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ABSTRACT 15 

Coronary Artery Disease (CAD) is commonly diagnosed using X-ray angiography, in which images are 16 

taken as radio-opaque dye is flushed through the coronary vessels to visualize stenosis severity. 17 

Cardiologists typically use visual estimation to approximate the percent diameter reduction of the stenosis, 18 

and this directs therapies like stent placement. A fully automatic method to segment the vessels would 19 

eliminate potential subjectivity and provide a quantitative and systematic measurement of diameter 20 

reduction. Here, we have designed a convolutional neural network, AngioNet, for vessel segmentation in 21 

X-ray angiography images. The main innovation in this network is the introduction of an Angiographic 22 

Processing Network which significantly improves segmentation performance on multiple network 23 

backbones, with the best performance using Deeplabv3+ (Dice score 0.864, sensitivity 0.918, specificity 24 

0.987). We have also demonstrated the interchangeability of our network in measuring vessel diameter with 25 

Quantitative Coronary Angiography. Our results indicate that AngioNet is a powerful tool for automatic 26 

angiographic vessel segmentation that could facilitate systematic anatomical assessment of coronary 27 

stenosis in the clinical workflow. 28 

  29 
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INTRODUCTION 30 

Coronary Artery Disease (CAD) affects over 20 million adults in the United States and accounts for nearly one-31 

third of adult deaths in western countries 1–3. The annual cost to the United States healthcare system for the first 32 

year of treatment is $5.54 billion 4. The disease is characterized by the buildup of plaque in the coronary arteries 33 

5,6, which causes a narrowing of the blood vessel known as stenosis.  34 

CAD is most commonly diagnosed using X-ray angiography 7, whereby a catheter is inserted into the 35 

patient and a sequence of X-ray images are taken as radio-opaque dye is flushed into the coronary arteries. 36 

Cardiologists typically approximate stenosis severity via visual inspection of the X-ray images, estimating the 37 

percent reduction in diameter or cross-sectional area. If the area reduction is believed to be greater than 70%, a 38 

revascularization procedure, such as stent placement or coronary artery bypass grafting surgery, may be 39 

performed to treat the stenosis 8,9. 40 

Quantitative Coronary Angiography, or QCA, is a diagnostic tool used in conjunction with X-ray 41 

angiography to more accurately determine stenosis severity 10,11. QCA is an accepted standard for assessment of 42 

coronary artery dimensions and uses semi-automatic edge-detection algorithms to quantify the change in vessel 43 

diameter. The QCA software then reports the diameter at user-specified locations as well as the percentage 44 

diameter reduction at the stenosis 12. Although QCA is more quantitative than visual inspection alone, it requires 45 

human input and time to identify the stenosis and to manually correct the vessel boundaries before calculating 46 

the stenosis percentage. This has led to QCA largely being used in the setting of clinical studies with limited 47 

impact on patient care. A fully automatic angiographic segmentation algorithm would speed up the process of 48 

determining stenosis severity, eliminate the need for subjective manual corrections, and potentially lead to 49 

broader utilization in clinical workflows. 50 

Fully-automated angiographic segmentation is particularly challenging due to the poor signal-to-noise 51 

ratio and overlapping structures such as the catheter and the patient's spine and rib cage 13. Several filter-based 52 

approaches13–22 and convolutional neural networks (CNNs) 23–28 have been developed for angiographic 53 

segmentation. While many of these approaches had success in isolating the coronary vessels, many are time-54 
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consuming and require manual correction, while others are limited in their ability to separate the vessels from 55 

other structures such as the catheter. 56 

To address these shortcomings, we have developed a new CNN for angiographic segmentation: 57 

AngioNet, which combines an Angiographic Processing Network (APN) with a semantic segmentation network. 58 

The APN was trained to address several of the challenges specific to angiographic segmentation, including low 59 

contrast images, presence of the catheter, and overlapping bony structures. AngioNet uses Deeplabv3+ as its 60 

backbone semantic segmentation network instead of U-Net or other simpler fully convolutional networks 61 

(FCNs), which are more commonly used for medical segmentation. The deeper architecture of Deeplabv3+ 62 

compared to the FCNs typically used for medical segmentation allows our network to learn more features and 63 

perform well in challenging cases. In this paper, we also explored the specific benefits of the APN – and the 64 

importance of using Deeplabv3+ as the backbone – by comparing segmentation accuracy in Deeplabv3+ and U-65 

Net, trained both with and without the APN. Lastly, we performed clinical validation of segmentation accuracy 66 

by comparing AngioNet-derived vessel diameter against QCA-derived diameter. 67 

RESULTS 68 

Patient Characteristics 69 
 70 
1. UM Dataset: This dataset was composed of de-identified angiograms acquired using a Siemens Artis Q 71 

