.com/SwissTPH/openmalaria/wiki) or in the original publications (3, 21, 24). Calibration 
was performed using R 3.6.0. For the machine learning processes, all algorithms were accessed through 
the mlr package version 2.17.0(66). The heteroskedastic Gaussian process utilised the hetGP package 
under version 1.1.2(65). The sensitivity analysis was conducted using the soboljansen function of the 575 
sensitivity package version 1.21.0 in R (77). All algorithms were adapted to the operating system (CentOS 
7.5.1804) and computational resources available at the University of Basel Center for Scientific 
Computing, SciCORE, which uses a Slurm queueing system. The full algorithm code is available on GitHub 
(https://github.com/reikth/BayesOpt_Calibration) and can be easily adapted to calibrate  any simulation 
model. The number of input parameters and objective functions are flexible. Thus, to adapt the code to 580 
other simulators, code should be updated to run the respective model simulator, and tailored to user’s 
operating system. Further requirements to adapt the workflow are sufficient calibration data, and a per-
objective goodness-of-fit metric.  

 

DATA	AND	CODE	AVAILABILITY	585 
Code is publicly available on GitHub under https://github.com/reikth/BayesOpt_Calibration and all 
calibration data was detailed in (24) and further available from the researchers on request.  
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1 SUPPLEMENTARY TEXT 1: MALARIA TRANSMISSION MODEL 
1.1 Main features 

We test our calibration algorithm on OpenMalaria, an individual-based model of malaria dynamics. To 
provide context of the model’s structure and the role of the fitted parameters (see supplementary text 
1), we here briefly describe its main features and key equations. This description is adapted from that 
provided in Smith et al. 2012 (1) and Smith et al. 2006 (2). Full details of all model components can be 
found in The American Journal of Tropical Medicine and Hygiene, Volume 75, Issue 2 Supplement 
(2006).  

OpenMalaria features discrete individual-based stochastic simulations of malaria in humans in 5-day 
time steps. Every infection and individual are characterized by a set of continuous state variables, 
namely, parasite densities, infection durations, and immune status. Key processes and relationships 
regarding the course of infection simulated by model include the attenuation of inoculations, acquired 
pre-erythrocytic immunity, acquired blood-stage immunity, morbidity (acute and severe) and 
mortality (malaria-specific and indirect), anemia, and the infection of vectors as a function of parasite 
densities in the human. Other model components include a vector model and a case management 
system. All individual components have previously been well documented (1, 2). A visual summary of 
the model with references to further details on each component is provided in Fig. S1.  

In our current recalibration only the original (base) model variant is used to test our new approach (1).  
Parameters estimated during the calibration process are highlighted and summarized in Table S1 at 
the end of this section. Other parameter values were drawn from the literature or were calibrated to 
separate data: for example, the empirical parasite density model of Maire et al. 2006 (3) was calibrated 
to malariatherapy (4) data and not recalibrated at the population level.  

 

Figure S1. Visual summary of OpenMalaria with references to original publications on the model 
components. Adapted from Smith et al. 2006, Fig.3 (2). References from top to bottom and left to right 
(Attenuation of inoculations (5)),(Acquired pre-erythrocytic immunity (5)),(Infection of vectors [(6), 
(7)], Acquired blood-stage immunity (3), Anemia (8)),(Indirect mortality (neonatal) (9), Acute malaria 
morbidity (10), severe malaria morbidity (11)),(Indirect mortality excluding neonatal (11), Malaria 
specific mortality (11)) 

Attenuation of inoculations

Smith et al. (2006) (69)

Acquired pre-erythrocytic
immunity

Smith et al. (2006) (69)

Infection of vectors

Killeen et al. (2006) (70)
Ross et al. (2006) (71)

Acquired blood-stage 
immunity

Maire et al. (2006) (67)

Anemia

Carneiro et al. (2006) (72)

Indirect mortality 
(neonatal)

Ross et al. (2006) (73)

Acute malaria morbidity

Smith et al. (2006) (74)

Severe malaria morbidity

Ross et al. (2006) (75)

Indirect mortality (excluding 
neonatal)

Ross et al. (2006) (75)

Malaria specific mortality

Ross et al. (2006) (75)
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1.2 Infection of the human host 
The seasonal pattern of entomological inoculation rate (EIR) determines seasonal pattern of 
transmission and thus the parasite densities in the individual, modified by natural or acquired 
immunity and interventions (2). 

1.2.1 Differential feeding by mosquitoes depending on body surface area 
In the base model, the expected number of entomological inoculations experienced by individual ! of 
age " at time # is 

where $!"#(#) refers to the annual entomological inoculation rate (EIR) computed from human bait 
collections on adults and '(), is the individual’s availability to mosquitoes, assumed to be proportional 
to average body surface area, depending only on age .  '("(!, #)*	increases with age up to age 

20 years where it reaches a value of '!"# (the average body surface of people ≥ 20 years old in the 
same population). 

The biting rate in relation to human weight is based on data from The Gambia published by Port and 
others (12), where the proportion of mosquitoes that had fed on a host were analyzed in relation to 
the host’s contribution to the total biomass and surface area of people sleeping in one mosquito net 
(5). 

 

1.2.2 Control of pre-erythrocytic stages 
The number of infective bites received per unit time for each individual !, adjusted by age, is given by 
Eq. 1 above. A survival function /(!, #) defines the probability that the progeny of an inoculation 
survives to give rise to a patent blood stage infection, i.e. the proportion of inoculations that result in 
infections or the susceptibility of individual ! at time #. The force of infection is modelled as 

 

where $"(!, #) is the expected number of entomological inoculations endured by individual ! at time 
#, adjusted for age and individual factors, and the number of infections ℎ(!, #) acquired by individual ! 
in five-day time step #, follows a Poisson distribution: 

The susceptibility of individual ! at time #, /(!, #) is defined as: 

 /(!, #) = 2/$ +	
1 − /$

1 + $"(!, #)$∗
6	

⎝

⎜
⎛
/&!! +

1 − /&!!

1 + :
;'(!, #)
;'∗ <

(!

⎠

⎟
⎞
,	 (4) 

where /&!!, ;'∗ , $∗, @'  and /$	  are constants representing the lower limit of success probability of 
inoculations in immune individuals, critical value of cumulative number of entomologic inoculations, 
critical value of $"(!, #), steepness of relationship between success of inoculation and ;'(!, #), and,  
the lower limit of success probability of inoculations at high where $"(!, #), respectively. Here 

( , )a i t

 $"(!, #) =
$!"#(#)'("(!, #))

'!"#
 (1) 

 A(!, #) = /(!, #)$"(!, #), (2) 

 ℎ(!, #)~	CD!EEDF(A(!, #)*. (3) 

 ;'(!, #) = 	H $"(!, I)JI
*

*+"(&,*)
 (5) 
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/$and $∗	are fixed to /$ = 0.049, and $∗ = 0.032 inoculations/person-night and are detailed in (5). 

 

1.2.3 Course of infection in the human host  
The model for each individual infection N	in host ! comprises a time series of parasite densities. The 
base model for infection within humans is described in Maire et al. 2006 (3). In brief, the duration of 
each infection, I!"# is sampled from  

parameterised against malaria therapy data (4) and detailed in Maire et al. 2006 (3).  In the absence of 
previous exposure or concurrent infections, the log density of infection N in host ! at each time point, 
I = 0,1, … , I!"#(!, N)	is normally distributed with expectation 

where P/(I, I!"#)  is taken from a statistical description of parasite densities in malariatherapy 
patients and J(!) describes between-host variation with a log-normal distribution with variance Q&0.  

We consider the possibility of multiple concurrent infections in the same individual at the same time. 
Exposure to asexual blood stages is measured by 

where R(!, I)  is the total parasite density of individual !  at time I  and P(!, N, I)  is the density of 
infection N	in individual ! at time I and 

 

In the presence of previous exposure and co-infection, the expected log density for each concurrent 
infection is then:  

where S(!, #)	is the total multiplicity of infection of in individual ! at time #, and  

where  ;1(!, N, #) = 	∑ R(!, #) − ∑ P(!, N, I)*
*",$

*
*+"  (note that a continuous time approximation to this is 

given in the original publications (3, 5) and hence measures the cumulative parasite load. Furthermore   

where, ;2(!, #) = 	∑ ℎ(!, I)*
*+" − 1, the number of inoculations since birth, excluding the one under 

consideration, which measures the diversity of inocula experienced by the host up to the time point 
under consideration.   

 ln(I!"#(!, N)*~	WDXY"Z(5.13,0.80), (6) 

 ln(P3(!, N, I)* = ln J(!) + ln P/(I, I456),  (7) 

 ;1(!, N, #) = 	H R(!, I)
*

*+"
JI −	H P(!, N, I)JI

*

*",$
, (8) 

 ;2(!, #) = 	H ℎ(!, I)	JI − 1
*

*+"
. (9) 

 $(ln(P(!, N, I)** = ]1(!, #)]2(!, #)]!(!, #)ln(P3(!, N, I)* + ln :
]

S(!, #) + 1 − ]#<, 
 

(10) 

 
]1(!, #) =

1

1 + ;1(!, N, #);1∗
, 

(11) 

 ]2(!, #) =
1

1 + ;2(!, #);2∗
, (12) 
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which measures the effect of maternal immunity. ;1∗ , ;2∗,	]#, "!∗ , and ^! are all constants estimated 
in the fitting process.  These constants are described in Table S1, or further in Maire et al. 2006 (3). 

Variation within individuals described as Q10(!, N, I), where 

and Q70	and ;8∗	are constants, described in Table S1. 

