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Abstract 

Non-invasive prenatal testing (NIPT) for common fetal aneuploidies using circulating cell free DNA in 

maternal plasma has been widely adopted in clinical practice for its sensitivity and accuracy. However, 

the detection of subchromosomal abnormalities or monogenetic variations showed no cost-effectiveness 

or satisfactory accuracy. Here we developed an assay, the goodness-of-fit and graphical analysis of 

polymorphic sites based non-invasive prenatal testing (GGAP-NIPT), to simultaneously detect fetal 

chromosomal/subchromosomal and nucleotide level abnormalities. In each sample, fetal fraction was 

estimated using allelic counts of reference polymorphic sites and a robust linear regression model. Then 

the genotype of each polymorphic site was estimated using allelic goodness of fit test. Finally, monogenic 

mutations were detected using allelic wildtype and mutant counts of each target site, and 

chromosomal/subchromosomal abnormalities were identified by collective analysis of all target 

polymorphic sites. Such an analytic approach was highly accurate for detecting aneuploidies, 

microdeletions or microduplications and monogenic mutations for simulated samples with different fetal 

fractions and sequencing depths. Moreover, more than 93% of fetal monogenic mutations were correctly 

identified for target hotspot sites amplified using circulating or barcode-enabled single-molecule assays. 

With the aid of sample replicates, higher detection accuracy was observed. Through target polymorphic 

sites sequencing, all chromosomal/subchromosomal and monogenic abnormalities could be detected 

simultaneously, facilitating the extension of NIPT to an expanded panel of genetic disorders in a cost-

effective manner. 

Keywords: noninvasive prenatal testing, amplicon sequencing, goodness of fit, polymorphic site, 

fetal fraction, robust linear regression 
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Introduction 

Noninvasive prenatal testing (NIPT) is now widely used for the detection of fetal chromosomal 

aneuploidies and certain copy number variations, where cell-free DNA (cfDNA) in maternal 

plasma1 was analyzed by whole-genome sequencing (WGS) 2, target analysis of nonpolymorphic 

regions3, single-nucleotide polymorphism (SNP) sequencing4 or microarray5. NIPT showed high 

test sensitivity and specificity for common fetal aneuploidies, such as trisomies 21, 18 and 13, 

but low in detecting subchromosomal deletions and duplications6, especially when the genomic 

aberrations were small7. For monogenic disorders, different noninvasive approaches have been 

developed8, but the application of such methods in clinical practice has lagged behind aneuploidy 

testing due to high costs and technical challenges. Due to different test philosophies, NIPT 

approaches currently in practice could not be extended to detect monogenetic disorders in a cost-

effective manner.  

In cfDNA, a certain number of polymorphic sites showed allelic imbalance due to the presence 

of fetal DNA and characteristic relative allelic ratios were observed when there were fetal 

aneuploidies. For example, when the fetus inherits a paternal allele different from the mother’s 

(Fig. S1), fetal aneuploidies can be detected using relative allelic counts. Here we proposed an 

assay, goodness-of-fit and graphical analysis of polymorphic sites based non-invasive prenatal 

testing (GGAP-NIPT), to detect fetal abnormalities at the chromosomal/subchromosomal and 

monogenic sequence levels simultaneously, which was shown sensitive and accurate for all test 

samples.  

Materials and Methods 

Dataset 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 14, 2021. ; https://doi.org/10.1101/2021.01.26.21250573doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.26.21250573
http://creativecommons.org/licenses/by-nc/4.0/


4 

 

The insertion/deletion polymorphism9 dataset (BioProject ID: PRJNA387652) and the 

replication10 dataset (BioProject ID: PRJNA517742) were retrieved from the NCBI Sequence 

Read Archive (SRA). The wilson validation dataset was retrieved from Supplementary Table 411 

and the wilson disease dataset from Table 211. The hbb dataset was retrieved from Table S112, the 

arnshl dataset from Supplementary Table S213 and the cfbest dataset was retrieved from Table 

S814. The simulated datasets were generated using ART15 simulator. Details of all datasets were 

described in Supplementary Methods.   

Reads Processing and Mapping 

Reads retrieved from SRA or simulated were filtered out using custom scripts, and alleles for 

each site were identified using unique sequences. Whole genome sequencing reads were mapped 

by bowtie216. Details of reads processing were described in Supplementary Methods.  