Angiography system at the University of Michigan (UM) Hospital. The enrollment criterion for this dataset 72 

was patients referred for a diagnostic coronary angiography procedure done at the UM Hospital in 2017. 73 

Patients with pacemakers, implantable defibrillators, or prior cardiac surgery with coronary artery bypass 74 

grafts were excluded, as these prior procedures introduce artifacts and additional vascular conduits. 75 

Furthermore, patients with diffuse stenosis were excluded as this is less common in arteries suitable for 76 

revascularization and is a challenging case for segmentation. In our sample of 161 patients, 14 had severe 77 

stenosis (≤ 80% diameter reduction) and the remaining had mild to moderate stenosis. The dataset was 78 

composed of 280 images of the left coronary artery (LCA) and 182 images of the right coronary artery 79 

(RCA), which were equally split into 6 partitions to generate a 5-fold cross validation dataset and a test set.  80 
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2. MMM QCA Dataset: The Madras Medical Mission (MMM) QCA dataset contained independently 81 

generated three-vessel QCA reports of 89 patients, encompassing 223 vessels in both the LCA and RCA. 82 

All patients presented with mild to moderate stenosis. The data were acquired from the Indian 83 

Cardiovascular Core Laboratory (ICRF) at the MMM, which serves as a core laboratory with experience in 84 

clinical trials and other studies and has expertise in QCA. 85 

 86 

Learned Filters using the Angiographic Processing Network 87 
 88 
The main contribution of our work is the development of an Angiographic Processing Network (APN). The 89 

purpose of the APN is to learn the best possible preprocessing filter that will improve segmentation 90 

performance, incorporating the characteristics of boundary sharpening and contrast enhancing filters. The 91 

APN works in tandem with segmentation neural networks (backbone networks) to create a composite neural 92 

network such as AngioNet, a combination of the APN and Deeplabv3+. 93 

Figure 1 contains examples of the filters that the APN learned when it was trained with Deeplabv3+ 94 

or U-Net, respectively. The images represent the output of the APN, and thus the input to the backbone 95 

network. Although the APN was initialized with the combination of unsharp mask filters shown in Figure 96 

1, the network learns different filters that perform a combination of contrast-enhancement and boundary 97 

sharpening. The examples given are the results of training with different data partitions during k-fold cross-98 

validation. The large variations in the learned filters come from an inherent property of neural network 99 

training; since minimization of the neural network’s loss function is a non-convex optimization problem 44, 100 

there are many combinations of network weights which will lead to similar results. The effect of these 101 

varied learned filters on segmentation accuracy is described in the next section. 102 
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 103 

Figure 1 - Examples of learned filters when the APN is trained with Deeplabv3+ and U-Net. The APN was initialized 104 
with the combination of unsharp mask filters shown above, and learned new filters to aid segmentation. Each example 105 
image is the output of the APN after training with different data partitions. 106 

Comparison of AngioNet versus Current State-of-the-art Semantic Segmentation 107 
Neural Networks 108 
Segmentation accuracy was measured using the Dice score, given by 109 

𝐷𝑖𝑐𝑒 =
2 𝑌 ∩ 𝑌

|𝑌| + 𝑌
. (1) 110 

Here, 𝑌 is the label image and 𝑌 is the neural network prediction, each of which is a binary image 111 

where vessel pixels have a value of 1 and background pixels have a value of 0. | 𝑌 | denotes the number of 112 

vessel pixels (1s) in image 𝑌, and ∩ represents a pixel-wise logical AND operation. Alternatively, the Dice 113 

score can be defined in terms of the true positives (TP), false positives (FP) and false negatives (FN) of the 114 

neural network prediction with respect to the label image, and is then given by 115 

𝐷𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 . (2) 116 

We also report the Area under the Receiver-Operator Curve (AUC), which measures the ability of 117 

the network to separate classes, in this case, vessel and background pixels. An AUC of 0.5 indicates a model 118 

that is no better than random chance, whereas an AUC of 1 indicates a model that can perfectly discriminate 119 
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between classes. Finally, we also report the pixel accuracy of the binary segmentation, defined as 120 

𝑃𝑖𝑥𝑒𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. (3) 121 

1. UM Dataset:  The accuracy of AngioNet was validated using a 5-fold cross-validation study, in which 122 

the neural network was trained on 4 out of the 5 training data partitions at a time, with the fifth partition 123 

reserved for validation and hyperparameter optimization (hold-out set). This process was repeated five 124 

times, holding out a different partition each time. The accuracy of the resulting five trained networks was 125 

measured on the sixth partition, the test set, which was never used for training. The mean k-fold accuracy 126 

and the accuracy when trained on all five training data partitions are summarized in Table 1. The network 127 

performs well on both LCA and RCA input images (Figure 2) and does not segment the catheter or other 128 

imaging artifacts despite uneven brightness, overlapping structures, and varying contrast.  129 