The simulated density of infection N	in individual !	at time I is then drawn from a normal distribution: 

The total density of all infections in individual !	at time t is then the sum of the densities of concurrent 
infections N 

1.2.4 Infectivity of the human host 
The model infectivity of the human host is described in Ross 2006 where infectivity of individual I at 
time t is given by the distributed lag model: 

where # is in 5-day units and 

where _9, _0, _:, `, Q;0	are constants representing contributions of past infections to gametocyte 
densities (detailed in Table S1), and to be calibrated at the population level. We define 

where Φ is the cumulative normal distribution, P;∗	is the density of female gametocytes necessary for 

infection of the mosquito, and `∗ = <=(>)+<=(1%∗ )
?%

 is  constant (depending on the blood meal volume, 

gametocyte viability and system variability). Thus, the proportion of mosquitoes infected by individual 
! at time # is defined as  

and the probability of a mosquito becoming infected during any feed is 

where b is a constant scale factor and to be calibrated. 

 ]!(!, #) = 1 − ^!exp	 :−
0.693"(!, #)

"!∗
< (13) 

 Q10(!, N, I) =
Q30

1 + ;2(!, #);8∗
, (14) 

 ln(P(!, N, I)*~	WDXY"Z	 g$(ln(P(!, N, I)**, Q10(!, N, I)h. (15) 

 R(!, #) = 	iP(!, N, I(!, N)*
@

. (16) 

 Υ(!, #) = 	_9R(!, # − 2) + _0R(!, # − 3) + _:R(!, # − 4), (17) 

 ln gP;(!, #)h ~	WDXY"Z(ln(`Υ(!, #)* , Q;0	*, (18) 

 Pr(P;(!, #) > 	P;∗* = Φ n
ln(`Υ(!, #)* − ln(P;∗)

Q;
o = 	Φ n

ln(Υ(!, #)*
Q;

+ `∗o, (19) 

 p!(!, #) = qPr(P;(!, #) > P;∗*r
0, (20) 

 sA(#) = b
∑ '("(!, #)*p!(!, #)&

∑ '("(!, #)*&
 (21) 
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We define sA
(3)(#) as the value of sA(#) in the simulation of an equilibrium scenario to which an 

intervention has been applied. Let $!"#
(3) (# + Z8) be the corresponding entomologic inoculation rate. 

sA
(9)(#) and $!"#

(9) (# + Z8) are the corresponding values for the intervention scenario. Then 

where Z8	corresponds to the duration of the sporogenic cycle in the vector, which we approximate 

with two time steps (10 days). 
B'()
(") (*CD,)E-

(.)(9)
E-
(")(*)

 is the total vectorial capacity) 

1.3 Morbidity 
In order to simulate the clinical state of individual ! at time #, for each five-day time step 5 independent 
samples from the simulated parasite density distribution are drawn for each concurrent infection N. 

1.3.1 Acute morbidity (uncomplicated clinical cases) 
The model for an episode of acute morbidity was originally described in (10) and occurs in individual ! 
at time # with probability 

where R∗is the pyrogenic threshold and R!"#	is the maximum density of five daily densities sampled 
during the five-day interval #.  

The pyrogenic threshold changes over time following 

where t9(R(!, #)*  is a function describing the relationship between accrual of tolerance and the 
parasite density R(!, P); t0(R∗(!, #)) describes the saturation of this accrual process at high values of 
R∗ and uvR∗(!, #) determines the decay threshold with first-order kinetics, ensuring that the parasite 
tolerance is short-lived (10). 

Here t9(R(!, #)*	is defined to ensure that the stimulus is not directly proportional to R but rather that 
it asymptotically reaches a maximum at high values of R:	 

At high values of R∗, a higher parasite load is required to achieve the same increase: 

Thus, the pyrogenic threshold R∗is defined to follow 

and the initial condition R∗(!, 0) = R3∗ at the birth of the host, where ^,uv	R3, R9∗	and R0∗ are targets of 
the calibration, and are defined in Table S1. 

 $!"#
(9) (# + Z8) =

$!"#
(3) (# + Z8)sA

(9)(#)
sA
(3)(#)

, (22) 

 C!(!, #) =
R!"#(!, #)

R∗(!, #) + R!"#(!, #)
, (23) 

 JR∗(!, #)
J# = t9(R(!, #)*t0(R∗(!, #)* −	uvR∗(!, P), (24) 

 t9(R(!, #)* = 	
^R(!, #)

R9∗ + R(!, #)
. (25) 

 t0(R∗(!, #)* =
1

R0∗ + R∗(!, #)
. (26) 

 
JR∗(!, #)
J# =

^R(!, #)
(R9∗ + R(!, #))(R0∗ + R∗(!, #))

−	uvR∗(!, #), (27) 
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1.3.2 Severe disease 
The model for severe disease was described in Ross et al 2006 (11) and two different classes of severe 
episodes are considered by the model, x9and x0. CF9(!, #) is the probability that an acute episode (') 
is of class x9 and  

where RF9∗ 	is a constant to be calibrated and y(!, #) is the clinical status of individual ! at time #.  

Class x0 of severe malaria episodes occurs when an otherwise uncomplicated episode coincides with 
some other insult, which occurs with risk 

where z3	is the limiting value of z("(!, #)* at birth and "G∗  is the age at which it is halved and both are 
to be calibrated. 

The probability that individual ! experiences an episode belonging to class x0 at time #, conditional on 
there being a clinical episode at that time is  

The age ant time specific risk of severe malaria morbidity conditional on a clinical episode is then given 
by 

1.3.3 Mortality 
Malaria deaths in hospital are a random sample of admitted severe malaria cases, with age-dependent 
sampling fraction {2("), the hospital case fatality rate, derived from the data of Reyburn et al (2004) 
(13). The original model was described in Ross et al. 2006 (11). 

The severe malaria case fatality in the community for age group ", {H(") is estimated as  

where |9 the estimated odds ratio for death in the community compared to death in in-patients is an 
age-independent constant to be calibrated and {2(")  is the hospital case fatality rate. The total 
malaria mortality is the sum of the hospital and community malaria deaths.  

The risk of neonatal mortality attributable to malaria (death in class ]9) in first pregnancies is set equal 
to 0.3}I/  where  

where ~I/  is related to ~J/ , the prevalence in simulated individuals 20-24 ears of age via 

and ~J/∗  and ~I/∗  are constants to be calibrated and are detailed in Table S1. 

 CF.(!, #) = Pr(y(!, #) ∈ x9|y(!, #) ∈ ') =
R!"#(!, #)

RF9∗ + R!"#(!, #)
, (28) 

 z("(!, #)* =
z3

1 + :"(!, #)"G∗
<
, (29) 

 CF/(!, #) = Pr(y(!, #) ∈ x0	| y(!, #) ∈ ') = z("(!, #)).	 (30) 

 CF(!, #) = CF.(!, #) + CF0(!, #) − CF.(!, #)CF/(!, #). (31) 

 {H(") =
{2(")|9

1 − {2(") + {2(")|9
, (32) 

 }I/ = }!"# n1 − expÅ−
~I/
~I/∗

Ço, (33) 

 ~I/ = 1 −
1

1 + :~J/~J/∗
<

 (34) 
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An indirect death in class ]0 is provoked at time #, conditional on there being a clinical episode at that 
time with probability CK0(!, #) where 

and 

where {K is limiting value of CK/(!, #) at birth and "G∗ 	is a constant to be calibrated. Deaths in class ]0 
occur 30 days (six time steps) after the provoking episode.  

 CK/(!, #) = Pr(y(!, #) ∈ ]0|y(!, #) ∈ '), (35) 

 CK/(!, #) =
{K

1 + :"(!, #)"G∗
<
, (36) 
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No.* !! Parameter Meaning Unit/ 
dimension 

Prior GA-O estimate  
(Smith et al. 2012, model 

R0001)(1) 

New estimate GP-BO 
(Reiker et al.2020) 

New estimate GPSG-BO 
(Reiker et al.2020) 

1 -- −#$(& − '") '" = Lower limit of success 

probability of inoculations at 

high )#(*, ,) 

Proportion -- 0.051 0.051 0.051 

2 -- )∗ Critical value of )#(*, ,) Inoculations/ person-

night 

-- 0.032 0.032 0.032 

3 1
a
 '%&& Lower limit of success 

probability of inoculations in 

immune individuals 

Proportion -./01(#23(4. &6) , 7)8 0.138 0. 196 0.036 

4 3 9'∗  Critical value of cumulative 

number of entomologic 

inoculations 

Inoculations -./01(#23(&:&6) , 7)8 1,514.4 

 

1,954.8 4,972.2 

5 2 ;' Steepness of relationship 

between success of inoculation 

and 9'(*, ,) 

Dimensionless 

constant 

-./01(#23(&) , &)8 2.037 

 

1.291 1.871 

6 23 <%
(

 Variation between hosts on 

parasite densities (variance of 

log-normal distribution) 

 -./01(#23(&4. &=) , 4. >)8 10.174 11.729 9.689 

7 5 9)∗  Critical value of cumulative 

number of parasite days 

Parasite-days/?@ x 

&4*+ 

-./01(#23(A. :7B&4+) , 7)8 3.516 593.661 1.216 

8 4 9,
∗

 Critical value of cumulative 

number of infections 

Infections -./01(#23(C=. A) , 7)8 97.335 

 

54.082 89.759 

9 7 #$(& − D&) D& =	Maternal protection at 

birth 

Dimensionless −#230& − GH,I(J, 7)8 2.330 

 

1.770 1.266 

10 8 D&∗  Decay of maternal protection Per year -./01(#23(&. J) , 4. :)8 2.531 1.279 1.551 