Fetal Fraction Estimation by Allelic Read Counts 

For each polymorphic site, read counts for all alleles were sorted in descending order and labeled 

as R1, R2, R3, etc. Then the possible maternal-fetal genotype was estimated using allelic read 

counts (Fig. S2) followed by the estimation of fetal and total read counts (Table S1). Finally, 

fetal fraction was estimated using fetal and total read counts and a robust linear regression model 

(Supplementary Methods).  

Fetal Fraction Estimation by Whole Genome Sequencing  

Fetal fraction was calculated as described using the formula17 

Fetal Fraction �f�=
2.0×med�ChrY�

med�ChrX�+med�ChrY�
 , where med�ChrX�  and med�ChrY�  represent the median 

read counts of the 50-kb bins on the X and Y chromosomes, respectively. Briefly, the 50-kb bins 

from the X and Y chromosomes were extracted and bins having too low or too high read counts 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 14, 2021. ; https://doi.org/10.1101/2021.01.26.21250573doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.26.21250573
http://creativecommons.org/licenses/by-nc/4.0/


5 

 

were filtered out. Fetal fractions for the 61 samples from PRJNA38765218  were calculated using 

the median count values of X bins and Y bins. 

Maternal-Fetal Genotype Estimation 

For each polymorphic site, reads for each allele were counted, followed by the calculations of 

Akaike information criterion (AIC) scores for all possible genotype models using goodness-of-fit 

test19. Then, the genotype was estimated to be the model with the minimal AIC, and ΔAIC was 

calculated as the absolute difference between the AICs of different models (Supplementary 

Methods).  

Statistical Analysis 

Statistical analysis was performed in R (version 3.5.1)20. AICs were calculated using custom 

scripts.  

Results 

Fetal Fraction Estimation 

For each polymorphic site on the reference chromosome, one of five maternal-fetal genotypes is 

possible, and the genotype as well as read counts amplified from either the maternal or the fetal 

genomic materials can be estimated roughly by analyzing relative counts of different alleles (Fig. 

1A-B; Fig. S2; Table S1). Obviously, fetal read count should be in proportional to total read 

count for each polymorphic site in a sample, and fetal fraction was estimated as the overall slope 

of a fitted robust linear regression line model without an intercept (Fig. 1C-D). A high degree of 

correlation was observed for fetal fractions estimated this way and that estimated using the WGS 

method9 when low quality WGS samples were excluded in the analysis (Fig. 1E; Fig. S3). As 

robust linear regression was not sensitive to outliers, nearly identical fetal fraction estimations 
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were observed (Fig. 1F) for replicate samples prepared independently10, indicating that the 

method for fetal fraction estimation was accurate and reliable. For our simulated samples, great 

estimation accuracy was observed for samples with fetal fraction ≥5% and sequencing coverage 

≥ 2000 (Fig. S4).  

Discrete Nature of Relative Allelic Counts 

As there are only a limited number of maternal-fetal genotypes (Table S2) and there are a great 

number of polymorphic sites in a sample, relative allelic counts of polymorphic sites were 

clustered in different groups and each group corresponded to a distinct genotype (Fig. 2A), 

whereas the genotype of each polymorphic site could be determined using either graphical 

analysis of relative allelic counts (Fig. 2B; Table S2; Fig. S5) or allelic goodness-of-fit test (Fig. 

2C-E). Here, Akaike information criterion (AIC) was used for comparing non-nested genotype 

models for each site (Fig. 2E) and ∆AIC for estimating the genotype fitness between different 

models. In general, the genotype of a target was estimated to be the one having the minimal AIC 

(Fig. 2E) and ∆AIC was calculated as the absolute difference between the AICs of the two best 

fitted models. However, such ∆AIC values were highly affected by both fetal fractions and total 

allelic counts (Fig. S6; Fig. 2F), and nearly similar magnitude of values were observed when 

∆AIC values were adjusted by fetal fraction and total read counts (Fig. S6; Fig. 2G), indicating 

that the adjusted ΔAIC could be a good measure for comparing fitnesses of different genotypes. 

As expected, allelic goodness-of-fit test was highly accurate in estimating maternal-fetal 

genotypes of each polymorphic site for simulated samples with different fetal fractions and 

different sequencing depths (Fig. S7). 

