
1 
 

Colder and drier winter conditions are associated with greater SARS-CoV-2 transmission: a 1 

regional study of the first epidemic wave in north-west hemisphere countries. 2 

 3 

Jordi Landier1*, Juliette Paireau2,3, Stanislas Rebaudet1,4, Eva Legendre1, Laurent Lehot1, Arnaud 4 

Fontanet5,6, Simon Cauchemez2, Jean Gaudart7 5 

 6 

Version 1.1, 27 January 2021 7 

 8 

1 IRD, Aix Marseille Univ, INSERM, SESSTIM, Marseille, France. 9 

2 Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France. 10 

3 Santé publique France, French National Public Health Agency, Saint Maurice, France 11 

4 Hôpital Européen Marseille, France. 12 

5 Emerging Infectious Diseases Unit, Institut Pasteur, Paris, France. 13 

6 PACRI Unit, Conservatoire National des Arts et Métiers, Paris, France. 14 

7 Aix Marseille Univ, APHM, INSERM, IRD, SESSTIM, Hop Timone, BioSTIC, Marseille, France. 15 

 16 

* corresponding author, jordi.landier@ird.fr 17 

Abstract  18 

Higher transmissibility of SARS-CoV-2 in cold and dry weather conditions has been hypothesized since 19 

the onset of the COVID-19 pandemic but the level of epidemiological evidence remains low. 20 

During the first wave of the pandemic, Spain, Italy, France, Portugal, Canada and USA presented an 21 

early spread, a heavy COVID-19 burden, and low initial public health response until lockdowns. In a 22 

context when testing was limited, we calculated the basic reproduction number (R0) in 63 regions from 23 

the growth in regional death counts. After adjusting for population density, early spread of the 24 

epidemic, and age structure, temperature and humidity were negatively associated to SARS-CoV-2 25 

transmissibility. A reduction of mean absolute humidity by 1g/m3 was associated with a 0.15-unit 26 

increase of R0. Below 10°C, a temperature reduction of 1°C was associated with a 0.16-unit increase 27 

of R0. 28 

Our results confirm a dependency of SARS-CoV-2 transmissibility to weather conditions in the absence 29 

of control measures during the first wave. The transition from summer- to winter-like conditions likely 30 

contributed to the intensification of the second wave in north-west hemisphere countries. 31 

Adjustments of the levels of social mobility restrictions need to account for increased SARS-CoV-2 32 

transmissibility in winter conditions.     33 
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Introduction 1 

 2 

The spread of SARS-CoV-2 in February-March 2020 caught the majority of European and North 3 

American countries unprepared. The spread of the virus was largely uncontrolled until movement 4 

restriction and social distancing policies were put in place at national or regional level with various 5 

degrees of intensity [1]. Most regions that implemented lockdowns experienced a peak in hospital 6 

admissions approximately 2 weeks after the lockdown was imposed, corresponding to infections 7 

acquired around the date of lockdown [2].  8 

The spread of this first wave was largely heterogeneous between countries. Various determinants 9 

were proposed to explain the differential spread of the virus. Some Asian countries like Japan, South 10 

Korea, Vietnam and Thailand and some isolated countries like Australia, New Zealand, Iceland, 11 

experienced only limited transmission and stood out for high levels of preparedness and efficient 12 

response strategies. Even within South West European and North American countries where no 13 

effective response was deployed before lockdowns, SARS-CoV-2 virus spread heterogeneously at the 14 

regional level, as observed from hospitalization, death counts, and confirmed by serological surveys 15 

[3, 4]. 16 

Epidemic spread is characterized by the basic reproduction number, or R0. R0 expresses the average 17 

number of secondary cases resulting from a given case in the context of a naive population.  18 

R0 depends on individual susceptibility to infection when in contact with an infective individual, and 19 

on the probability of an infectious contact. Environmental parameters affect R0: population density 20 

may increase the probability of contacts between individuals and weather conditions may affect the 21 

survival of the virus or the individual susceptibility to an infection. Most known respiratory viruses 22 

spread during the cold season in the temperate Northern hemisphere [5]. Weather conditions in 23 

winter can also affect individual susceptibility to infection through irritation of the nasal mucosa, but 24 

also influence the behaviour of individuals towards conditions prone to transmission (living or 25 

gathering in closed, heated spaces with a dry atmosphere) [5]. In addition, temperature,  humidity, 26 

and UV, might directly affect the virus survival and modify infectiousness [6, 7]. Individual preventive 27 

behaviours (masks), collective strategies reducing mobility and contacts (lockdowns) or limiting the 28 

duration of the infectious period (detection and isolation) modify the number of secondary cases and 29 

the effective reproduction number can be calculated, which accounts for these alterations in the 30 