11 9 <-
(

 Fixed variance component for 

densities 

[#$(L-$MNOP)]( -./01(#23(4. >>) , 7)8 0.656 5.838 1.440 

12 6 9.∗  Critical value of cumulative 

number of infections for 

variance in parasite densities 

Infections -./01(#23(:) , &)8 0.916 3.959 7.226 

13 14 R(
∗

 Critical value of R∗(*, ,) in 

determining increase in R∗ 
Parasites/?L -./01(#23(:444) , &)8 6,502.26 6,560.08 13,485.57 

14 10 D Factor determining increase in 

R∗(*, ,) 
STUTMNO-M(?@*(LTP*/ -./01(#23(&67>47) , &)8 142,602 63,220.5 119,502 
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15 22 V/ Density bias (non Garki) Dimensionless -./01(#23(4. &==) , 4. >)8 0.177 0.123 0.159 

16 -- <( Mass action parameter Dimensionless  1 1 1 

17 18 #23W/ Case fatality for severe episodes 

in the community compared to 

hospital 

Log odds -./01(#23(7. 4C) , 4. A)8 0.736 0.340 0.285 

18 20
b
 X0 Co-morbidity intercept relevant 

to indirect mortality 

Proportion -./01(#23(4. 4&C) , &)8 0.019 0.019 0.023 

19 19
c
 X1 Non-malaria intercept for infant 

mortality 

Deaths / 1000 live 

births 

-./01(#23(6C. :) , &)8 49.539 46.5095 40.163 

20 21 V- Density bias (Garki) Dimensionless -./01(#23(6. =C) , 4. 7)8 4.796 3.739 5.618 

21 15 R2!
∗

 Parasitaemia threshold for 

severe episodes type Y/ 

Parasites/?L -./01(#23(7:4444) , 4. J)8 784,456 849,046 484,122 

22 -- -- Immune penalty  -- 1 1 1 

23 -- -- Immune effector decay  -- 0 0 0 

24 16
d
 Z- Prevalence of co-

morbidity/susceptibility at birth 

relevant to severe episodes (G() 

proportion -./01(#23(4. 4C7) , 4. :)8 0.097 0.078 0.094 

25 11 #237

[\
 

R∗(pyrogenic threshold) half-life Years #23(7)	
/	 -./01(#23(7. :7) , &)8 

0.275 0.468 0.516 

26 13 R/
∗

 Critical value of parasite density 

in determining increase in R∗ 
Parasites/?L -./01(#23(>) , 7)8 0. 597 1.665 0.477 

27 -- -- Asexual immunity decay  -- 0 0 0 

28 12 R-
∗

 Pyrogenic threshold at birth Parasites/?L -./01(#23(7C>. A) , &)8 296.302 90.938 201.671 

29 -- -- Idete multiplier Dimensionless -- 2.798 2.799 2.799 

30 17 I3
∗

 Critical age for co-morbidity Years -./01(#23(4. 77:) , 4. J)8 0.117 0.138 0.087 

*
 Parameter number assigned for simulations in OpenMalaria scenarios, some parameters here are used in model variants and not in the base model. Listed for completeness; 

+
Parameter number 

	!%   assigned for the optimisation problem. !	is drawn from the unit cube and determines the quantiles of the prior for the parameter value. 
a
 quantile = ! ∗ 4. JA=7&47. 

b
 quantile = ! ∗

4. CCCCCC&.  
c
  quantile = ! ∗ 4. CCJ>=::. 

d
 quantile = ! ∗ 4. CCCC>A.  

Table S1: Names and details of OpenMalaria core parameters. GA-O = Genetic algorithm optimization, GP-BO = Gaussian process-based Bayesian optimization, GPSG-BO = Gaussian process stacked 

generalization-based Bayesian optimization   
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2 SUPPLEMENTARY TEXT 2: CALIBRATION APPROACH AND DATA 
SUMMARY 

A comprehensive epidemiological calibration dataset was collated in order to parameterize 
OpenMalaria. This calibration dataset covers a total of eleven different epidemiological relationships 
(or objectives for fitting) that span important aspects of the natural history of malaria. Data were 
collated from different settings (see Table S2 for summary) and were detailed in the original model 
descriptions (2, 10) and a later parameterization (1). A total of 61 simulation scenarios were setup to 
parameterize OpenMalaria, constructed to simulate the study surveys and study sites that yielded the 
calibration dataset. The study site observations were replicated in OpenMalaria by reproducing the 
timing of the surveys and their endpoints (such as prevalence and incidence) and matching simulation 
options to the setting with regards to transmission intensity and seasonality, vector species, treatment 
seeking behavior and anti-malarial interventions. The objectives and data are further detailed below.  

The parameter estimation process is a multi-objective optimization problem with each of the 
epidemiological quantities in Table S2 representing one objective. The aim of the optimization is to 
find a parameter set that maximizes the goodness of fit by minimizing a loss statistic computed as the 
weighted sum of the loss functions for each objective. Building a weighted average reduces the 
multiple loss terms to a single overall loss statistic, defined as: 

where !!"(#)	is the loss function for parameter vector #, epidemiological quantity & and dataset ', and 
the weights (!  were chosen so that different epidemiological quantities contribute approximately 
equally to )(#). 

For the current calibration, we utilised the loss functions from Smith et al. 2012 (1), the loss function 
!!(#)	for each objective & use either (negative) log-likelihoods or Residual Sum of Squares (RSS) with 
an unknown minimum. We did not update these loss-functions in order to compare to our previous 
approaches. 

The likelihood functions are given by 

where the observed values are *#, … , *$	and the model parameters #. In practice, it is easier to work 
with the log likelihood, namely 

The loss functions !!(#) used for each objective are detailed in the following sections. 

 !(#) = 	'(!
!

')!"(*)
"

 (37) 

 ℒ(*|-#, … , -$) = 0(-#, … , -$|	*) =10(-!|*)
$

!%#
 (38) 

 log ℒ(*|-#, … , -$) = 	'log0(-!|*)
$

!%#
 (39) 
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2.1 Objectives: Epidemiological data and loss functions 
Below we described each fitting objective in terms of the data (setting, surveys, observations, 
references) along with the associated loss function and original references. Table S3 provides an 
overview of the 61 simulation scenarios used for calibration, and which objective they contribute to.  

 

2.1.1 Age pattern of incidence after intervention   

2.1.1.1 Data 
The data used for the calibration of objective 1 (Age pattern of incidence) consists of eight cross-
sectional surveys of infection rates by age and EIR in Matsari village, capturing 12 age groups each. 
Matsari village was monitored entomologically for four years (Nov 1970 - Nov1973) during the Garki 
Project and multiple anti-malaria interventions were administered (14). From October 1970 to March 
1972 (the baseline / pre-intervention phase), eight cross-sectional malariologic surveys of the whole 
village population and intensive entomologic surveillance (human bait collection of mosquitoes and 
dissections of the mosquito salivary glands for sporozoites) were carried out. The latter was used to 
estimate a baseline transmission intensity of 67 inoculations per person per year (EIR) and to derive 
seasonal transmission patterns. Mid-1972 marked the beginning of the intervention phase, during 
which an additional eight surveys were carried out at 10-week intervals (surveys 9-16). During this 
time, indoor residual spraying with Propoxur was carried out comprehensively in the village, along 
with mass treatment of the population with Sulfadoxine-pyrimethamine at 10 week-intervals 
immediately after assessment of individuals’ parasitologic status. The experimental setup is 
summarised in Fig. 3 of Smith et al 2006 (5). Incidence data (number of patent infections and number 
of hosts by age) from surveys 9-16 was used for our calibration. 

Sites and scenario numbers: Matsari, Nigeria (30) 

Original reference detailing data and model fits: Smith TA, Maire N, Dietz K, Killeen GF, Vounatsou P 
et al. Relationship between the entomological inoculation rate and the force of infection for 
Plasmodium falciparum malaria. Am J Trop Med Hyg. Volume 75, No. 2 Supplement. 2006 (5) 

2.1.1.2 Loss function: Binomial Log Likelihood 
We denote the Binomial log likelihood for this objective to be 

where - is the number of age groups, . the number of surveys, /",& 	the scenario data number of 
parasite positive hosts and 0",&  the scenario data number of hosts for age group 1  and survey '. 
Parameter /',& 	2 is associated with the model predictions and is given by 

where  3',&4 	are the predicted number of parasite positive hosts and  0',&4 the predicted number of hosts 
for age group 1 and survey '. 

2.1.2 Age patterns of prevalence 

2.1.2.1 Data 
The data used for the calibration of objective 2 (age-patterns of prevalence) consists of six cross-
sectional malariology surveys conducted in the Rafin Marke, Matsari, Sugungum villages in Nigeria 
1970-1972 (12 age groups each, part of the Garki Project during the pre-intervention period) (14), 

 )#(*) = 	log ℒ(*) = 	''5",' log(6(, 78)+ :;",) − 5",)= log(1 − 6(,)? )
*

)%#

+

"%#
	 (40) 

 6(,)? =	5(,)@ 	/	;(,)@  (41) 
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Navrongo in Ghana 2000 (12 age groups) (15) and Namawala 1990-1991 (16) and Idete in Tanzania 
(11 and 6 age groups, respectively) 1992-1993 (17). In all study sites, annual transmission intensity 
(EIR) and seasonal patterns were assessed using light trap or human night bait collections and 
dissections of the salivary glands (see Fig. 2 in Maire et al. 2006 (3)). In all sites except Idete, the health 
system at the time of the surveys treated only a small proportion of the clinical malaria episodes. In 
the Idete, the village dispensary was assumed to treat approximately 64% of clinical malaria (based 
on the published literature). During simulation, prevalence was defined by comparing each predicted 
parasite density with the limit of detection used in the actual study. 