Table 1: Accuracy of AngioNet using K-Fold Cross Validation 130 

 Dice Score Sensitivity Specificity AUC Pixel 
Accuracy 

k-Fold Test 
k-Fold Holdout 

0.856±0.004 
0.857±0.012 

0.913±0.013 
0.909±0.012 

0.987±0.001 
0.987±0.001 

0.991±0.002 
0.990±0.002 

0.982±0.004 
0.980±0.003 

All Data 0.864 0.918 0.987 0.991 0.983 
 131 
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 132 

Figure 2 - Examples of AngioNet segmentation on left coronary tree, taken at two different angles (1,2), and right 133 
coronary tree (3). AngioNet does not segment the catheter (red arrows), despite its similar diameter and pixel intensity 134 
as the vessels (2,3). It also ignores bony structures such as the spine in (3) and ribs in (1). 135 

The Dice score distribution on the test set for AngioNet, Deeplabv3+, U-Net with the APN 136 

(APN+U-Net), and U-Net is shown in Figure 3A. All networks were trained using the UM Dataset. 137 

AngioNet has the highest mean Dice score on the test set (0.864) when trained on all five partitions of the 138 

training data, compared to 0.815 for Deeplabv3+ alone, 0.811 for APN+U-Net, and 0.717 for U-Net alone. 139 

On average, AngioNet has a 10% higher Dice score per image than Deeplabv3+ alone. APN+U-Net has a 140 

14% higher Dice score than U-Net alone. A paired Student’s t-test was performed to determine if the 141 

addition of the APN significantly improved the Dice score for both network backbones. The p-value 142 

between AngioNet and Deeplabv3+ was 5.76e-10, while the p-value between APN+U-Net and U-Net was 143 

2.63e-16. Both p-values were much less than the statistical significance threshold of 0.05, therefore we can 144 

conclude that there are statistically significant differences between the Dice score distributions with and 145 

without the APN. Furthermore, both Deeplabv3+ and U-Net exhibit outliers with Dice score lower than 146 

0.4, but adding the APN eliminates these outliers in both networks.  147 

Compared to the other three networks, AngioNet performs the best on the challenging cases shown 148 

in Figure 3B. The first column of Figure 3B shows segmentation performance on a low contrast 149 
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angiography image. AngioNet can segment the major coronary vessels in this image, whereas Deeplabv3+ 150 

only segments one vessel and U-Net is unable to identify any vessels at all. APN+U-Net can segment more 151 

vessels than U-Net alone, indicating once again that the addition of the APN improves segmentation 152 

performance on these low contrast images. In the second column, both AngioNet and APN+U-Net can 153 

segment fainter and smaller diameter vessels than the other two networks. Finally, we observe that 154 

AngioNet and Deeplabv3+ did not segment the catheter in the third column, although it is of similar 155 

diameter and curvature as the coronary vessels. Conversely, both APN+U-Net and U-Net included the 156 

catheter in their segmentations. Overall, AngioNet segmented the catheter in 2.6% of the images, where the 157 

catheter curved across the image and overlapped with the vessel. In contrast, Deeplabv3+ segmented the 158 

catheter in 6.4% of images. Both networks performed better than U-Net and APN+U-Net, which segmented 159 

the catheter in 19.5% and 9.1% of images respectively.   160 

 161 

Figure 3 - Summary of AngioNet (APN + Deeplabv3+) performance. All results are derived from the networks trained 162 
on all five partitions of the UM training set, unless otherwise noted as a k-fold result. a) Comparison of Dice score 163 
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distribution on test set. AngioNet has the highest average Dice score, with scores ranging from 0.737 to 0.946. Adding 164 
the APN improves the lowest Dice scores of both Deeplabv3+ and U-Net. Dashed lines correspond to the Test Dice 165 
in the table below. b) Segmentation comparison on challenging images with low contrast, faint vessels, and a curved 166 
catheter. AngioNet can segment more vessels in these images without segmenting the catheter (red arrows).  167 

Evaluation of Vessel Diameter Accuracy versus QCA 168 
Evaluation of vessel diameter accuracy was done using the MMM QCA dataset. Maximum and minimum 169 

vessel diameter were compared in 255 vessels including both the RCA and LCA. On average, the absolute 170 

error in vessel diameter between the AngioNet segmentation and QCA report was 0.272mm or 1.15 pixels.  171 

 172 

Figure 4 - a) Correlation plot of QCA and AngioNet derived vessel diameters. b) The Bland-Altman plot demonstrates 173 
that AngioNet’s segmentation and QCA are interchangeable methods to determine vessel diameter since more than 174 
95% of points lie within the limits of agreement. The red error bars represent the 95% confidence interval containing 175 
the limits of agreement. The mean difference in diameter between methods is 0.24mm or 1.1 pixels 176 