“natural” history of transmission. 31 

In spite of a large number of studies, the evidence regarding the link between weather conditions and 32 

SARS-CoV-2 transmission remains limited. At date of 15 May 2020, a systematic review retained 61 33 

studies analysing the relationship between COVID-19 epidemic and environmental factors [8]. 34 

Methodological issues included the lack of controlling for confounding factors such as population 35 

density [8]. Inappropriate epidemiological and statistical methods were also pointed out [8, 9]. 36 

Comparison between countries with different counter epidemic responses, testing strategy, or delayed 37 

onset of the epidemic might also have led to inconsistent results [8]. An earlier review retaining 17 38 

studies highlighted the risk of bias and the low level of available evidence [10]. Between 15 May 2020 39 

and 15 December 2020, our systematic search identified 82 research articles, of which only 15 (18%) 40 

analysed the growth rate or the reproduction number of SARS-CoV-2 (Appendix p2). Only four studies 41 

of climate and reproduction number included adjustments for confounding factors, and three of four 42 

included relevant covariates of population mobility, population density, and took into account 43 

interventions when necessary [11–13].  Of these, two were conducted over small geographical units: 44 

one study of 212 US counties identified a negative relationship between temperature increase and 45 
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SARS-CoV-2 growth, while the other study including 28 Japanese prefectures identified a positive 1 

relationship [11, 12]. The third study was at the global scale for 203 states (in the USA, Canada, 2 

Australia and China) or countries and identified a negative association between UV light exposure and 3 

SARS-CoV-2 growth. Temperature was negatively associated with growth only after adjustment for UV 4 

light exposure [13].  All three studies identified a positive association between population density and 5 

epidemic growth. 6 

Overall, multiple studies described a negative relationship between temperature and COVID-19 7 

outcomes but the majority were unadjusted ecological correlation studies with strong risk of bias 8 

bringing low quality evidence [8], and evidence from multivariable growth studies remains ambiguous. 9 

A modelling study defined the range of possible dependency between SARS-CoV-2 transmission and 10 

absolute humidity, based on two known coronaviruses and influenza [14], and recent models still do 11 

not include specific SARS-CoV-2 data [15]. More precise estimations of the effect of meteorological 12 

conditions on the spread of SARS-CoV-2 are required to better anticipate and inform policies regarding 13 

seasonal adjustments [16].  14 

The objective of this study was to evaluate the contribution of weather parameters in the transmission 15 

of SARS-CoV-2, by analysing their effect on SARS-CoV-2 basic reproduction number in a context of low 16 

public health response during the early phase of the first wave in 6 north-western hemisphere 17 

countries. 18 

Results 19 

 20 

Region selection 21 

The six countries (USA, Canada, Spain, Italy, France and Portugal) included 128 regions/states. 22 

Overseas regions (n=11) and regions which had experienced <10 cumulative deaths 28 days after 23 

lockdown (n=15) were not included (Figure 1). Likewise, regions with a maximal daily mortality <5 24 

deaths (n=19) within 28 days after lockdown were not included. Overall, 83 regions were assessed for 25 

exponential growth period, and R0 was calculated for 64 regions with sufficient exponential growth 26 

(Figure S1 in Appendix): 24 regions in the USA, 2 regions in Canada, 11 regions in France, 12 regions in 27 

Spain, 13 regions in Italy and 1 region in Portugal. 28 

 29 

Data description 30 

The maximal daily death count was 39 deaths/day in median (interquartile range (IQR)=18-83, 31 

max=779) and occurred 25 days (median; IQR=19-43) after the start of the lockdown. Of note, larger 32 

reductions in human mobility patterns after lockdown as assessed from google mobility led to shorter 33 

delay (Spearman correlation coefficient = 0.63, p<0.0001, Figure S3). The delay between the start of 34 

lockdown and the peak in daily death count was reduced to 19 days (median; IQR=17-27) for South 35 

European countries with nationwide lockdowns and strong mobility reductions (>60% in average, 36 