Sites and scenario numbers: Sugungum, Nigeria (24); Rafin-Marke, Nigeria (28); Matsari, Nigeria (29); 
Idete, Tanzania (31); Navrongo, Ghana (34); Namawala, Tanzania (35) 

Original reference detailing data and model fits: Maire N, Smith TA, Ross A, Owusu-Agyei S, Dietz K, et 
al. A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria in endemic 
areas. Am J Trop Med Hyg. Volume 75, No. 2 Supplement. 2006 (3) 

2.1.2.2 Loss function: Binomial Log Likelihood 
We denote the binomial log likelihood for each scenario of this objective to be 

where -  is the number of age groups, . the number of surveys, 3",&	the scenario data number of 
parasite positive hosts and 0",&  the scenario data number of hosts for age group k and survey j. 
Parameter /",& is associated with the model predictions and is given by 

where  3',&4 	are the predicted number of parasite positive hosts and  0',&4  the predicted number of 
hosts for age group 1	and survey '.  

2.1.3 Age patterns of parasite density 

2.1.3.1 Data  
The same data sources as for objective 2 (age pattern of prevalence) were used for calibration of 
objective 3 (age pattern of parasite density). Parasite densities in sites that were part of the Garki 
project (Sugungum, Rafin-Make and Matsari, Nigeria) were recorded by scanning a predetermined 
number of microscope fields on the thick blood film and recording how many had one or more asexual 
parasites visible. These were converted to numbers of parasites visible by assuming Poisson 
distribution for the number of parasites per field and a blood volume of 0.5 mm3 per 200 fields. In the 
other studies (Idete and Namawala, Tanzania and Navrongo, Ghana), parasites were counted against 
leukocytes and converted to nominal parasites/microliter assuming the usual standard of 8,000 
leukocytes/microliter. The biases in density estimates resulting from these different techniques were 
accounted for by multiplying the observed parasite densities with constant values estimated for Garki 
(5)) and non-Garki (5#) studies to rescale them to the values in malariatherapy patients (18).  

Sites and scenario numbers: Sugungum, Nigeria (pre-intervention, 24); Rafin-Marke, Nigeria (pre-
intervention, 28); Matsari, Nigeria (pre-intervention, 29); Idete, Tanzania (31); Navrongo, Ghana (34); 
Namawala, Tanzania (35) 

Original reference detailing data and model fits: Maire N, Smith TA, Ross A, Owusu-Agyei S, Dietz K, et 
al. A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria in endemic 
areas. Am J Trop Med Hyg. Volume 75, No. 2 Supplement. 2006 (3) 

 ),(*) = logℒ(*) = 	''5",) log:6" , 7= + :;",) − 5",)=
*

)%#
log(1 − 6",))

+

"%#
 (42) 

 6",) = 5(,)@/	;(,)@  (43) 
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2.1.3.2 Loss function: Log-normal log likelihood  
For objective 3 (age pattern of parasite densities) we denote the log-Normal log likelihood for each 
scenario to be  

where 6 is the number of observations in the data set, 7 = exp(−0.5 log(2	D)), a constant from the 
log-normal likelihood, RSS is the residual sum of squares given by 

and E is the standard deviation given by  

Here, 5 is the appropriate density bias, which is a fitting parameter, - is the number of age groups, 
.	is the number of surveys, 3",& the scenario number of parasite positive hosts, and  F",& the sum of 

the log densities,  3',&4  the predicted number of parasite positive hosts and  F',&4  the predicted sum of 
the log densities for age group 1 and survey '. The density bias are fitting parameters 5) and 5#.  

2.1.4 Age pattern of number of concurrent infections 

2.1.4.1 Data 
For objective 4 (age pattern of number of concurrent infections), the dataset from Navrongo, Ghana 
(also used in the calibration of objectives 2 and 3) was used to calibrate to the total numbers of distinct 
parasite infections in one individual in each age group, and at each survey. Distinct infections were 
detected by polymerase chain reaction-restriction fragment length polymorphism in the sampled 
individuals. 

Sites and scenario numbers: Navrongo, Ghana (34) 

Original reference detailing data and model fits:  Maire N, Smith TA, Ross A, Owusu-Agyei S, Dietz K, 
et al. A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria in 
endemic areas. Am J Trop Med Hyg. Volume 75, No. 2 Supplement. 2006 (3) 

2.1.4.2 Loss function: Poisson Log Likelihood 
Assuming that both the data and the simulations are Poisson distributed about the correct value and 
thereby also allowing for over-dispersion, we denote the Poisson log likelihood for each scenario to 
be for the objective of age pattern of number of concurrent infections to be 

where - is the number of age groups, . the number of surveys, 36",& the scenario data total patent 
infections for age group 1 and survey '. Parameter G",& is associated with the model predictions and 
is given by 

where 36',&H  are the predicted total of patent infections and  0',&4 	the predicted number of hosts for 
age group 1 and survey ' and 0",& is the scenario data number of hosts for age group 1 and survey '. 

 )-(*) = logℒ(*) = B(log(C) − log(D)) − 	0.5RSS/D, (44) 

 RSS = 	''J
K(,)@

5(,)@
− log(L) −

K",)
5",'
M
,*

)%#

+

"%#
 (45) 

 D = NRSS/	(B − 1)	 (46) 

 ).(*) = logℒ(*) =''−5B",) log:5B",)	/	O",)= +5B",) − O",)
*

)%#

+

"%#
		 (47) 

 G",& =
36',&H

0',&4
0",& (48) 
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2.1.5 Age pattern of incidence of clinical malaria 

2.1.5.1 Data 
Two distinct datasets representing three study sites (Table S4) were used for the calibration of 
objective 5 and objective 6 (age pattern of incidence of clinical malaria). For Objective 5, the dataset 
contains data on the age pattern of clinical episodes in the villages of Ndiop and Dielmo in Senegal 
(19, 20). During the study period of July 1990 - June 1992, the village populations were visited daily to 
detect and treat any clinical malaria attacks with quinine. Cases were detected by reporting of 
symptoms (fever) during daily active case detection and subsequent thick blood smear microscopy. 
Only symptomatic individuals (axillary temperature ≥ 38.0°C or rectal temperature ≥ 38.5°C). Due 
to the active case detection and rapid treatment all symptomatic episodes are assumed to be 
effectively treated in these villages during the study period. No effective treatment of clinical malaria 
was assumed prior to the study period. The annual patterns of transmission were replicated as 
reported by Charlwood et al (1998) (21). A proportion 3* =35.75% are assumed to be treated 
effectively in Idete. As all individuals reporting to the village dispensary were treated presumptively 
with chloroquine, this proportion corresponds to the proportion of episodes reported to the village 
dispensary. 

Sites and scenario numbers: Ndiop, Senegal (232), Dielmo, Senegal (233) 

Original reference detailing data and model fits: Smith TA, Ross A, Maire N, Rogier C, Trape J-F et al. 
An epidemiologic model of the incidence of acute illness in Plasmodium falciparum malaria. Am J Trop 
Med Hyg. Volume 75, No. 2 Supplement. 2006 (10) 

 

2.1.5.2 Loss function: RSS-biased 
We denote a loss function based on biased residual sum of squares: 

where - is the number of age groups, . the number of surveys, .# the initial survey number, and M	is 
the residual given by 

where N",& 	is the observed recorded incidence rate,  O',&4  are the predicted total cases (severe and 

uncomplicated),  0',&4 	the predicted number of hosts for age group 1  and survey '  and P  is a bias 
related to the scenario. For scenarios 232 and 233 (representing Ndiop and Dielmo, Senegal) this bias 
is P = 5 indicating the duration in years for which episodes are collected. For scenario 49 in Objective 
6 (Idete, Tanzania) the bias is P = 	0.357459	and represents the proportion of episodes reported to 
the village dispensary. 

Scenario No. Study site Age groups Observations 
232 Ndiop, Senegal 22 One per age group 
233 Dielmo, Senegal 22 One per age group 
49 Idete, Tanzania 4 One per age group 
Table S4: summary of study data set for objective 5: Age pattern of incidence of 
clinical malaria.  

 

 !+(#) = 	 T TM,
-

&.#

/

".	/!
 (49) 

 M = N!," −
O',&4

U0',&4 V
1
P (50) 
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2.1.6 Age pattern of incidence of clinical malaria: infants 

2.1.6.1 Data 
Objective 6 (age pattern of incidence of clinical malaria in infants) is informed by a dataset on 
incidence that contains passive case detection data on the age-incidence in infants recorded at the 
health centre in Idete, Tanzania from June 1993-October 1994 (17). The annual patterns of 
transmission were replicated as reported by Charlwood et al (1998) (21).  

Sites and scenario numbers: Idete, Tanzania (49)) 

Original reference: Smith TA, Ross A, Maire N, Rogier C, Trape J-F et al. An epidemiologic model of the 
incidence of acute illness in Plasmodium falciparum malaria. Am J Trop Med Hyg. Volume 75, No. 2 
Supplement. 2006 (10) 

2.1.6.2 Loss function: RSS-biased 
The loss function for Objective 6 is the same as Objective 5. For scenario 49 (Idete, Tanzania) the bias 
is P = 	0.357459	and represents the proportion of episodes reported to the village dispensary. 

