
REM: An Integrative Rule Extraction Methodology
for Explainable Data Analysis in Healthcare
Zohreh Shams1, Botty Dimanov1, Sumaiyah Kola1, Nikola Simidjievski1, Helena Andres
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ABSTRACT

Deep learning models are receiving increasing attention in clinical decision-making, however the lack of explainability impedes
their deployment in day-to-day clinical practice. We propose REM, an explainable methodology for extracting rules from deep
neural networks and combining them with rules from non-deep learning models. This allows integrating machine learning
and reasoning for investigating basic and applied biological research questions. We evaluate the utility of REM in two case
studies for the predictive tasks of classifying histological and immunohistochemical breast cancer subtypes from genotype and
phenotype data. We demonstrate that REM efficiently extracts accurate, comprehensible rulesets from deep neural networks
that can be readily integrated with rulesets obtained from tree-based approaches. REM provides explanation facilities for
predictions and enables the clinicians to validate and calibrate the extracted rulesets with their domain knowledge. With these
functionalities, REM caters for a novel and direct human-in-the-loop approach in clinical decision-making.

1 Introduction
Diagnosis, prognosis and treatment planning in healthcare are nowadays informed by a variety of data types ranging from
imaging to genomics biomarkers and electronic health records. Machine learning (ML)1, and in particular deep neural networks
(DNNs) are capable of handling such high volume of heterogeneous data. However, while accurate, the opacity of many ML
models (e.g., DNNs) poses a great challenge for their deployment in safety critical domains, such as oncology.

Dealing with ML opacity issues has given rise to the emerging fields of interpretable and explainable ML, which have been
the subject of much debate1 in the community in recent years2. Interpretable ML focuses on the model itself and “how” well
its underlying processes for making a prediction can be understood. Explainable ML, on the other hand, solely focuses on
understanding “why” an ML model makes a prediction. Explanation is readily available in interpretable models (e.g., decision
trees, rulesets). For non-interpretable models (e.g., DNN, SVM), the explanation is often provided by post-hoc means3–6, most
common of which is feature importance7, where for each prediction the importance of individual features is approximated8–10.
Recent work11–13, however, has shown that feature importance methods are fragile and susceptible to adversarial attacks. In
addition, recent user studies have shown that feature importance does not necessarily increase human understanding of the
model and its predictions14, 15, making it a unideal candidate for clinical domains.

To address this problem we use a combination of ML and machine reasoning (MR). This combination enables explainable
data analysis in a way that facilitates the involvement of human experts in the analysis and the clinical decision-making based
on this analysis. In particular, we propose an integrative Rule Extraction Methodology (REM) (Figure 1), that via its main
component (REM-D), approximates a DNN with an interpretable ruleset model and uses that ruleset to explain the predictions
of DNN. For approximation, REM-D decomposes a DNN into adjacent layers from which rules are extracted and merged to
map input to output. Compared to the methods that extract rules from the network predictions directly without considering the
inner working of the network, decompositional approaches benefit from the noise removal property of neural networks and the
hierarchical representations of data learnt by the network through the composition of nonlinear transformations from one layer
to the next16–18.

The main motivation behind approximating DNNs with ruleset models, as opposed to other interpretable models, is in easy

1List of abbreviations and essential definitions can be found in the supplementary materials.
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integration of such rulesets with other data and knowledge driven rules to allow multi-modality reasoning, a common practice
in oncology. As an instantiation of combination with other data-driven rules, the REM-T component of REM extracts rulesets
from tree-based approaches (e.g., decision trees, random forests) that can be combined with rulesets coming from the REM-D
component, all of which can similarly be combined with rulesets from knowledge such as medical guidelines.

The final ruleset, as an end product, can easily be deployed in clinical decision support systems to enable clinicians to
analyse the data and make predictions, and get explanations for the predictions. It also caters for verifiability and simulatability.
With the former, clinicians can inspect the final ruleset model and its predictions to verify biological relevance in conjunction
with bioinformatics tools. The latter reveals the impact that an input perturbation may have on the model’s prediction, thus
allowing clinicians to adjust the model and its predictions based on their expertise.