Figure S3). 37 

R0 was estimated over an exponential growth period that had a median duration of 11 days (IQR=9-38 

14, range=5-19). In The R0 estimation period started 5 days (median; IQR=0-8.5) and ended 16 days 39 

after the date of lockdown (IQR=11-21, range 1-27). Figure S4 presents details of the calculation 40 

periods. 41 
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The median R0 value was 2.58 (IQR=2.08-2.66). R0 estimates were lowest (<1.5) in two regions in 1 

France and one in Spain, the USA and Italy (respectively in Centre-Val de Loire, Nouvelle Aquitaine, La 2 

Rioja, Alabama and Abruzzo). R0 was highest (>4.0) in New York (USA), Lombardia and Piemonte (Italy), 3 

Castilla-La Mancha (Spain) and Ontario (Canada)(Figure 3A and B). Spain and Canada had overall higher 4 

R0 values compared to Italy, France and USA (Figure 4A). R0 values exhibited significant spatial 5 

autocorrelation (Moran’s I=0.20, p=0.0087). 6 

Covariates were heterogeneous between countries (Figure 3 and 4). Population density ranged 7 

between 82 and 1056 inhabitants/km2 (median=271, Figure 3C and D) and was overall higher in Italy 8 

(Figure 4B). Mean absolute humidity during the transmission period was 4.98g/m3 in median 9 

(IQR=4.29-5.99, range=2.26-11.32, Figure 3E and F) corresponding to a median dew point of 3.7°C 10 

(IQR=0.9-6.3, range=-7.7 – +15.3). Mean temperature was 9.8°C in median (IQR=7.1-11.5, range=-2.0-11 

19.9). Distance to the first region with 10 cumulative deaths was 406km in median (IQR=228-794) and 12 

much larger in the USA compared to European countries (Figure 4F).  13 

 14 

Factors associated with R0 15 

Each variable was included in a univariate model assuming linear (Figure 5, Table S2) or non-linear 16 

(spline smoothing, Table S3) relationships with R0. We identified significant relationships between R0 17 

value and temperature, absolute humidity or dew point, average daily rainfall, but not with mean wind 18 

speed over the transmission period. 19 

Multivariable models were constructed according to the DAG. After adjustment for distance to the 20 

nearest affected region, percentage of population over 80 and population density, there was a 21 

consistent relationship between increasing temperature, AH or dew point temperature, and 22 

decreasing R0. No relationship was found with average daily rainfall. 23 

Mean temperature led to the model with the largest deviance explained compared to models including 24 

minimum or maximum temperature, or any AH or dew point temperature (Table 1). In this model, a 25 

10-fold (+1 log10 unit) increase in population density was associated with a +0.67 R0 unit increase 26 

(95%CI=0.05-1.28). The proportion of population aged 80 years and older was not significantly 27 

associated with R0. The relationship between mean temperature and R0 was not linear. A strong, 28 

nearly linear drop of approximately 1.0 R0 unit was observed between 2.5 and 12°C, and a plateau 29 

beyond 12°C (Figure 6 and 7). The residuals from this model did not exhibit significant spatial 30 

autocorrelation (Moran’s I=0.054, p=0.215). 31 

Mean AH and mean dew point values exhibited similar profiles with increasing values associate with 32 

decreasing R0 values (Table 1, Figure 6). In spite of the narrower range of values, it seemed that the 33 

relationship between R0 and AH or dew point temperature did not reach a plateau (Figure 7). Assuming 34 

a linear relationship, a 1 g/m3 higher absolute humidity translated in a 0.15 unit lower regional R0, 35 

respectively a 1°C higher dew point temperature translated in a 0.08 unit lower R0 (Table S5).  36 

 37 

Sensitivity analyses 38 

Using lagged weather summary values as linear univariate predictors, our statistical model found 39 

similar relationships between R0 and temperature variables, but 0- , 1- and 5-week lags led to the 40 

strongest effect for mean AH and mean DP (Figure S5). Using lagged weather summary values as non-41 

linear predictors in the multivariate model, the shapes of the relationships between temperature, AH 42 

and DP remained similar, with a nearly linear drop reaching a plateau at values corresponding to milder 43 

winter weather/climate (Figure S6). Overall, correlations were strong between weather summary 44 
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observations at the different lags (Figure S7). Correlations of lagged temperature and humidity 1 

observations was highest between -1, 0, 1 and 5-week lagged observations compared to other lags.  2 