2.1.7 Age pattern of threshold parasite density for clinical attacks 

2.1.7.1 Data 
Objective 7 (Age pattern of threshold parasite density for clinical attacks), uses the dataset from 
Dielmo, Senegal (see objective 5) for calibration. The pyrogenic threshold in the (OpenMalaria) 
predictions is output as the sum of the log threshold values across age groups. The pyrogenic threshold 
per age group is given as the parasite:leucocyte ratio for recorded incidence of disease. To adjust these 
densities to the same scale as that used in fitting the simulation model to other datasets, the 
parasite:leukocyte ratios were multiplied by a factor of 1,416 to give a notional density in 
parasites/microliter of blood. This number was derived as follows: Parasites were counted against 
leukocytes and converted to nominal parasites/microliter assuming the usual (though biased) 
standard of 8,000 leukocytes/microliter. The biases in density estimates resulting from these different 
techniques was accounted for by multiplying the observed parasite densities with constant values 
estimated for Garki (5)) and non-Garki (5#) studies to rescale them to the values in malariatherapy 
patients (18).The value 1416 comes from 

where the original  5# ≈ 0.18. 

Sites and scenario numbers: Dielmo, Senegal (234) 

Original reference detailing data and model fits: Smith TA, Ross A, Maire N, Rogier C, Trape J-F et al. 
An epidemiologic model of the incidence of acute illness in Plasmodium falciparum malaria. Am J Trop 
Med Hyg. Volume 75, No. 2 Supplement. 2006 (10) 

2.1.7.2 Loss function: RSS-biased (log) 
For the objective 7 (Age pattern of threshold parasite density for clinical attacks) we denote a residual 
sum of squares loss function given by (13) with 

where F∗ is the observed pyrogenic threshold,  F∗4 are the predicted sum log pyrogenic threshold,  0',&4  
the predicted number of hosts for age group 1 and survey ' and is a bias related to the scenario. Here, 

 80005# (51) 

 !1(#) = logUF",&∗ V −
F',&∗4

0',&4
− log(P)	 (52) 
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this bias is related to the log parasite/leucocyte ratio and thus P = 1/(80005#) where 5# is the non-
Garki density bias. 

2.1.8 Hospitalization rate in relation to prevalence in children 

2.1.8.1 Data 
Data on the relative incidence of severe malaria-related morbidity and mortality in children <9 years 
old across different transmission intensities were originally collated by Marsh and Snow (1999) (22) 
(Table 4). Data measurements per age group were available as the relative risk of severe disease 
compared to age group 1 and the proportion/prevalence of severe episodes. A total of 26 entries on 
the relationship between severe malaria hospital admission rates and P. falciparum prevalence were 
used to calibrate objective 8 (Hospitalisation rate in relation to prevalence in children), each 
represented in a separate simulation scenario, with one observation per scenario. These are 
summarised in Table S5. To obtain a continuous function relating hospital incidence rates to 
prevalence, linear interpolation between data points was performed. To convert hospital incidence 
rates to community severe malaria incidence, the hospital admission rates was divided by the assumed 
proportion of severe episodes representing to hospital (48%). There was assumed to be no effective 
treatment of uncomplicated malaria episodes or malaria mortality. 

Sites and scenario numbers: Bo, Sierra Leone (501); Niakhar, Senegal (502), Farafenni, The Gambia 
(503); Areas I-V, The Gambia (504-508); Gihanga, Burundi (509); Katumba, Burundi (510); Karangasso, 
Burkina Faso (511); Kilifi North, Kenya (512); Manhica, Mozambique (514); Namawala, Tanzania (515); 
Navrongo, Ghana (516); Saradidi, Kenya (517); Yombo, Tanzania (518); Ziniare, Burkina Faso (519); 
Matsari, Nigeria (520); ITC control, Burkina Faso (521); Mlomp, Senegal (522); Ganvie, Benin (523); 
Kilifi Town, Kenya (524); Chonyi, Kenya (525); Bandafassi, Senegal (526); Kongodjan, Burkina Faso 
(527) 

Original reference detailing data and model fits: Ross A, Maire N, Molineaux L and Smith TA. An 
epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. Am J Trop 
Med Hyg. Volume 75, No. 2 Supplement. 2006 (11) 

2.1.8.2 Loss function: squared deviation  
The loss function is denoted as the log of residual sum of squares 

where -/  is the access to treatment of severe cases (0.48, estimated in base model),  M&.#H  is the 
scenario predicted rate of severe episodes per 1000 person-years for age group 1	 = 	1 (0-9 years), 
and parameter M&.#∗  is the interpolated observed rate of severe episodes per 1000 person year given 
by 

where 3&.#H	 is the predicted prevalence summed over all surveys, 32  and 33  are the observed 
prevalences above and below the predicted prevalence 3&.#H , respectively and M2  and M3 are the 
corresponding severe episode rates to the observed prevalences. 

The predicted prevalence is given by 

 !4(#) = Zlog [
-/M&.#H
M&.#∗ \]

,
 (53) 

 M&.#∗ =
U3&.#H−33V
(32 − 33)

(M2 − M3) + M* (54) 

 3&.#H =
3_&.#H /24
0&.#H/24

 (55) 
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where  3&.#H  is the total number of parasite positive predicted and  0&.#H	are the total number of hosts 
(division by 24 to give mean values). The predicted rate of episodes per 1000 person year is given by 

where  `&.#H	is the number of severe cases predicted and with division by 2 to convert to from 2 years 
to 1 year and the division by 24 to give mean number of hosts. 

Site 
EIR data 
Year EIR 

Burkina Faso   
 ITC Control 1994-1995 389 
 Karangasso 1985 244 
 Kongodjan 1984 133 
 Ziniare 1994-1995 70 
Burundi   
 Gihanga 1983 205 
 Katumba 1982 13.6 
Kenya   
 Chonyi 1992-1993 50 
 Kilifi North 1992-1003 10.5 
 Kilifi Town 1990-1991 2.8 
 Saradidi 1986-1987 239 
Senegal   
 Bandafassi 1995-1996 363 
 Mlomp 1995 30 
 Niakhar 1995 11.6 
Tanzania   
 Namawala 1990-1991 329 
 Yombo 1992 234 
The Gambia   
 Area I-V 1991 + 

 Farafenni 1987 8.9 
Others    
 Bo, Sierra Leone 1990-1991 34.7 
 Ganvie, Benin 1993-1995 11 
 Manhica, Mozambique 2001-2002 38 
 Matsari, Nigeria 1971 68 
 Navrongo, Ghana 2001-2002 418 
*EIR = entomological inoculation rate, ITC = control group of 
randomised trial of insecticide-treated curtains. +Five sites with 
annual EIR between 1 and 10 
Table S5. Settings used for calibrating the incidence of severe 
malaria. (Adapte from Table1 from Ross et al. 2006 (11)) 
 

2.1.9 Age pattern of hospitalization: severe malaria 

2.1.9.1 Data 
For objective 9 (Age pattern of hospitalisation), a subset of the data collated by Marsh and Snow 
(1999) (22) (see objective 8) is used. Detailed age-specific severe hospital admission rates were 
available for 5 of the sites (Table S6). The patterns of incidence by age were summarised by age in 1-
4 and 5-9 year-old children and compared with 1-11 month old infants by calculating the relative risk. 

 M&.#H =
1000	`&.#/2H

0&.#/24H  (56) 
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Of the five sites, four were selected for fitting objective 9 based on the predicted prevalence. Baku, 
The Gambia was excluded as the very low (2%) prevalence here could not be matched. 

Sites and scenario number(s): Area V, The Gambia (158); Saradidi, Kenya (167); Ganvie, Benin (173); 
Bandafassi, Senegal (176) 

Original reference detailing data and model fits: Ross A, Maire N, Molineaux L and Smith TA. An 
epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. Am J Trop 
Med Hyg. Volume 75, No. 2 Supplement. 2006 (11) 

 Estimate Sukuta, The 
Gambia 

Kilifi North, 
Kenya 

Kilifi South, 
Kenya Siaya, Kenya 

 Years of paediatric ward surveillance 1992-95 1990-95 1992-96 1992,1994-96 
 Person-years exposure to risk of 

children aged 0-9 yr 
23468 52675 45967 40064 

Rates 
 All-cause malaria, age 1-11 mo 23.3 (17.8–28.9) 

[66/2830] 
59.5 (53.2-65.9) 
[318/5342] 

79.9 (71.6-86.4) 
[407/5152] 

84.6 (76.4-92.8) 
[374/4420] 

 All-cause malaria, age 1-4 yr 35.3 (32.2-39.4) 
[372/10379] 

41.7 (39.0-44.4) 
[905/21714] 

17.4 (15.5-19.3) 
[321/18493] 

18.8 (16.7-20.9) 
[312/16567] 

 All-cause malaria, age 5-9 yr 16.3 (13.8-18.8) 
[167/10259] 

5.3 (4.4-6.2) 
[135 / 25619] 

1.7 (1.2-2.2) 
[38/22322] 

1.7 (1.1-2.3) 
[33/19077] 

 All-cause malaria, age 0-9  yr 25.8 (23.8-27.8) 
[605] 

25.9 (24.5-27.2) 
(1363) + 

16.7 (15.5-17.9) 
[766] 

18.0 (16.7-19.3) 
[719] 

 Cerebral malaria 0-9 yr 2.6 (2.0-3.3) [61] 1.5 (1.2-1.8) [79] 0.8 (0.5-1.1) [36] 0.1 (0.0-0.2) [5] 
 Severe malaria anaemia, 0-9 yr NA 5.0 (4.4-5.6) 

[262] 
4.2 (3.6-4.8) [192] 3.7 (2.7-4.7) 

[50/13416] 
 All-cause ARI age 0-9 yr 8.4 (7.3-9.6) [198] 9.3 (8.5-10.1) 

[492] 
8.3 (7.5-9.1) [380] 8.7 (7.8-9.6) 

[348] 
* Period prevalence rather than incidence because precise matching of each community member to hospital admission 
was not possible. Rates as admission per 1000 children per year (95% CI). +Precise dates of birth unobtainable for five 
children. Defined as child admitted with primary diagnosis of malaria and Blantyre coma score of 2 or less. Defined in 
child with primary diagnosis of malaria and haemoglobin of 5.0g/dL or less on admission. Rates for Siaya derived from 
person-years exposure to risk and admissions for period Nov 1, 1994 to Oct 31, 1995 
Table S6: Age-specific period prevalence rates* of severe malaria, severe malaria, severe malaria anaemia and acute 
respiratory-tract infections from five communities in The Gambia and Kenya. (Adapted from Table 2 from Snow et al 
1997 (23)) 

 

2.1.9.2 Loss function: Residual sums of squares for relative risk  
We denote a loss function based on residual sum of squares: 

where MM& 	is the relative risk of severe episode for age group 1 compared to age group 1 and  MM&4  is 
the predictive relative risk for age group k compared to age group 1. The predicted relative risk is given 
by 

where `&4 is the number of severe cases predicted for age group 1 and  0&4  the total number of hosts 
for age group 1. 