Detection of Chromosomal Aneuploidies 
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When there is a fetal aneuploidy, all polymorphic sites on the target chromosome are affected, 

and the relative allelic counts for each polymorphic site are changed due to the absence of one 

chromosome or the presence of one extra chromosome (Table S2-S4). To detect fetal aneuploidy, 

two models were checked, whereas one model (normal model) assumed that both the maternal 

and the fetal chromosomes were normal disomy and the other model (aneuploidy model) 

assumed that the maternal chromosome was disomy and the fetal chromosome was aneuploidy. 

Then each polymorphic site on the target chromosome was fitted with both a genotype from the 

normal model and a genotype from the aneuploidy model, and the overall fitness of all 

polymorphic sites for the normal model was compared with the overall fitness for the aneuploidy 

model (Fig. 3A). Such an approach might seem unsound mathematically, but were sensitive and 

reliable to detect chromosomal aneuploidies for our simulated samples (Fig. 3K,L), possibly due 

to its similarity to repeated tests of goodness-of-fit19 whereas each polymorphic site was 

considered as an experimental repetition. As nearly all polymorphic sites on the target 

chromosome showed some positive contributions to the correct model fittings (Fig. S8A,B), 

nearly all chromosomal aneuploidies were detected with high accuracy for our simulated samples 

(Fig. 3B,C,K,L). In addition, distinct genotype clusters were observed when the relative allelic 

counts of target polymorphic sites were plotted, and such characteristic cluster distributions were 

informative enough to identify fetal aneuploidies as well (Fig. 3G,H; Fig. S8C,D; Fig. S9,S10).  

Detection of Subchromosomal Abnormalities  

In most cases, subchromosomal abnormalities could be tested in a way similar to detecting 

chromosomal aneuploidies, whereas a model of a healthy mother with a healthy fetus was 

compared with a model of a healthy mother with an affected fetus (Fig. 3A). For some 

microdeletions21  and microduplications22, the heterozygotes could be phenotypically normal and 
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only the homozygotes showed clinical symptoms. In such cases, all possible models should be 

tested and the overall best fitted model for all polymorphic sites on the target region was selected 

(Fig. 3D). As expected, subchromosomal microdeletion or microduplication could be detected 

with accuracy using either collective analysis of allelic goodness of fit test for each polymorphic 

site in the target region (Fig. 3E,F; Fig. S11,S12) or relative allelic counts plots of all target 

polymorphic sites (Fig. S13,S14; Fig. 3I,J; Table S5,S6). For subchromosomal microduplications, 

too many distinct clusters were expected when all possible models were considered (Fig. S14A). 

In such a case, a simpler plot containing only models with a healthy fetus was generated, and 

when allelic clusters of target polymorphic sites were not in the expected positions (Fig. S14C), 

abnormal fetus was expected and further analysis should be followed. 

Detection of Short Genetic Variations 

Single-base-pair substitutions, small (≤20bp) deletions, small (≤20bp) insertions and small 

(≤20bp) indels are the major types of mutations associated with human inherited diseases 

reported in the Human Gene Mutation Database (HGMD)23. To detect such genetic variations, 

the genotype of each target site was estimated using allelic goodness-of-fit test followed by 

sequence analysis of different alleles (Fig. 4A,C; Fig. S15A). Alternatively, fetal genetic 

mutation of each target site could be detected using a relative allelic plot whereas the relative 

count of the most abundant mutant allele was plotted against that of the wildtype allele (Fig. 4B; 

Fig. S15B-D; Table S7,S8).  

Testing Performance for Detecting Monogenic Mutations 

To detect fetal monogenic mutations noninvasively, target hotspot sites were amplified from 

maternal plasma cfDNA using circulating single-molecule amplification and resequencing 

technology (cSMART)11-13 or barcode-enabled single-molecule test (cfBEST)14, whereas fetal 
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fraction for each sample was estimated and allelic read counts of each target site were reported as 

mutant and wildtype counts. In the meanwhile, genotypes of the mothers, the fathers, the fetuses 

and/or the probands were determined using conventional molecular diagnostic techniques11-14. 