The linear regression plot in Figure 4A shows that vessel diameter estimates of both methods are 177 

linearly proportional and tightly clustered around the line of best fit, 𝑦 = 0.957𝑥 − 0.106, Pearson's 178 

correlation coefficient, 𝑟 = 0.9866. The standardized difference 45, also known as Cohen's effect size 46, 179 

was used to determine the difference in means between the diameter distributions of AngioNet and QCA. 180 

The standardized difference can determine significant differences between two groups in clinical studies45. 181 

The standardized difference between the AngioNet and QCA diameter distributions is 0.215, suggesting 182 

small differences between the two method. 183 

Figure 4B is a Bland-Altman plot demonstrating the interchangeability of the QCA and AngioNet-184 

derived diameters. The mean difference between both measures, �̅�, is 0.2414. The magnitude of the 185 

diameter difference remains relatively constant for all mean diameter values, indicating that there is a 186 
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systematic error and not a proportional error between the two measurements. The limits of agreement are 187 

defined as �̅� ± 1.96 SD, where SD is the standard deviation of the diameter differences. For both 188 

measurements to be considered interchangeable, 95% of data points must lie between these limits of 189 

agreement. In this plot, 96% of data points are within �̅� ± 1.96 SD. When including the 95% confidence 190 

interval of the limits of agreement as recommended by Bland and Altman 47, 97% of data points are within 191 

the range. 192 

DISCUSSION 193 

To put our work in context, the most common approaches to angiographic segmentation involve image 194 

processing techniques such as edge detection algorithms, matrix decomposition, wavelet-based methods, active 195 

contours, or the Frangi vesselness filter 13–18. Although these techniques can produce successful segmentations, 196 

they perform poorly on low-contrast or noisy images and cannot separate overlapping catheters and bony 197 

structures from the vessels. Several other approaches to angiographic segmentation such as Hessian-based 198 

random walk, region-growing, parametric density estimation, and deformation models have been explored 19–22; 199 

these semi-automatic methods still require manual correction or user input, ultimately hampering their 200 

applicability within the clinical workflow. To address these limitations, some have turned to convolutional neural 201 

networks (CNNs) for angiographic segmentation instead. 202 

CNNs have been used for segmentation in numerous applications  29–34. Although originally designed 203 

for biomedical image segmentation, U-Net and its variations have been widely adopted in other fields due to 204 

their relatively simple architecture and high accuracy on binary segmentation problems 36–38. Despite its success, 205 

the network is not as deep as other state-of-the-art CNNs and thus lacks the expressive power to perform complex 206 

tasks such as angiographic segmentation 39–41. A more complex CNN for semantic segmentation is Deeplabv3+ 207 

42,43. Although Deeplabv3+ performs well on multi-class segmentation tasks, it was not designed with the 208 

specific challenges of angiographic imaging in mind. 209 

Several CNNs have been designed specifically for angiographic segmentation 23–28. Yang et al. 23 210 

developed a CNN to segment the major branches of the coronary arteries. Despite its high segmentation 211 
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accuracy, this network was only developed for single vessel segmentation. Multichannel Segmentation Network 212 

with Aligned input (MSN-A) 24, is a CNN based on U-Net designed to segment the entire coronary tree. The 213 

inputs to MSN-A are the angiographic image and a co-registered “mask” image taken before the dye was injected 214 

into the vessel. The main drawback of this network is that the multi-input strategy requires the entire 215 

angiographic sequence to be acquired with minimal table motion, whereas standard clinical practice involves 216 

moving the patient table to follow the flow of dye within the vessels. Nasr-Esfahani et al.  25 developed their own 217 

CNN architecture for angiographic segmentation, combining contrast enhancement, edge detection, and feature 218 

extraction. Shin et al. 26 combined a feature-extraction convolutional network with a graph convolutional 219 

network and inference CNN to create Vessel Graph Network (VGN) and improve segmentation performance 220 

by learning the tree structure of the vessels. Despite successfully segmenting most of the branches of the coronary 221 

tree, both of these methods had lower accuracy than MSN-A.  222 

In the following sections, we will demonstrate that AngioNet is comparable to these state-of-the-223 

art methods for angiographic segmentation. The key findings and clinical implications of our study are also 224 

described below.  225 

Learned Filters using the Angiographic Processing Network 226 
As seen in Figure 1, the APN learns many different preprocessing filters that improve segmentation 227 

performance based on the data partition used for training. All learned filters exhibit both boundary 228 

sharpening and local contrast enhancement, likely due to the network’s initialization as a combination of 229 

unsharp mask filters. Despite the variation in the learned filters, the overall segmentation accuracy remains 230 

relatively constant as indicated by the small standard deviation from k-fold cross validation (0.004 for 231 