 !5(#) = 	 T Zlog
MM&4
MM&

]
,

&.,,6
 (57) 

 MM&4 =
`&4

0&4
− #̀a

0#4
 (58) 
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2.1.10 Malaria specific mortality in children (< 5 years old) 

2.1.10.1 Data 
For objective 10 (Malaria specific mortality in children (<5 years old)), a subset of the data collated by 
Marsh and Snow (1999) (22) (see objective 8) was used (24).  Mortality data were derived from verbal 
autopsy studies in sites with prospective demographic surveillance and were adjusted for the effect 
of malaria transmission intensity on the sensitivity and specificity of the cause of death determination. 
The odds ratio for death of a case in the community relative to that in hospital was estimated by fitting 
to the malaria-specific mortality rates in children less than five years of age assuming the published 
hospital case fatality rate. Nine sites for which both malaria-specific mortality rates and seasonal 
transmission patterns were available were included for calibration. 

There is one observation per study site and simulation scenario, and predicted values are for one 
survey at the end of 2 years. 

Sites and scenario number(s): Bo, Sierra Leone (301); Niakhar, Senegal (302); Farafenni, The Gambia 
(303); Kilifi North, Kenya (312); Navrongo, Ghana (316); Saradidi, Kenya (317); Yombo, Tanzania (318); 
Bandafassi, Senegal (326); Kongodjan, Burkina Faso (327) 

Original reference detailing data and model fits: Ross A, Maire N, Molineaux L and Smith TA. An 
epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. Am J Trop 
Med Hyg. Volume 75, No. 2 Supplement. 2006 (11) 

2.1.10.2 Loss function: Residual sums of squares  
For objective 10 on Malaria specific mortality in children, the loss function minimizes the log sum of 
squares 

where bcM#  is the observed direct mortality rate for age group 1 (0-5 years) and  bcM#H  is the 
predicted direct mortality rate for age group 1. The predicted direct mortality rate is given by  

where bb#	H	is the number of direct malaria deaths cases predicted for age group 1 and  0#4	the total 
number of predicted hosts for age group 1. The division by 2 is to convert to yearly rate as the survey 
was conducted at the end of 2 years. 

2.1.11 Indirect malaria infant mortality rate 

2.1.11.1 Data 
For objective 11 (indirect malaria infant mortality rate), a subset of the data collated by Marsh and 
Snow (1999) (22) (see objective 8) was used.  These constitute a library of sites for which entomologic 
data were collected at least monthly and all-cause infant mortality rates (IMR) were available. There 
is one observation per scenario: all cause infant mortality rate (returned as a single number over whole 
intervention period). 

Sites and scenario number(s): Bo, Sierra Leone (401); Niakhar, Senegal (402); Area V, The Gambia 
(408); Karangasso, Burkina Faso (411); Manhica, Mozambique (414); Namawala, Tanzania (415); 

 !#)(#) = Zlog [
bcM#	H
bcM#

\]
,

 (59) 

 bcM#H =
bb#	H
20#4

 (60) 
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Navrongo, Ghana (416); Saradidi, Kanya (417); Yombo, Tanzania (418); Mlomp, Senegal (422); 
Bandafassi, Senegal (426) 

Original reference detailing data and model fits: Ross A, Maire N, Molineaux L and Smith TA. An 
epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. Am J Trop 
Med Hyg. Volume 75, No. 2 Supplement. 2006 (11) 

2.1.11.2 Loss function: Residual sums of squares 
The loss function minimises the log sum of squares:  

where &bcM#  the observed indirect mortality rate for age group 1 and  &bcM#H 	 is the predicted 
indirect mortality rate for age group 1. 

 !##(#) = Zlog [
&bcM#H
&bcM#

\]
,

 (61) 
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2.2 Tables S3-S4 
Epidemiological quantity Data sources No. of 

scenarios 
No. of 
data 
points* 

Publication 
for fitting of 
base model 

Prior Weighting 
in GOF 
statistic 

Scenario numbers Loss vector 
number 
(!!) 

Loss function 

Age pattern of incidence of 
infection after intervention 

Molineaux and  
Gramiccia (1980) (14) 

1 12 Maire et al 
2006 (3) 

Binomial 0.001 30 1 Binomial log-likelihood 

Age patterns of prevalence 
of infection 

Molineaux and  
Gramiccia (1980) (14) 

6 563 Maire et al 
2006 (3) 

Binomial 0.001 24, 28, 29, 35, 34, 31 2 Binomial log-likelihood 

Age patterns of parasite 
density 

Molineaux and  
Gramiccia (1980) (14) 

6 563 Maire et al 
2006 (3) 

Log 
Normal 

0.01 24, 28, 29, 35, 34, 31 3 log likelihood 

Age pattern of number of 
concurrent infections 

Maire et al. 2006 (3); 
Owusu-Agyei et al 
2002 (15) 

1 12 Maire et al 
2006 (3) 

Poisson 0.01 34 4 Poisson log-likelihood 

Age pattern of incidence of 
clinical malaria: age-specific 
Ndiop & Dielmo, Senegal  

Trape and Rogier 
1996 (19);  Kitua et al 
1996 (17) 

2 26 Smith et al 
2006 (5) 

Log 
Normal 

1 232, 233, 49 5 RSS  

Age pattern of incidence of 
clinical malaria: infants 
Idete, Tanzania 

Kitua et al 1996 (17) 1 4 Smith et al 
2006 (5) 

Log 
Normal 

1 49 6 RSS 

Age pattern of threshold 
parasite density for clinical 
attacks 

Rogier et al 1996 (25) 1 13 Smith et al 
2006 (5) 

Log 
Normal 

1 234 7 RSS 

Hospitalisation rate in 
relation to prevalence in 
children 

See Ross et al 2006 
(11) 

26 10 Ross et al 
2006 (11) 

Log 
Normal 

2 501, 502, 503, 504, 505, 506, 507, 
508, 509, 510, 511, 512, 514, 515, 
516, 517, 518, 519, 520, 521, 522, 
523, 524, 525, 526, 527 

8 Squared deviation  

Age pattern of 
hospitalisation: severe 
malaria 

Marsh and Snow 
1999 (22) 

4 12 Ross et al 
2006 (11) 

Log 
Normal 

2 158, 167, 173, 176  9 RSS 

Malaria specific mortality in 
children (<5y) 

Snow et al 1997 (23) 9 9 Ross et al 
2006 (11) 

Log 
Normal 

1 301, 302, 303, 312, 316, 317, 318, 
326, 327  

10 Squared deviation logRate 

All-cause infant mortality 
rate 

See Ross et al 2006 
(11) 

11 11 Ross et al 
2006 (11) 

Log 
Normal 

10 401, 402, 408, 411, 414, 415, 416, 
417, 418, 422, 426 

11 Squared deviation logRate 

Table S2: Epidemiological quantities and data sources used for parameterizing models. (a) Some scenarios are used to predict several outcomes, so the total of this column does not equal the total of 61 
scenarios involved in fitting the models. (b) The number of data points is the sum over all scenarios and simulated survey periods of the number of age groups into which the data were disaggregated for 
comparison with the model predictions. (c) In relation to the EIR specified as a seasonal pattern. (d) Model predictions for this objective are compared with linear interpolations between the field data points. 
*The number of data points is the sum over all scenarios and simulated survey periods of the number of age groups into which the data were disaggregated for comparison with the model predictions. Table 
adapted from Table S1 in Smith et al 2012 (1). 
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Scen. No.  Site/reference Description Objective(s) Data Reference 

24 Sugungum, Nigeria (pre-
intervention phase) 

8 cross sectional surveys of entire village population at 10-
week intervals (4,487 blood slides) 

Age-prevalence (2);  
Age-parasite densities (3)  

Molineaux and Gramiccia. 1980 (14) 

28 Rafin-Marke, Nigeria (pre-
intervention phase) 

8 cross sectional surveys of entire village population at 10-
week intervals (2,593 blood slides) 

Age-prevalence (2);  
Age-parasite densities (3) 

Molineaux and Gramiccia. 1980 (14) 

29 Matsari, Nigeria (pre-
intervention phase) 

8 cross sectional surveys of entire village population at 10-
week intervals (2,963 blood slides) 

Age-prevalence (2);  
Age-parasite densities (3) 

Molineaux and Gramiccia. 1980 (14) 

30 Matsari, Nigeria 
(intervention phase) 

8 cross sectional surveys of entire village population at 10-
week intervals (2,663 blood slides) 

Age-incidence of patent 
infections (1) 

Molineaux and Gramiccia. 1980 (14) 

31 Idete, Tanzania Surveillance of a rolling cohort of infants (1,382 blood slides 
over 16 months). Also 1 cross-sectional survey of 312 
children 1-5 months  

Age-prevalence (2);  
Age-parasite densities (3) 

Kitua et al 1996 (17) 

34 Navrongo, Ghana 6  age-stratified cross-sectional surveys at 2-month intervals 
(total 522 slides / DNA samples) 

Age-prevalence (2);  
Age-parasite densities (3), 
Age-specific multiplicity of 
infection (4) 

Owusu-Agyei S et al. 2002 (15) 

35 Namawala, Tanzania 12  age-stratified cross-sectional surveys at 2-month 
intervals (3,901 blood slides) 

Age-prevalence (2);  
Age-parasite densities (3) 

Smith et al 1993 (16) 

49 Idete, Tanzania Passive case detection at the village dispensary over 15 
months in 12 age groups. 

Age Pattern of Incidence of 
Clinical Malaria in Idete in 
infants (5b) 

Kitua et al. 1996 (17); Vounatsou et 
al. 2000 (26) 

158 Area V, The Gambia Hospitalisation rate by age Age pattern of severe 
hospitalisation (8) 

Snow et al. 1997 (23) 

167 Saradidi, Kenya 21 cohorts each of approximately 50 children between 6 
months and 6 years of age whose parasites were cleared 
and who were then followed up with 2 weekly surveys. 
Hospitalisation rate by age. 