Here, we estimated the genotype of each target site using the sample’s fetal fraction and read 

counts of mutant and wildtype alleles which were the only information required by our allelic 

goodness of fit method, and then compared the estimated genotype with the true genotype 

reported. Using allelic counts of a single target site, 100% estimation accuracy was observed for 

all maternal genotypes, and 95.7%, 93.4% and 96.8% for fetal genotypes of the hbb dataset12, the 

arnshl dataset13 and the cfbest dataset14, respectively (Table 1; Table S9-S12). Moreover, when 

both the mother and the fetus were homozygous wildtype, 100% accuracy was observed (Table 

S9-S12). For all genotypes estimated incorrectly, mutant alleles well above the noise threshold 

were detected (Table S9-S12). Such an observation supports the notion that a small number of 

replicates (such as 1-2 replicates) are used for each target site to screen monogenic mutations, 

which should be accurate when both the mother and the fetus are wildtype, and if a mutant allele 

is detected, further analysis is followed. Such a two-tier screening strategy should be accurate 

and cost-effective, especially when the disease prevalence is low. In addition, when replicate 

samples were analyzed together, improved estimation accuracy was observed for the library or 

sequencing level repetition dataset (Fig. S16). Similarly, in the wilson validation dataset (Fig. 

S17-S20; Fig 4B,C)11, two sites out of eight from the 5% fetal fraction replicate mixtures (Table 

S13) were incorrectly estimated when each sample was analyzed individually, however, 

unambiguous genotype estimation was observed when all eight replicates were analyzed in a 

group as a single sample (Table S13; Fig. S17).  Moreover, relative small adjusted ∆AIC values 

were observed for sites estimated incorrectly (Table S10-S12, Fig. S21), suggesting that the 
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differences between two best fitted models were small for wrong estimated sites and test with 

repetitions would be more appropriate for such cases.  

Discussion  

Through amplicon sequencing of polymorphic and target sites of maternal plasma DNA, here we 

described an approach to detect chromosomal, subchromosomal and sequence-level 

abnormalities simultaneously, whereas a panel of polymorphic sites from normal reference 

chromosomes, a panel of polymorphic sites on the target chromosomal/subchromosomal regions, 

and a panel of specific target sites were amplified, sequenced and analyzed. As the same 

underlying principle was applied to amplify targets, it would be cost-effective for detecting 

abnormalities involving both large and small genomic fragments and easy to extend for detecting 

new abnormalities, which was unattainable by other reported NIPT methods so far.  

To estimate fetal fraction, allelic read counts of each polymorphic sites were linear transformed, 

which not only preserved linear relationships between variables, but also improved the 

interpretability of the data whereas the correlation between variables was easy to understand. 

Moreover, allelic read counts for different underlying genotypes could be analyzed together after 

such linear transformations, and a robust linear regression could be fitted, which was insensitive 

to outliers. On the contrary, methods current available for estimating fetal fractions17,24,25 were 

based on either medians or statistical distributions, whereas only median values were used or 

models sensitive to outliers were applied. Hence the method for estimating fetal fraction using a 

robust linear regression model should be accurate inherently as all data points were included and 

the effects of outliers were minimized, and fetal fractions even at the level of 1% were 

consistently and accurately measured for repetitive samples (Fig. 1F). 
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For monogenic mutations, more than 90% of the target mutations were correctly identified for 

three public datasets (Table 1). Obviously, some of the mutation sites were not correctly detected 

by relative allelic ratios11 or maximal likelihood estimations14. When samples were tested using 

replicates, it is difficult to analyze a group of relative values or probabilities collectively to give a 

conclusive estimate using the current available methods. Here we identified a measure, the 

adjusted ∆AIC value, to detect target mutation using allelic counts of a single site, which was a 

good measure for the fitness of allelic counts to the estimated genotype. Moreover, the adjusted 

∆AIC values of multiple replicate samples could be analyzed collectively, and the more the 

replicates used, the higher the estimation accuracies observed (Fig. S17). Therefore, when low 

adjusted ∆AIC value was observed for a site, which indicated non-optimal fitness of the 

estimated genotype as the two best fitted models had similar adjusted AIC values, analysis with 

repeated samples were desired, and all independent repeat data could be analyzed together. Such 

a strategy could increase the detection accuracy for monogenic mutations.  