AngioNet, and 0.006 for APN+U-Net). This demonstrates that despite the large variation to the human eye, 232 

the different combinations of learned weights all achieved similar local minima of the loss function, leading 233 

to similar Dice scores. When compared to Deeplabv3+’s predictions on images preprocessed using unsharp 234 

masking filters, AngioNet’s segmentation accuracy is superior (0.864 for AngioNet, compared to 0.833 for 235 

Deeplabv3+). This suggests that the learned preprocessing filter implemented in this work is superior to 236 

manually selecting a particular contrast enhancement or boundary sharpening filter for preprocessing.  237 
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Comparison of AngioNet to Current State-of-the-Art Semantic Segmentation Neural 238 
Networks 239 
Several aspects of AngioNet's design contribute to its enhanced segmentation performance compared to 240 

existing state of the art networks. The APN successfully improves segmentation performance on low 241 

contrast images compared to previous state-of-the-art semantic segmentation networks (Figure 3A). The 242 

APN also enhances performance on smaller vessels, which have lower contrast than larger vessels because 243 

they contain less radio-opaque dye. Without the APN, Deeplabv3+ and U-Net are not equipped to identify 244 

these faint vessels and underpredict the presence of small coronary branches. As seen in Figure 3A and 245 

Figure 3B, both Deeplabv3+ and AngioNet perform better than U-Net on angiographic segmentation. The 246 

addition of the APN to U-Net significantly increases the mean Dice score, facilitates segmentation of more 247 

vessels compared to U-Net alone, and greatly reduces the proportion of segmentation that include the 248 

catheter; yet APN+U-Net has some of the same drawbacks of U-Net such as disconnected vessels and more 249 

instances of the catheter being segmented compared to Deeplabv3+ and AngioNet. Although U-Net has 250 

demonstrated great success in other binary segmentation applications 35,37, the presence of catheters and 251 

bony structures with similar dimensions and pixel intensity as the vessels of interest make this a particularly 252 

challenging segmentation task. Deeplabv3+ and AngioNet have a deeper, more complex architecture, 253 

which allows these networks to learn more features with which to identify the vessels in each image 39–41. 254 

The effective receptive field size U-Net is 64x64 pixels whereas that of Deeplabv3+ is 128x128 255 

pixels 48. A larger receptive field is associated with better pixel localization and segmentation accuracy, as 256 

well as classification of larger scale objects in an image 49,50. Deeplabv3+’s larger receptive field may 257 

explain why Deeplabv3+ and AngioNet are more successful in avoiding segmentation of the catheter, an 258 

object typically larger than U-Net’s 64x64 pixel receptive field. The larger receptive field may also explain 259 

why Deeplabv3+ and AngioNet are better able to preserve the continuity of the coronary vessel tree and 260 

produce fewer broken or disconnected vessels than U-Net and APN+U-Net. Thus, Deeplabv3+ was an 261 

appropriate choice of network backbone for AngioNet. 262 

AngioNet also demonstrates advantages compared to networks trained specifically for 263 
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angiographic segmentation. Shin et al. reported a maximum Dice score of 0.82 and 0.837 on two datasets 264 

of retinal angiograms using VGN, whereas AngioNet’s maximum Dice score is 0.946 26. Fan et al. reported 265 

Dice scores of 0.872 on a test set of 18 angiograms using MSN-A 24. AngioNet's mean Dice score of 0.864 266 

is very close to MSN-A's 0.872. Although our mean Dice score is slightly lower than that of MSN-A, the 267 

major advantage of our network is that its input angiograms are not limited to those acquired with minimal 268 

movement of the patient table. AngioNet’s additional strengths compared to previous networks include 269 

ignoring overlapping structures when segmenting the coronary vessels, smaller sensitivity to noise, and the 270 

ability to segment low contrast images. The ability to avoid overlapping bony structures or the catheter is 271 

especially important as this eliminates the need for manual correction of the vessel boundary, which is a 272 

major advantage over mechanistic segmentation approaches.  273 

AngioNet’s greatest limitation is that it overpredicts the vessel boundary in cases of severe (>85%) 274 

stenosis. The network performs well on mild and moderate stenoses, but it has learned to smooth the vessel 275 

boundary when the diameter sharply decreases to a single pixel. This is likely due to the low number of 276 

training examples containing severe stenosis: only 14 out of the 462 images in the entire UM Dataset 277 

contained severe stenosis, and two of these were in the test set. This drawback can be addressed by 278 

increasing the training data to encompass more examples of severe stenosis. 279 

Evaluation of Vessel Diameter Accuracy 280 
A significant clinical implication of our findings was the comparison between AngioNet and QCA. In 281 