When setting the upper limit of the R0 calculation window to 18-day after date of lockdown, 10 3 

additional regions were excluded and the analysis was conducted on 53 regions. After adjusting for 4 

population density, population over 80 and distance to the first region affected, the non-linear 5 

negative relationship between R0 and temperature remained unchanged, reaching a plateau around 6 

10°C (spline p-value=0.0475). The shape of the relationship between AH, respectively DP, and R0 7 

remained similar but did not reach statistical significance (p-value=0.19). Later AH or DP summary 8 

values, corresponding to 1 week later than the estimated transmission period (i.e. 2-week lag from R0 9 

calculation period), restored the negative relationship with R0 (p=0.0661, respectively p=0.0667). 10 

Fitting continent-specific splines for weather covariates, also resulted in low statistical power: only 37 11 

regions remained in South Europe and 26 in North America. After adjusting for population density, 12 

population over 80 and distance to the first region affected, humidity variables (AH or dew point) 13 

retained a negative association with R0 (continent-specific spline p-values were 0.0915 (North 14 

America) and 0.0988 (South Europe) for AH, respectively 0.0506 and 0.1078 for dew point 15 

temperature). The relationship between R0 and mean temperature was markedly different between 16 

North America (negative association, p=0.005) and South Europe (p=0.17). 17 

Discussion 18 

 19 

In this study, we analysed SARS-CoV-2 propagation parameter R0 during the first wave of the pandemic 20 

in 63 regions of 6 north western countries.  We showed that R0 values were influenced by population 21 

density (+0.6 for a 10-fold increase in density), by proximity with the first epidemic focus of the country 22 

or coast for USA (-0.3 for a 10-fold increase in distance to the first region to record 10 COVID-19 23 

deaths), and by weather or climate conditions. For regions with mean temperatures below 10°C during 24 

the transmission period, a linear association was observed with R0 values: a 1°C increase in 25 

temperature between regions was associated with a 0.16-unit decrease in R0. A 1 g/m3 increase in 26 

mean absolute humidity was associated with a 0.15-unit decrease in R0. Similar results were obtained 27 

with dew point temperatures, with a 1°C increase associated with a 0.08-unit decrease in R0 (Table 28 

S5). After adjusting for major confounders and spatial autocorrelation, our results indicate that 29 

weather conditions brought a significant contribution to drive the magnitude of the first wave, even if 30 

it was limited by an initial heterogeneous spread of the virus, which protected regions located furthest 31 

away from the first foci.  32 

 33 

This study relied on a regional scale analysis and accounted for different dynamics within the same 34 

country. The overall epidemic wave at country level was actually the sum of diverse dynamics, as is 35 

obvious for large countries but also true for Spain, Italy or France, where regions were heterogeneously 36 

affected, as confirmed by serological studies [3, 17]. Likewise, weather or climate heterogeneity 37 

between regions of a given country was large. By analyzing distinct spatial units with heterogeneous 38 

population density and weather, we were able to assess the effect of parameters that may be 39 

otherwise confounded by country-level parameters such as response strategy, timing of the analysis 40 

period compared to the progression of the epidemic, but also age structure of the population. 41 

The 6 countries were selected due to their homogeneous location in the northern hemisphere 42 

between 25 and 50 degrees of latitude and the low efficacy of their counter epidemic responses until 43 
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a lockdown was decreed. We are therefore as close as possible of conditions allowing R0 estimation. 1 

This 4-parameter hierarchical generalized additive model provides an explanation of up to 45% of R0 2 

variability across 63 affected regions of the northern hemisphere, thus providing useful insights on the 3 

drivers of the first wave, and allowing to estimate the contribution of population density and weather 4 

conditions for the next waves, when the effect of local introduction is no longer relevant. 5 