For aneuploidies, microdeletions and microduplications, a large number of polymorphic sites in 

the target regions were expected. Each target site was independent and chromosomal or 

subchromosomal abnormalities were detected using the trends of most sites by our method, 

which was less sensitive to outliers, while z-score2 or maximal likelihood estimation4 based 

methods were highly affected by outliers. In addition, when the adjusted ∆AIC values between 

the normal and abnormal models were too low, analysis of sample repeats were desired, and all 

repeated data could be analyzed together. For z-score2 or maximal likelihood estimation4 based 

methods, it was difficult to analyze the repeated data collectively and it was difficult to judge 

which results were reliable when inconsistent repetitive results were observed. As indicated in 

detecting monogenic mutations, when there were not enough polymorphic sites in the target 
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region when detecting microdeletions or microduplications, each target polymorphic site could 

be amplified separately in different tubes as different sites, and then all sites were analyzed 

collectively. Such a strategy could be used to detect abnormal short genomic fragments with 

accuracy. In addition, when doing sample repeats, a different panel of target polymorphic sites 

could be used, especially when the results of the original set showed limited genotype diversity. 

As all maternal genotypes were accurately estimated for both real mutation samples and all our 

simulated samples even when there were aneuploidies or copy number variations for some 

targets, maternal genotype estimation for each polymorphic site was expected to be accurate. 

Therefore, the exact same routines for SNP based NIPT could be used to detect 

chromosomal/subchromosomal abnormalities as well whereas the maternal genotype for each 

target could be estimated by our method. As no separate maternal genotypes determination was 

performed in this case, it should be more cost-effective than SNP based NIPT approaches. 

In our method, each target site was independent, and no cross-sample or cross-site comparisons 

were performed. Therefore, each target could be amplified individually or in a multiplex manner, 

especially when detecting multiple abnormalities simultaneously whereas it was challenging to 

amplify all targets in a single tube. As different alleles of each amplicon had nearly identical 

sequences with similar amplification properties, relative allelic counts of each target were 

expected to reserve in each amplicon product. For real plasma cfDNA samples, which was 

inherently noisy, it may be necessary to optimize amplification conditions to improve detection 

accuracy, such as using unique molecular identifiers26 or cSMART techniques11. For abnormality 

detection, nearly all amplification products were used for our method and therefore it should be 

cost-effective, while the WGS-based approaches used only a fraction of reads mapped to the 

target chromosomal regions.  
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In principle, target amplicon sequencing could be applied to detect other genetic variations as 

well. For examples, chromosomal inversion or translocation with known break point could be 

detected by amplicons covering the specific breakpoint. Genomic abnormalities for 

preimplantation embryos or non-pregnant samples could also be detected using assays similar to 

the reported approach, as distinct allelic distributions for all target polymorphic sites were 

informative enough to identify different abnormalities (Fig. S22). For cfDNA sample from a 

surrogate mother, fetal fraction was first estimated and updated iteratively using relative allelic 

counts of polymorphic sites and allelic goodness-of-fit test (Fig. S23), then genetic variations 

could be detected by checking all possible genotype models. For samples from a mother with 

multiple pregnancies, fetal fraction for each fetus could be estimated using a similar approach 

(Fig. S23), whereas each fetal fraction estimate was updated iteratively until converge, and 

genetic abnormalities could be detected using allelic goodness-of-fit test, as expected allelic 

counts for each polymorphic site could be calculated when fetal fractions for all fetuses were 

available. 

Collectively, we developed a new assay, GGAP-NIPT, for detecting fetal genetic abnormalities 

noninvasively at both chromosomal/subchromosomal and nucleotide levels with demonstrated 

accuracy for simulated samples in a cost-effective manner. Such an assay showed the potential to 

facilitate the expansion of NIPT to detect both genetic conditions that were common to all 

pregnancies and disorders that had high prevalence in particular groups, which would have great 

socioeconomic benefits.  
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Figures 

 

Fig. 1. Fetal fraction estimation. (A) Genotype estimation for each polymorphic site using 

allelic counts. (B) Expected fetal read count and total read count for each genotype. (C, D) 

Representative plots from the insertion/deletion polymorphism dataset (C) and replication dataset 

(D). A robust linear regression line was fitted (red line, model y=βx+0), and fetal fraction was 

estimated to be the model coefficient (β). (E) Fetal fractions were estimated for each 

insertion/deletion polymorphism sample by both allelic read counts method (rlm) and WGS 

method (red line was the fitted regression line y~x), excluding low quality WGS samples. (F) 