Figure 4A, we observe that QCA and AngioNet results are clustered around the line of best fit, 𝑦 =282 

0.957𝑥 − 0.106. Given that the slope of the line of best fit is nearly 1, the intercept is close to 0, and the 283 

Pearson's coefficient 𝑟 is 0.9866, the line of best fit indicates strong agreement between these two methods 284 

of determining vessel diameter.  The 𝑅  coefficient for the linear regression model implies that 97.34% of 285 

the variance in the data can be explained by the line of best fit. 286 

The standardized difference, or effect size, is a measure of how many pooled standard deviations 287 

separate the means of two distributions 45. According to Cohen, an effect size of 0.2 is considered a small 288 

difference between both groups, 0.5 is a medium difference, and 0.8 is a large difference 46. Given that the 289 
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effect size between the QCA and AngioNet diameter distributions was 0.215 (91.5% overlap between the 290 

two distributions), we can conclude that the difference between QCA and AngioNet diameters are small. 291 

Furthermore, since the standardized difference indicated no large difference between QCA and AngioNet 292 

diameter estimations, these results suggest that both methods can be used interchangeably from a clinical 293 

perspective for the dataset examined. 294 

The Bland-Altman plot in Figure 4B shows that the mean difference between QCA and AngioNet 295 

diameters is approximately 1.1 pixels. AngioNet under-predicts the vessel boundary by no more than 1 296 

pixel and over-predicts by no more than 2.5 pixels. To put these values in context, the inter-operator 297 

variability for annotating the vessel boundary is 0.18±0.24mm or slightly above 1 pixel according to a 298 

study by Hernandez-Vela et al 51. The 95% confidence intervals of the limits of agreement were taken into 299 

consideration when determining how many data points lie between the limits of agreement as recommended 300 

by Bland and Altman 47. 97% of the data points lie within the range, which is greater than the 95% threshold. 301 

Given these results, and that the standardized difference test which produced no significant difference 302 

between the methods, one can conclude that QCA and AngioNet are interchangeable methods to determine 303 

vessel diameter. Given AngioNet’s fully automated nature, the workload required for generating QCA due 304 

to human input could be substantially reduced. Although our direct comparison of AngioNet-derived 305 

diameters with QCA-derived diameters required user interaction, future work will focus on developing an 306 

automated algorithm for stenosis detection and measurement based on the outputs of AngioNet’s 307 

segmentation. 308 

In conclusion, AngioNet was designed to address the shortcomings of current state-of-the-art neural 309 

networks for X-ray angiographic segmentation. The APN was found to be a critical component to improve 310 

detection and segmentation of the coronary vessels, leading to 14% and 10% improved Dice score 311 

compared to U-Net or Deeplabv3+ alone. AngioNet demonstrated better segmentation accuracy than U-312 

Net and Deeplabv3+, particularly on images with poor contrast or many small vessels. It also demonstrated 313 

increased robustness to ignoring the catheter and other imaging artifacts compared to other networks. 314 

Furthermore, our statistical analysis of the vessel diameters determined by AngioNet and traditional QCA 315 
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demonstrated that the two methods may be interchangeable which could have large implications for clinical 316 

workflows. Future work to improve performance will focus on increasing accuracy on severe stenosis cases 317 

and automating stenosis measurement. 318 

METHODS 319 

Datasets 320 
Figure 5 summarizes the two patient datasets used in this work for neural network training and evaluation 321 

of performance against clinically relevant metrics and other state-of-the art networks. All data were 322 

collected in compliance with ethical guidelines. 323 

 324 

Figure 5 - Diagram of datasets for CNN training and evaluation. AngioNet’s performance was compared against 325 
state-of-the-art neural networks, all trained on the UM Dataset. The MMM QCA dataset was used to quantify 326 
segmentation diameter accuracy by comparing AngioNet’s results against the diameters reported in QCA. Acronyms: 327 
left coronary artery (LCA); right coronary artery (RCA); Madras Medical Mission (MMM). 328 

 329 
1. UM Dataset: The UM Dataset was composed of 462 de-identified coronary angiograms acquired at the 330 

UM Hospital. The study protocol to access this data (HUM00084689) was reviewed by the Institutional 331 

Review Boards of the University of Michigan Medical School (IRBMED). Since the data was collected 332 

retrospectively, IRBMED approved use without requiring informed consent.   333 
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The data were equally split by patient into a 5-fold cross-validation set and test set to avoid having images 334 

from the same patient in both the training and test sets. Labels for all images were manually generated using 335 