We acknowledge several limits. The first one is the necessity to rely on death counts to estimate R0 6 

during this wave due to the lack of information on actual infections from limited testing and the lack 7 

of consistency between countries for hospitalization counts. This assumption is similar to usual 8 

assumptions for R0 estimation based on diagnosed cases, since true number of infections remains 9 

unknown and detection occurs at variable delays after infection. 10 

A second limit is the use of a single summary weather observation over the assumed transmission 11 

period, which may fail to express the dynamical aspects of weather. The choice of fixed, 1-week 12 

increments to study the effect variations in the weather summary window may be too coarse to 13 

capture effects for narrow exponential growth periods. The sensitivity analysis showed a slight increase 14 

in effect when considering weather summary values calculated 1 week earlier than the estimated 15 

transmission period, but the 18-day sensitivity analysis showed a stronger negative relationship 16 

between R0 and AH summary values corresponding to 1-week later than the estimated transmission 17 

period. The role of the weather conditions might be more important during the beginning of the 18 

exponential growth period, until a sufficiently large number of persons becomes infected and 19 

parameters such as population density become increasingly important. This study could also only 20 

evaluate the effect of a limited range of weather conditions on SARS-CoV-2 transmission, since the 21 

number of observations with a mean temperature below 2.5°C or above 15°C was low. This prevents 22 

from analyzing the effect of higher temperatures such as during autumn. This restriction was however 23 

necessary to achieve a minimal homogeneity of the studied regions in terms of their exposure and 24 

response to the pandemic. Finally, this analysis includes only 63 regions and may lack statistical power. 25 

The necessity to ensure that the epidemic growth of deaths was sufficient led to the exclusion of 26 

regions that may be affected, but not enough for daily deaths counts to reach 10 deaths/day.  27 

Finally, this study showed an association between SARS-CoV-2 R0 and temperature/absolute humidity, 28 

but due to the strong correlation between absolute humidity and temperature in the seasonal 29 

conditions analysed here, it is difficult to determine which parameter is more important and they could 30 

not be analysed in combination [18]. The continent-specific analysis suggests that the relationship 31 

between absolute humidity and R0 was more stable than that of temperature, which was strong in the 32 

US but less so in South Europe. We could not conclude whether the relationship results from a direct 33 

role of weather on individual susceptibility to viral invasion (e.g. dry nasal mucosa from indoors heating 34 

and outdoors cold) or on viral persistence/survival, or from an indirect role of climate on human 35 

behaviors (e.g. regions with cold winter favor more indoors living conditions and lead to bigger 36 

infection opportunities). 37 

Conclusion 38 

Our study shows an important dependency of SARS-CoV-2 transmission to weather/climate, with a 39 

0.16-unit increase in R0 for a 1°C difference in mean regional temperature below 10°C, or a 0.15-unit 40 

increase for a -1g/m3 decrease in absolute humidity. Northern hemisphere countries experienced a 41 

second wave of SARS-CoV-2 infections during autumnal transition from summer to winter, while still 42 

actively maintaining control strategies. When planning to adjust the level of restrictions on social 43 

activities, public health strategies need to account for the increased transmissibility of SARS-CoV-2 44 

when/where cold and dry winter conditions are prevalent. 45 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.26.21250475doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.26.21250475


7 
 

Material and methods 1 

 2 

Study design 3 

In order to compare the drivers of the epidemic dynamics between regions accurately, we calculated 4 

the basic reproduction number (R0) of the virus for each region affected by the first wave of COVID-19 5 

epidemic in six countries, using the dynamics of the daily death counts. These six countries were 6 

located in the western part of the northern hemisphere, approximately between 25 and 50° of latitude 7 

(Figure S1). These countries experienced winter conditions and underwent significant SARS-CoV-2 8 

transmission in a context of low public health response at the start of the first wave of the epidemic. 9 

This analysis was conducted at the first administrative subdivision country, here referred to as 10 

“region”. Regions corresponded to States in USA and Canada, autonomous communities in Spain, and 11 

regions in Italy (regioni), Portugal (região) and France (regions). 12 

Confirmed case counts were insufficiently reliable due to overall lack of tests and different testing 13 

strategies between countries, between regions of the same country and between periods for the same 14 

region. Hospitalization counts were not available consistently at regional level across countries. 15 