Age pattern of severe 
hospitalisation (8) 

Beier et al. 1999  (27), Snow 1997 (23) 
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173 Ganvie, Benin Hospitalisation rate by age. Age pattern of severe 
hospitalisation (8) 

Snow et al. 1997 (23) 

176 Bandafassi, Senegal Hospitalisation rate by age. Age pattern of severe 
hospitalisation (8) 

Snow et al. 1997 (23) 

232 Ndiop, Senegal Longitudinal study of 350 permanent residents over 2 years: 
Individual level active case detection three times a week 
(questionnaire + recording of symptoms) and parasitologic 
surveys twice a week; daily recording of new fever cases at 
compound level. By age group (9 groups) 

Age pattern of incidence of 
clinical malaria (5a) 

Trape JF and Rogier C. 1996 (19) 

233 Dielmo, Senegal Longitudinal study of 206 permanent residents over 2 years: 
Individual level active case detection three times a week 
(questionnaire + recording of symptoms) and parasitologic 
surveys twice a week; daily recording of new fever cases at 
compound level. By age group (9 groups) 

Age pattern of incidence of 
clinical malaria by age (5a) 

Trape JF and Rogier C. 1996 (19) 

234 Dielmo, Senegal Longitudinal study of 206 permanent residents over 2 years: 
Individual level active case detection three times a week 
(questionnaire + recording of symptoms) and parasitologic 
surveys twice a week; daily recording of new fever cases at 
compound level. By age group (9 groups)  

Age Pattern of parasite density 
threshold for clinical attack (6) 

Trape JF and Rogier C. 1996 (19) 

301 Bo, Sierra Leone Point estimate based on a 1-year longitudinal study covering 
776 person-years 

Direct Malaria Mortality (9) Korenromp et al. 2003 (24) 

302 Niakhar, Senegal Point estimate based on 5-year longitudinal study covering 
29,491 person-years [XML label: Diohine] 

Direct Malaria Mortality (9) Korenromp et al. 2003 (24) 

303 Farafenni, The Gambia Point estimate based on 2-year longitudinal study covering 
2,263 person-years [XML label: Tally Ya] 

Direct Malaria Mortality (9) Korenromp et al. 2003 (24) 

312 Kilifi North, Kenya Point estimate based on 3-year longitudinal study covering 
20,679 person-years 

Direct Malaria Mortality (9) Korenromp et al. 2003(24) 

316 Navrongo, Ghana Point estimate based on 1-year longitudinal study covering 
1,065 person-years 

Direct Malaria Mortality (9) Korenromp et al. 2003 (24) 

317 Saradidi, Kenya 21 cohorts each of approximately 50 children between 6 
months and 6 years of age whose parasites were cleared 
and who were then followed up with 2 weekly surveys. 

Direct Malaria Mortality (9) Korenromp et al. 2003 (24) 
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318 Yombo, Tanzania Point estimate based on 3-year longitudinal study covering 
5,850 person-years 

Direct Malaria Mortality (9) Korenromp et al. 2003 (24) 

326 Bandafassi, Senegal Point estimate based on 6-year longitudinal study covering 
8,488 person-years 

Direct Malaria Mortality (9) Korenromp et al. 2003 (24) 

327 Kongodjan, Burkina Faso Point estimate based on 5-year longitudinal study covering 
1,271 person-years 

Direct Malaria Mortality (9) Korenromp et al. 2003 (24) 

401 Bo, Sierra Leone Point estimates of all-cause neonatal, post-neonatal, and 
infant mortality rates 

All-cause mortality (10) Barnish et al. 1993 (28) 

402 Niakhar, Senegal Point estimates of all-cause neonatal, post-neonatal, and 
infant mortality rates; XML label: Diohine 

All-cause mortality (10) INDEPTH Network, 2002 (29); 
Spencer et al. 1987 (30) 

408 Area V, The Gambia Point estimates of all-cause neonatal, post-neonatal, and 
infant mortality rates 

All-cause mortality (10) D’Alessandro  et al. 1995 (31) 

411 Karangasso, Burkina Faso Point estimates of all-cause neonatal, post-neonatal, and 
infant mortality rates 

All-cause mortality (10) Duboz et al. 1989 (32) 

414 Manhica, Mozambique Point estimates of all-cause neonatal, post-neonatal, and 
infant mortality rates 

All-cause mortality (10) INDEPTH Network, 2002 (29) 

415 Namawala, Tanzania Point estimates of all-cause neonatal, post-neonatal, and 
infant mortality rates; Pre-intervention 

All-cause mortality (10) Armstrong-Schellenberg et al. 1999 
(33) 

416 Navrongo, Ghana Point estimates of all-cause neonatal, post-neonatal, and 
infant mortality rates 

All-cause mortality (10) INDEPTH Network, 2002 (29) 

417 Saradidi, Kanya 21 cohorts each of approximately 50 children between 6 
months and 6 years of age whose parasites were cleared 
and who were then followed up with 2 weekly surveys. 

All-cause mortality (10) Spencer et al. 1987(30) 

418 Yombo, Tanzania Point estimates of all-cause neonatal, post-neonatal, and 
infant mortality rates 

All-cause mortality (10) Premji Z et al. 1997 (34) 

422 Mlomp, Senegal Point estimates of all-cause neonatal, post-neonatal, and 
infant mortality rates 

All-cause mortality (10) Trape et al. 1998 (35) 

426 Bandafassi, Senegal Point estimates of all-cause neonatal, post-neonatal, and 
infant mortality rates 

All-cause mortality (10) INDEPTH Network, 2002 (29) 

501 Bo, Sierra Leone Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7)  

Marsh and Snow 1999 (22) 
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502 Niakhar, Senegal Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old.XML 
label: Diohine (ca 20 km from Niakhar) 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

503 Farafenni, The Gambia Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old.XML 
label: Tally Ya (ca 15 km from Farafenni) 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

504 Area I, The Gambia  Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

505 Area II, The Gambia  Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

506 Area III, The Gambia  Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

507 Area IV, The Gambia  Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

508 Area V, The Gambia  Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

509 Gihanga, Burundi Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

510 Katumba, Burundi Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

511 Karangasso, Burkina Faso Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

512 Kilifi North, Kenya Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

514 Manhica, Mozambique Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

515 Namawala, Tanzania Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. Pre-
intervention 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 
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516 Navrongo, Ghana Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

517 Saradidi, Kenya Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

518 Yombo, Tanzania Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7)  

Marsh and Snow 1999 (22) 

519 Ziniare, Burkina Faso Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7)  

Marsh and Snow 1999 (22) 

520 Matsari, Nigeria Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. Pre-
intervention 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

521 ITC control, Burkina Faso Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7)  

Marsh and Snow 1999 (22) 

522 Mlomp, Senegal Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7) 

Marsh and Snow 1999 (22) 

523 Ganvie, Benin Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7)  

Marsh and Snow 1999 (22) 

524 Kilifi Town, Kenya Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7)  

Marsh and Snow 1999 (22) 

525 Chonyi, Kenya Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7)  

Marsh and Snow 1999 (22) 

526 Bandafassi, Senegal Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7)  

Marsh and Snow 1999 (22) 

527 Kongodjan, Burkina Faso Point estimate of the severe malaria hospital admission rate 
and P.falciparum prevalence in children <9 years old. 

Severe episodes by prevalence 
(7)  

Marsh and Snow 1999 (22) 

Table S3: Calibration data for objectives 2-4, age patterns of prevalence, parasite densities, and multiplicity of infection   
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3 EMULATOR PERFORMANCE   

 

Figure S2. GP emulator performance. Emulator predictions vs true values on a holdout set 
compromising 10% of initial samples in iteration 1. w.sum is the weighted sum !, of the 11 objectives. 
Here, predictions are generated as the weighted sum of individual objective predictions.   
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Figure S3. GP emulator performance. Emulator predictions vs true values on a holdout set 
compromising 10% of initial samples in iteration 30 (final iteration). w.sum is the weighted sum !, of 
the 11 objectives. Here, predictions are generated as the weighted sum of individual objective 
predictions. 
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Figure S4. GPSG emulator performance. Emulator predictions vs true values on a holdout set 
compromising 10% of initial samples in iteration 1. w.sum is the weighted sum !, of the 11 objectives. 
Here, predictions are generated as the weighted sum of individual objective predictions. 
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Figure S5. GPSG emulator performance. Emulator predictions vs true values on a holdout set 
compromising 10% of initial samples in iteration 23 (final iteration). w.sum is the weighted sum !, of 
the 11 objectives. Here, predictions are generated as the weighted sum of individual objective 
predictions. 
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4 ADAPTIVE SAMPLING: SELECTED POINTS   
4.1 GP-BO    

 

Figure S6. GP-BO sampling behavior. Values in each dimension of the points sampled during adaptive 
sampling of GP-BO algorithm in iterations 1,10, 20, and 30.  
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4.2 GPSG-BO    

 

Figure S7. GPSG-BO sampling behavior. Values in each dimension of the points sampled during 
adaptive sampling of GPSG-BO algorithm in iterations 1,10, 20, and 23.  
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5 OPENMALARIA: FINAL SIMULATOR FIT     
 

 

Figure S8. Objective 1: Age pattern of prevalence in Matsari, Nigeria during the intervention. Final 
simulator fit using the parameter sets yielded using GP-BO and GPSG-BO compared to the previous 
parameterization (derived using optimization with a genetic algorithm, GA-O). 