Adobe Photoshop to include vessels with a diameter greater than 1mm at their origin. The 5-fold cross-336 

validation portion of the dataset was used for neural network training and hyperparameter optimization, 337 

whereas the test set was used to evaluate segmentation accuracy. 338 

There is a great number of artifacts in X-ray angiography images, including borders from X-ray 339 

filters, rotation of the image frame, varying levels of contrast, and magnification during image acquisition. 340 

Data augmentation of the UM dataset was employed to account for this variability. Horizontal and vertical 341 

flips of the images were included to make the network segmentation invariant to image orientation. Random 342 

zoom up to 20%, rotation up to 10%, and shear up to 5% were used to account for variation in magnification 343 

and imaging angles. When zooming out, shearing, or rotating the image, a constant black fill was used to 344 

mimic images acquired using physical X-ray filters. The combination of the above data augmentations 345 

created a training dataset of over half a million images to improve network generalizability. Data 346 

augmentation was not applied to the test set. The augmented UM dataset was used for neural network 347 

training, and the test set was used to compare segmentation accuracy. 348 

2. MMM Dataset: The percent change in vessel diameter at the region of stenosis is a key determinant of 349 

whether a patient requires an intervention or not; therefore, the accuracy of AngioNet’s segmented vessel 350 

diameters was assessed in addition to its overall segmentation accuracy. Although the main result of a QCA 351 

report is the overall percent change in vessel diameter, these reports also contain measurements of 352 

maximum, minimum, and mean diameter in 10 equal segments of the vessel of interest. These diameter 353 

measurements in the MMM QCA Dataset were used to evaluate the discrepancies between QCA and 354 

AngioNet. 355 

The data provided by the MMM ICRF Cardiovascular Core Laboratory includes independent and 356 

detailed analysis of quantitative angiographic parameters (minimum lesion diameter, percent diameter 357 

stenosis, reference vessel diameters, lesion length, maximum percent diameter stenosis, etc.) as per 358 

American College of Cardiology/American Heart Association standards, through established QCA 359 
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software (CAAS-5.10.2, Pie Medical Corp). The study protocol for this data (Computer-Assisted Diagnosis 360 

of Coronary Angiography) was approved by the Institutional Ethics Committee of the Madras Medical 361 

Mission. This data was obtained using an unfunded Materials Transfer Agreement between UM and MMM. 362 

Since the data is completely anonymized and cannot be re-identified, it does not qualify as human subjects 363 

research according to OHRP guidelines. 364 

To validate the accuracy of AngioNet’s segmented vessel diameters, a MATLAB script was 365 

employed for user specification of the same vessel regions as those in the QCA report. Two regions from 366 

the QCA report were sampled in each angiogram. The first was the most proximal region, containing the 367 

maximum vessel diameter, and the second was the region of stenosis (given in the QCA report), if present. 368 

If no stenosis was reported, the region containing minimum diameter was selected. A skeletonization 369 

algorithm 52 was used to identify the centerline and radius map of the selected vessel region. Using the 370 

output of the skeletonization algorithm, the script reported the maximum and minimum diameters at the 371 

selected regions and compared them against the diameters in the QCA report. Maximum and minimum 372 

vessel diameter were chosen rather than the diameters on either side of stenosis since the purpose of using 373 

the QCA reports was to systematically assess overall vessel diameter accuracy, not the percent diameter 374 

reduction. A diagram of the comparison between QCA and AngioNet diameters is shown in Figure 6. 375 
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 376 

Figure 6 - a) Annotated QCA report, along with the corresponding diameters in the report table. Highlighted values 377 
correspond to maximum (proximal) and minimum (distal) diameters (segments 1 and 9, respectively). b) Schematic 378 
of how a MATLAB script was used to delineate regions in the neural network segmentation corresponding to the 379 
regions measured in the QCA report, along with the computed proximal and distal diameters. 380 

 381 

CNN Design and Training 382 
1. Design: AngioNet was created by combining Deeplab v3+ and an Angiographic Processing 383 

convolutional neural network (APN). A diagram of the network architecture is given in Fig. 3. Each 384 

component of AngioNet, the APN and Deeplabv3+, was trained separately before fine-tuning the entire 385 

network.  386 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.25.21250488doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.25.21250488
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

 387 

Figure 7 - AngioNet Architecture Diagram. AngioNet is composed of an Angiographic Processing Network (APN) in 388 
tandem with Deeplabv3+. The APN is designed to improve local contrast and vessel boundary sharpness. 389 

The purpose of the APN was to address some of the challenges specific to angiographic 390 

segmentation, namely poor contrast and the lack of clear vessel boundaries. The APN was initially trained 391 

to mimic a combination of standard image processing filters instead of initializing with random weights, 392 

since it would later be fine-tuned with a pre-trained backbone network. A combination of unsharp mask 393 

filters was chosen as these can improve boundary sharpness and local contrast at the edges of the coronary 394 

vessels, making the segmentation task easier. Other forms of preprocessing were also considered, including 395 