Overall, COVID-19 deaths were preferred as they were less likely to have different definitions within 16 

the same region or country and to undergo significant changes over the study period. R0 is an indicator 17 

of the speed of progression of the outbreak, and was therefore less likely to be biased compared to 18 

indicators based on cumulative counts or cumulative incidence rates. Estimating R0 values based on 19 

deaths counts relies on the minimal assumption that the infection-fatality rate was constant over the 20 

study period (~1 month) for a given region, which defined a proportional relationship between 21 

infections and deaths. 22 

 23 

Study period  24 

We included COVID-19 death count data starting at the date when 10 cumulative deaths were reached 25 

in a given region, and ending 28 days after lockdown.  26 

The lower boundary of 10 cumulative deaths was chosen to avoid early stochasticity and limitations in 27 

the available recordings of the first COVID-19 deaths at regional level.  28 

The upper boundary of 28 days after lockdown was defined to avoid the influence of lockdown 29 

measures on the growth rate of death counts, since we aimed to estimate SARS-CoV-2 R0 prior to 30 

implementation of major interventions. At individual level, the median delay between infection and 31 

death was 18 days, with a large interquartile range (IQR) of 9 to 24 days [19–25]. At regional level, we 32 

assumed that reported deaths corresponded to transmission events which had occurred in median 3 33 

weeks earlier, and defined a 28-day boundary to cover the upper limit of the IQR. 34 

  35 
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Data 1 

Deaths from COVID-19 2 

Regional level data on COVID-19 deaths were retrieved from data shared by national health ministries 3 

and/or public health agencies of Spain, Italy, Portugal, France, United States of America, and Canada 4 

(Table S1). Deaths were reported as daily new death counts or as a cumulative number.  5 

 6 

Population and geographical data 7 

Population structure by one- or five-year age groups, sex and region was retrieved from open access 8 

data shared by national institutes or administrations responsible for national statistics or demography 9 

(Table S1). The percentage of the region population aged >70 or >80 years was calculated in order to 10 

adjust for differences in way of life (e.g. rural regions have older population than metropolitan areas 11 

in Europe).  12 

Region shapefiles by country were obtained from national geographical authorities, open source 13 

datasets or as provided in the coronavirus open data packages proposed by several national health 14 

agencies (Table S1). The region surface was either obtained from the geographical layer (land surface 15 

area), or calculated from the polygon extent. We estimated the percentage of each region surface with 16 

>5 inhabitants per km2 based on WorldPop 2020 raster dataset [26]. Population density was estimated 17 

as the population in the region divided by the surface after excluding areas <5 inhabitants/km2 in order 18 

to limit the underestimation of population density when high heterogeneity existed between urban 19 

centers and sparsely populated territories within the same region (deserts, mountains, polar regions). 20 

 21 

Weather/climate 22 

Weather station reports since 1 January 2020 were obtained from US National Oceanic and 23 

Atmospheric Administration (NOAA) through the R-package {worldmet}. We extracted hourly 24 

temperature, relative humidity (RH), dew point (DP), precipitation and windspeed observations for 25 

each station. Hourly absolute humidity (AH, in g/m3) was calculated from RH and temperature based 26 

on the Clausius-Clapeyron formula [27]. Daily minimum, maximum and mean values were calculated 27 

for temperature, AH, RH, dew point, as well as cumulative sum of precipitation and mean wind speed. 28 

Days with >5 missing hourly record (no observation of any parameter) were excluded. 29 

Each region was attributed stations based on geographic location. All available observations in weather 30 

stations of the region contributed to the regional daily average. Weather stations can be located in 31 

mountains or inhabited locations where they record weather conditions that differ strongly from 32 

actual populated areas of the same region. To avoid this bias, observations were assigned population-33 

based weights: we estimated the population located within 10 km of each weather station using 34 

WorldPop 2020 data; and for each day and each region, we calculated the total population within 10km 35 

of any station reporting data for that day. Daily station observations were weighted in proportion of 36 

the population around each station relative to the total population. Stations located within 10-km of 37 

each other were included in a single buffer and each station was assigned equal weight within the 38 

buffer. 39 

For each weather parameter, the regional summary value was calculated over the transmission period, 40 

during which infections were assumed to have occurred. We assumed that the transmission period 41 
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had the same duration as the R0 calculation period, and occurred 3 weeks earlier according to the 1 

delay between infection and death (Figure S8). 2 

Using this approach, the weather parameters averaged over the assumed transmission period and over 3 

each region included: minimum, mean and maximum average values for temperature, relative 4 

humidity, absolute humidity, dew point, average cumulative rainfall per day and average wind speed. 5 