 

 
Figure S9. Objective 2: Age pattern of prevalence. Final simulator fit using the parameter sets yielded 
using GP-BO and GPSG-BO compared to the previous parameterization (derived using optimization 
with a genetic algorithm, GA-O).
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Figure S10. Objective 3: Age pattern of parasite densities (geometric mean). Final simulator fit using 
the parameter sets yielded using GP-BO and GPSG-BO compared to the previous parameterization 
(derived using optimization with a genetic algorithm, GA-O). 
 

 

 
Figure S11. Objective 4: Age pattern of number of concurrent infections. Final simulator fit using the 
parameter sets yielded using GP-BO and GPSG-BO compared to the previous parameterization 
(derived using optimization with a genetic algorithm, GA-O). 
 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2021. ; https://doi.org/10.1101/2021.01.27.21250484doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.27.21250484
http://creativecommons.org/licenses/by-nc/4.0/


 27 

 
Figure S12. Objective 5: Age pattern of incidence of clinical malaria in Dielmo and Ndiop, Senegal. 
Final simulator fit using the parameter sets yielded using GP-BO and GPSG-BO compared to the 
previous parameterization (derived using optimization with a genetic algorithm, GA-O). 
 
 
 
 

 
Figure S13. Objective 6: Age pattern of incidence of clinical malaria in Idete, Tanzania. Final simulator 
fit using the parameter sets yielded using GP-BO and GPSG-BO compared to the previous 
parameterization (derived using optimization with a genetic algorithm, GA-O). 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2021. ; https://doi.org/10.1101/2021.01.27.21250484doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.27.21250484
http://creativecommons.org/licenses/by-nc/4.0/


 28 

 
Figure S14. Objective 6. Age pattern of threshold parasite density for clinical attacks. Final simulator 
fit using the parameter sets yielded using GP-BO and GPSG-BO compared to the previous 
parameterization (derived using optimization with a genetic algorithm, GA-O). 
 
 
 
 

 

Figure S15. Objective 7: Hospitalization rate in relation to prevalence in children. Final simulator fit 
using the parameter sets yielded using GP-BO and GPSG-BO compared to the previous 
parameterization (derived using optimization with a genetic algorithm, GA-O). 
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Figure S16. Objective 8. Age pattern of hospitalization. Final simulator fit using the parameter sets 
yielded using GP-BO and GPSG-BO compared to the previous parameterization (derived using 
optimization with a genetic algorithm, GA-O). 

 

 
Figure S17. Objective 9: Direct mortality in children <5 years old. Final simulator fit using the 
parameter sets yielded using GP-BO and GPSG-BO compared to the previous parameterization 
(derived using optimization with a genetic algorithm, GA-O). 
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Figure S18. Objective 10: All-cause infant mortality rate. Final simulator fit using the parameter sets 
yielded using GP-BO and GPSG-BO compared to the previous parameterization (derived using 
optimization with a genetic algorithm, GA-O). 
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6 VALIDATION        

  

A 
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Figure S19. Data recovery validation of posterior estimates. Prior distributions of each parameter 
and parameter value identified by the optimization algorithm. The final parameter set was used to 
generate synthetic field data by simulating each of the 61 scenarios with the respective core 
parameter sets. The simulation outputs were reformatted to match the original field data, generating 
a synthetic field data set. The optimization with both algorithms was repeated using this synthetic 
field data. The plot shows the best parameter values in each dimension identified at the end of the 
validation optimization compared to the values identified in the original optimization. The grey area 
shows the prior distribution. A. GP-BO validation. B. GPSG-BO validation 
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7 OPENMALARIA SIMULATED EPIDEMIOLOGY   
 

 

Figure S20. Seasonal pattern assumed for subsequent analyses. The monthly transmission intensity 
is equivalent to the annual transmission intensity (EIR) scaled by these values and forced to sum to 
the annual EIR. 

 

 

 

Figure S21. Relationship between EIR and PfPR2-10 under three parameterizations. Solid lines show 
medians and shaded regions show 95% credible intervals. EIR denotes the entomological inoculation 
rate. 
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Figure S22. Yearly incidence of clinical (uncomplicated) malaria as a function of PfPR2-10 displayed 
by parameterization and age group. Clinical incidence is presented in terms of the yearly number of 
events per person. We assume a probability of effective treatment within 14 days of uncomplicated 
malaria of 36% 

 

Figure S23. Yearly incidence of total severe malaria as a function of PfPR2-10, displayed by 
parameterization and age group. Incidence is presented in terms of the yearly number of events in a 
population of 1000 individuals. It is assumed that 48% of severe malaria cases seek official care at a 
heath care facility (hospital). We assume a probability of effective treatment within 14 days of 
uncomplicated malaria of 36% 
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Figure S24. Yearly number of malaria-related deaths as a function of PfPR2-10, displayed by 
parameterization and age group. Malaria mortality incidence is presented in terms of the yearly 
number of deaths in a population of 1000 individuals. For the OpenMalaria model both deaths directly 
attributed to malaria (dotted curve) and all deaths associated with malaria (including both deaths 
directly attributable to malaria and those associated with comorbidities) are shown (full line). See Box 
S1.2 for definitions of deaths attributable to malaria in the models 
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Figure S25. Yearly incidence of clinical malaria in a seasonal transmission setting as a function of 
age, displayed by transmission intensity (PfPR2-10) and parameterization. Clinical incidence is 
presented in terms of the yearly number of events per person. The PfPR2-10 categories include 
simulated prevalences of 2.5-3.5%, 9-10%, 28-32%, and 47-53% labeled as 3%, 10%, 30%, and 50%, 
respectively. 

 

Figure S26. Yearly incidence of clinical malaria in a perennial transmission setting as a function of 
age, displayed by transmission intensity (PfPR2-10) and parameterization. Clinical incidence is 
presented in terms of the yearly number of events per person. The PfPR2-10 categories include 
simulated prevalences of 2.5-3.5%, 9-10%, 28-32%, and 47-53% labeled as 3%, 10%, 30%, and 50%, 
respectively 
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Figure S27. Yearly incidence of total severe malaria in a seasonal transmission setting as a function 
of age, displayed by transmission intensity (PfPR2-10) and parameterization. Incidence is presented 
in terms of the yearly number of events per 1000 person-years. It is assumed that 48% of severe 
malaria cases seek official care at a heath care facility (hospital). The PfPR2-10 categories include 
simulated prevalences of 2.5-3.5%, 9-10%, 28-32%, and 47-53% labeled as 3%, 10%, 30%, and 50%, 
respectively 

 

Figure S28. Yearly incidence of total severe malaria in a perennial transmission setting as a function 
of age, displayed by transmission intensity (PfPR2-10) and parameterization. Incidence is presented 
in terms of the yearly number of events per 1000 person-years. It is assumed that 48% of severe 
malaria cases seek official care at a heath care facility (hospital). The PfPR2-10 categories include 
simulated prevalences of 2.5-3.5%, 9-10%, 28-32%, and 47-53% labeled as 3%, 10%, 30%, and 50%, 
respectively 
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Figure S29. Yearly incidence of malaria-related deaths in a seasonal transmission setting as a 
function of age, displayed by transmission intensity (PfPR2-10) and parameterization. Malaria 
mortality incidence is presented in terms of the yearly number of deaths in a population of 1000 
individuals. The dashed estimates represent direct malaria deaths, and the solid all malaria deaths 
(including those attributable to co-morbidities). The PfPR2-10 categories include simulated prevalences 
of 2.5-3.5%, 9-10%, 28-32%, and 47-53% labeled as 3%, 10%, 30%, and 50%, respectively 

 

Figure S30. Yearly incidence of malaria-related deaths in a perennial transmission setting as a 
function of age, displayed by transmission intensity (PfPR2-10) and parameterization. Malaria 
mortality incidence is presented in terms of the yearly number of deaths in a population of 1000 
individuals. The dashed estimates represent direct malaria deaths, and the solid all malaria deaths 
(including those attributable to co-morbidities). The PfPR2-10 categories include simulated prevalences 
of 2.5-3.5%, 9-10%, 28-32%, and 47-53% labeled as 3%, 10%, 30%, and 50%, respectively 
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8 LOG PRIOR DISTRIBUTIONS      

Figure S31. Log prior distributions and final posterior estimates. Prior distributions of each parameter 
and final parameter values identified by each optimization algorithm (GP-BO and GPSG-BO) and 
compared to the current parameterization (derived using a genetic algorithm, GA).  
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9 RANGER IMPORTANCE      

 
Figure S32. Random forest importance. Estimated parameter importance indices for all parameters 
and objectives. The indices were calculated using the ranger random forest package in R. 
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