Contrast Limited Adaptive Histogram Equalization (CLAHE) and singular value decomposition (SVD) 396 

denoising. CLAHE has previously been used as an image preprocessing step for angiographic segmentation 397 

25, but this method only improves contrast without improving boundary sharpness. SVD denoising was 398 

explored as this method could be used to remove imaging artifacts such as filters, patient ribs, or the 399 

catheter. While successful in removing these artifacts, SVD denoising also reduced the image sharpness 400 

and removed portions of the vascular tree in some images. Therefore, AngioNet’s APN was designed with 401 

unsharp mask filters in mind due to their clear advantages in image preprocessing. Using unsharp masking 402 

as an initialization, the training process was used to learn a new filter that was best suited for angiographic 403 
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segmentation.  404 

2) Training The Deeplabv3+ CNN architecture was cloned from the official Tensorflow Deeplab GitHub 405 

repository, maintained by Liang-Chieh Chen and co-authors 42. The network was initialized with pre-trained 406 

weights from the same repository, as recommended by the authors for training on a new dataset. The input 407 

to this network were raw angiographic images, and the output was a binary segmentation. Training was 408 

conducted using four NVIDIA Tesla K80 GPUs on the American Heart Association Precision Medicine 409 

Platform (https://precision.heart.org/), hosted by Amazon Web Services. Hyperparameters such as batch 410 

size, learning rate, learning rate optimizer, and regularization were tuned. We observed that training with 411 

larger batch size led to better generalization to new data. A batch size of 16 was used as this was the largest 412 

batch size we could fit into memory using four GPUs. The Adam optimizer was chosen to adaptively adjust 413 

the learning rate, and L2 regularization was used to reduce the chance of over-fitting. The vessel pixels 414 

account for 15-19% of the total pixels in any given angiography image. Due to this class imbalance, it was 415 

important to encourage classification of vessel pixels over background using weighted cross-entropy loss53. 416 

The APN was initially trained to mimic the output of several unsharp mask filters applied in series 417 

(parameters: radius = 60, amount = 0.2 and radius = 2, amount = 1). This ensured the APN architecture was 418 

complex enough to learn the equivalent of multiple filters with sizes up to 121x121 using only 3x3 and 5x5 419 

convolutions. The number of 3x3 versus 5x5 convolutions as well as the network width and depth were 420 

adjusted until the APN could reproduce the results of the serial unsharp mask filters. Additionally, the 421 

combination of standard filters was hypothesized to be a good initialization before training the network to 422 

learn the best possible preprocessing filter. The inputs to the APN were the normalized images from the 423 

augmented UM Dataset, whereas the output was a filtered version of the image. The ground truth images 424 

were generated by applying several unsharp mask filters with various parameters to each normalized 425 

clinical image. The APN was composed of several 3x3 and 5x5 convolutional layers (Figure 7) and was 426 

trained to mimic the unsharp mask filters by minimizing the Mean Squared Error (MSE) loss between the 427 

prediction and ground truth images. The APN design and training were carried out using TensorFlow 2.0, 428 

integrated with Keras 54,55. 429 
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Once the APN and Deeplabv3+ networks were individually trained, the two CNNs were combined 430 

to form AngioNet using the Keras functional Model API 56 (Figure 7). The resulting network was trained 431 

with a low learning rate to fine-tune the combined model. Since neither the APN nor Deeplabv3+ were 432 

frozen during fine-tuning, both were able to adjust their weights to better complement each other: the APN 433 

learned a better filter than its unsharp mask initialization, and Deeplabv3+ learned the weights that could 434 

most accurately segment the vessel from the output of the APN. Batch size, regularization, learning rate, 435 

and learning rate optimizer parameters were once again tuned. The same process of pre-training, combining 436 

models, and fine-tuning was carried out with the APN and U-Net to determine how much the backbone 437 

network contributes to segmentation performance. U-Net was not initialized with pre-trained weights as 438 

our dataset was adequately large to train this network from random initialization. 439 

During all phases of training, batch normalization layers were frozen at their pre-trained values as 440 

we did not have a large enough dataset to retrain these layers.  Furthermore, all hyperparameter optimization 441 

was performed on the 5-fold cross validation holdout set and accuracy was measured on the test set. 442 

DATA AND CODE AVAILABILITY 443 

Since the datasets used in this work contain patient data, these cannot be made generally available to the 444 

public due to privacy concerns. The code for the AngioNet architecture and examples of synthetic 445 

angiograms are available at https://github.com/kritiyer/AngioNet. This code is licensed under a Polyform 446 

Noncommercial license. 447 
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