 6 

Date of lockdown definition 7 

Lockdown date was defined using Google mobility data as the date when a decrease >25% in workplace 8 

localization was reported and sustained over 3 days in the region [28]. All references to a « date of 9 

lockdown » hereafter refer to this definition. This definition matched national lockdowns in European 10 

countries. This simplification was necessary due to the heterogeneity in social distancing measures 11 

taken at regional (state) level in the USA and Canada. The objective was to exclude periods where 12 

transmission would start to slow down due to these measures. 13 

 14 

Distance to first region with 10 cumulative deaths 15 

For each of the four European countries considered, we identified the first region with 10 cumulative 16 

deaths was defined. In Portugal, two regions reached >10 deaths on the same day, and the region with 17 

the highest count (14 versus 12) was selected. Within each country, the euclidean distance in 18 

kilometers between the main city in each region and the main city in the first region above 10 19 

cumulative deaths was calculated to reflect spatial autocorrelation due to proximity in the spread of 20 

the epidemic. In the USA and Canada, the distance to the first region above 10 cumulative deaths was 21 

calculated separately for East Coast and West Coast, using the limit between Central and Mountain 22 

time zones. This was necessary due to the early start of the epidemic in the state of Washington, which 23 

reached 10 deaths by 2 March 2020, 16 days before the next state (New York on 18 March). 24 

 25 

Statistical methods 26 

Statistical analyses were performed using R version 4.0. Maps were produced using ArcGIS 10.7.1. 27 

 28 

R0 estimation 29 

Daily death counts were smoothed using a 5-day moving average filter to account for irregularities in 30 

data transmission and publication.  31 

For each region, the exponential growth period was estimated using a log(deaths)=f(time) 32 

representation and r (the exponential growth rate) was extracted as the coefficient of a Poisson 33 

regression. R0 was calculated for each region using the generation time method assuming a gamma 34 

distribution with parameters 7 and 5.2 for SARS-CoV-2 generation time [29, 30]. In order to improve 35 

the adjustment of the regression, the start and end dates of the calculation period were allowed to 36 

shift by up to 2 days (+/-1 day or +1/+2 days for start date if the calculation period began at the date 37 

of 10 cumulative deaths) using the built-in function sensitivity.analysis() of the package {R0} [31]. 38 

 39 
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Exclusion criteria 1 

Regions where the smoothed daily death count stayed <5 deaths/day during the study period were 2 

not included. Region where the smoothed daily death count stayed <10 deaths/day during the linear 3 

growth phase were excluded. This limited the study to regions having displayed a clear exponential 4 

growth phase. 5 

One Italian region was excluded because there was no weather station data available except for 2 6 

stations >2000m altitude. 7 

 8 

Analysis of the relationship between R0 and weather parameters 9 

A directed acyclic graph (DAG) was constructed using Dagitty v3.0 web-based application 10 

(http://www.dagitty.net/dags.html) in order to visualise the relationships between R0 and the 11 

explanatory covariates (Figure S2). Dependence and independence assumptions were verified using 12 

Spearman correlation coefficient. 13 

Relative humidity values are temperature-dependent and absolute humidity or dew point 14 

temperatures are also strongly correlated to temperature [18]. The different weather covariates were 15 

observed during the estimated transmission period, which corresponded to the R0 calculation period 16 

lagged by 3 weeks to account for delay between infection and death. Weather covariates were 17 

included separately in the models. A generalized additive mixed model (gamm) regression was used to 18 

evaluate the effects of climate, population and other determinants on the value of R0, using a Gaussian 19 

distribution and the identity link function (package {mgcv}). A country-level random effect was 20 

included to account for within-country correlations. Canada presented with only 2 regions and was 21 

grouped with the USA for random effect, while the single region in Portugal was grouped with Spain. 22 

Univariate analyses were conducted assuming linear and non-linear effects, using B-splines to model 23 

non-linear effect of covariates. Models were compared using the percentage of deviance explained 24 

and Akaike’s Information Criterion. 25 

We verified presence/absence of spatial autocorrelation in R0 values and in the final model residuals 26 

by calculating Moran’s I. 27 

 28 

Sensitivity analyses 29 

First, we assessed the importance of the 3-week delay for weather variables (corresponding to the 30 

delay between transmission period and R0 calculation period based on death count exponential 31 

growth). For this, we tested a variety of lags from -1 to 5 weeks from that estimated transmission 32 

period (i.e. 2 to 8 weeks from the R0 calculation period). The longer lags were likely irrelevant for actual 33 

transmission but aimed at identifying climate trends rather than weather influence. We included them 34 

as linear explanatory variables in the univariable hierarchical model or as non-linear explanatory 35 