Expected and estimated fetal fractions for replication samples (blue line: y=x). α: background 

noise threshold.  
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Fig. 2. Maternal-fetal genotype estimation. (A) Discrete clusters of relative allelic counts for a 

representative sample from the replication dataset (blue: histogram count, red: density). (B) 

Expected relative allelic clusters for polymorphic sites on normal reference chromosomes. (C) 

Expected relative allelic counts for each normal maternal-fetal genotype. (D) Steps to estimate 

maternal-fetal genotype for each polymorphic site (allelic goodness-of-fit test). (E) A 

representative plot for genotype estimation using allelic goodness-of-fit test. As AA|AB model 

had the minimal raw AIC, the target genotype was estimated to be AA|AB. (F,G) ΔAIC (F) and 

adjusted ΔAIC (G) were calculated for each polymorphic site of the replicate samples grouped 

by estimated fetal fraction. ΔAIC= absolute AIC differences between two best fitted models. 

Adjusted ΔAIC= ΔAIC/TotalCount/FetalFraction. 
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Fig. 3. Chromosomal or subchromosomal abnormality detection. (A) Steps to detect fetal 

aneuploidy using overall goodness-of-fit test for all polymorphic sites. (B) Detecting fetal 

monosomy. Chr01: simulated Di.Di chromosome ; Chr02: simulated Di.Mo. (C) Detecting fetal 

trisomy. Chr01: simulated Di.Di; Chr02: simulated Di.Tri chromosome. (D) Steps to detect fetal 
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subchromosomal abnormality using overall goodness-of-fit test for all polymorphic sites. (E) 

Detecting fetal subchromosomal deletions. As Mo.Mo model was the best fit for all target 

polymorphic sites, both the mother and the fetus were heterozygous for the microdeletion. (F) 

Detecting fetal subchromosomal duplications. As Tri.Tri model was the best fit for all target 

polymorphic sites, both the mother and the fetus were heterozygous for the microduplication. (G-

J) Detecting fetal abnormalities using relative allelic counts plots. (G) Detecting fetal monosomy. 

Blue: reference normal chromosome. Red: target chromosome. From the characteristic cluster 

positions, the target chromosome was estimated to be normal for the mother but monosomy for 

the fetus. (H) Detecting fetal trisomy. Blue: reference normal chromosome. Red: target 

chromosome. From the characteristic cluster positions, the target chromosome was estimated to 

be normal for the mother but trisomy for the fetus. (I) Detecting subchromosomal microdeletion. 

From characteristic clusters, both the mother and the fetus were heterozygous for the 

microdeletion. (J) Detecting subchromosomal microduplication. From characteristic clusters, the 

mother was heterozygous and the fetus was homozygous for the microduplication. (K) Detecting 

accuracy for simulated normal and monosomy samples. (J) Detecting accuracy for simulated 

normal and trisomy samples. 
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Fig. 4. Detection of fetal short genetic variations. (A) Steps to detect sequence-level variation 

using goodness-of-fit test and wildtype sequence comparison. (B, C) Detecting target mutations 

by relative allelic counts plot (B) or allelic goodness-of-fit test (C). Maternal and paternal plasma 

samples were mixed, mimicking homozygous-heterozygous maternal-fetal genotypes with a fetal 

fraction of 15% (6 replicates). Each color represented a replicate sample. From the allelic plot 

(B), the mother was homozygous wildtype and the fetus was heterozygous mutant for the target 

site. From the goodness-of-fit test (C), the maternal-fetal genotype was estimated to be AA|AB. 

As wildtype counts were the major components, A was a wildtype allele and B was a mutant 

allele, hence the mother was wildtype and the fetus was heterozygous mutant. 
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Tables 

Table 1. Performance for detecting monogenic mutations 

Dataset 
Amplification 

Method 

Number 
of plasma 
samples 

Number 
of sites 

Correct  Estimated 
Genotype 

Accuracy for 
Genotype Estimation 

Maternal Fetal Maternal Fetal 
hbb12 cSMART 102 188 188 180 100% 95.70% 

arnshl13 cSMART 80 137 137 128 100% 93.43% 
cfbest14 cfBEST 143 189 189 183 100% 96.83% 
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