variables in the multivariable hierarchical generalised additive model.  36 

Second, we assessed the effect of the 28-day window to define the exponential growth period by using 37 

a narrower window ending 18 days after date of lockdown. We recalculated R0 for regions where the 38 

linear growth period retained for the main analysis extended beyond the 18-day limit, and followed 39 

the same plan as the main analysis. 40 
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Third, we assessed possible continent specific effects by fitting continent-specific splines for weather 1 

variables in the final multivariate models. 2 

 3 

Data availability 4 

All data used in this study was obtained from publicly available data sources, listed in Table S1. The 5 

only exception corresponded to early death counts at regional level in France which were obtained 6 

directly from the French Public Health Agency but have been publicly released since. The data table of 7 

regional-level values (R0 estimates, weather summary, population density etc) used for the 8 

hierarchical generalized additive model analysis of the relationship between regional level R0 and 9 

weather covariates is provided in a supplementary csv file. 10 

 11 

Code availability 12 

No custom code was used for this study beyond usual application of standard functions of softwares 13 

or R packages. 14 
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Tables 1 

Table 1: Multivariable model results for the relationship between R0 and weather parameters, 2 

obtained with the hierarchical generalized additive model. Weather parameters are temperature, 3 

absolute humidity, and dew point temperature, adjusted for distance to the first region affected, 4 

population density, and elderly population. Non-linear effects are presented in Figure 6. Models 5 

assuming linear effects for weather covariates are presented in Table S5. 6 

 7 

Model Variable Estimate 95%CI p-value 

Model 1 Intercept 0.78 [-0.88 - 2.45] 0.36152 

 Population density (log10) 0.67 [0.07 - 1.26] 0.03218 

 % population over 80 0.05 [-0.08 - 0.18] 0.44470 

 
Distance to first region affected in the 
country/coast spline  0.08007 

 Mean temperature spline  0.00655 

 Dev. explained: 41.5%    

     

Model 2 Intercept 1.28 [-0.36 - 2.92] 0.13239 

 Population density (log10) 0.50 [-0.11 - 1.11] 0.11294 

 % population over 80 0.03 [-0.1 - 0.16] 0.61862 

 
Distance to first region affected in the 
country/coast spline   

 Mean AH spline  0.03401 

 Dev. explained: 33.6%    

     

Model 3 Intercept 1.20 [-0.47 - 2.88] 0.16427 

 Population density (log10) 0.49 [-0.12 - 1.1] 0.12005 

 % population over 80 0.05 [-0.08 - 0.18] 0.47092 

 
Distance to first region affected in the 
country/coast spline  0.09756 

 Mean Dew Point Temperature spline  0.00494 

 Dev. explained: 34.6%    

  8 
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Figures 1 

Figure 1: Study flow chart 2 
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Figure 2: Deaths per day, by region and by country. The thick red line figures the median date of 1 

lockdown by each country, and the thin red line the median date +28 days. 2 
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Figure 3: Map of regional values for R0 and selected covariates, panels are presented by continent. 1 

A,B: R0 ; C,D: population density (inhabitants per km2) ; D,E: mean temperature ; F,G: mean absolute 2 

humidity. 3 
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Figure 4: Distribution of R0 and selected covariates by country. A: R0; B: population density (log10 1 

inhabitants/km2); C: Mean absolute humidity (g/m3); D: Mean temperature (°C); E: Population over 2 

80 years old (%); F: distance to the first region affected (km). The box represents the interquartile range 3 

and the median; whiskers correspond to the minimum between highest value and 1.5 IQR; black dots 4 

to outliers. All observations are ploted in light grey. 5 
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Figure 5: Change in R0 on an additive scale estimated from the univariable model assuming a linear 1 

relationship between R0 and the different variables.  2 
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Figure 6: Non-linear effects in the multivariable model for weather parameters (see Table 1 for linear 1 

effects). A: Temperature, model 1. B: Distance to first region affected, model 1. C: absolute humidity, 2 

model 2. D: distance to first region affected, model 2. E: dew point temperature, model 3. F: distance 3 

to first region affected, model 3.  4 

 5 
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Figure 7: Summary of estimated effect of temperature (A), absolute humidity (B) or dew point 1 

temperature (C) on R0 assuming a region with average population density (248 persons/km2) and 2 

percentage of inhabitants >80 years (5.6%), and corresponding to the first region first affected 3 

(distance=0km). 4 
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