Via two case studies that investigate a basic and an applied biological question using METABRIC dataset19, a cohort of
1980 breast cancer patients, we demonstrate the utility of REM in assisting bench-to-bedside oncology research, a process via
which the results of basic biological research on data collected during trials is used to reinvent treatment pathway for patients.
On the benchside, enabled by machine learning, the data and knowledge is integrated (Figure 1, a-f), and on the bedside,
enabled by machine reasoning, the result of integration is made available to clinicians who can use it for population wide or
single patient care (Figure 1, g-j).

The overall REM pipeline makes the following contributions to bench-to-bedside research: (i) it provides a flexible way to
combine deep learning with non-deep learning models; (ii) it highlights the similarities and differences between the rules of
decision-making by a machine and human experts; (iii) it caters for a novel and direct human-in-the-loop approach in clinical
decision-making.

2 Results
We employ REM in two real world case studies on breast cancer for predicting imaging histological subtypes based on mRNA
expression data and predicting immunohistochemical (IHC) subtypes based on a combination of clinical and mRNA expression
data. The former task is focused on investigating a basic research question about the connection between genomics and imaging
data, while the latter is focused on the applied question of IHC subtypes which is crucial in patient care pathway (e.g., whether
they can benefit from hormone therapy as a part of their treatment pathway).

The results of rule extraction using the REM-D component are evaluated from three quantitative perspectives: (i) predictive
performance (i.e., accuracy and fidelity of the ruleset), (ii) comprehensibility (i.e., size of ruleset and rules average length), and
(iii) efficiency of rule extraction (i.e., time and memory usage). We demonstrate that in a time and memory efficient manner
REM-D extracts ruleset models that are accurate and comprehensible. In addition to these quantitative measures, we show
how the rulesets extracted by REM-D can be (i) inspected using bioinformatics tools, (ii) adjusted based on experts’ domain
knowledge, and (iii) integrated with rules coming from other modalities and models.

2.1 Case studies
Case study I: Predicting histological subtypes of breast cancer from mRNA expressions Histological subtypes of
breast cancer aim to capture the heterogeneity of breast cancer based on the morphology evident in the pathology images of
tumours. Invasive Ductal Carcinoma (IDC) and Invasive Lobular Carcinoma (ILC) are the two most common histological
subtypes of breast cancer identified from pathology images, respectively. There is little known about the connection between
genomics factors and these histological subtypes20, 21. To reveal the connection between the two, we use what we refer to as
cross-modality reasoning: reasoning involved in predicting a target that is based on different data modalities rather than those
inputted to the model. To this end, we predict the histological subtypes of IDC and ILC from mRNA expression profiles of
patients in the METABRIC dataset19, using DNNs (Figure 2a). 1694 patients out of the total 1980 in METABRIC belong to
one of these two subtypes. Using 80% of these 1694 records for training (1355 patients) and 20% (339 patients) for testing, the
predictive performance of a neural network is measured across five folds, when identifying IDC vs ILC subtypes from 1004
mRNA expressions.

Case study II: Predicting IHC subtypes of breast cancer from mRNA expressions Apart from histological subtypes,
patients in the METABRIC dataset are assigned to various other groups, one of which is the two IHC subtypes (ER+ and ER-)
that are very important in deciding treatment options. Similar to previous scenario, using 80% of the METABRIC dataset for
training (1584 patients) and 20% (396 patients) for testing, the predictive performance of a neural network is measured across
five folds, when identifying patients IHC subtypes from 1000 mRNA expressions (Figure 3a).

2.2 REM-D efficiently extracts accurate and comprehensible rulesets
Using REM-D, we extract rules from neural networks for both case studies above (Figure 2b and Figure 3c). The results in
terms of predictive performance, efficiency and comprehensibility are reported in Table 1.
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b. Ruleset for
Cross-Modality Reasoning 

a. Neural Network for Predicting 
Histological Subtypes

R1: If (CDH1 > 0.4 AND OTUD6B > 0.35) Then
IDC

R2: If (ABAT <= 0.24  AND RECQL4 <= 0.13 AND
MTUS1 > 0.5 AND CDH1 <= 0.33 AND AURKA <= 
0.12) Then ILC
….

mRNA 1

IDC

ILC
mRNA 
1004

mRNA 2
• If (CDH1 > 0.32 AND IMPAD1 > 0.48 AND

PSMD7 > 0.58) Then IDC

• If (CDH1 > 0.25 AND TBPL1 > 0.4 AND 
IMPAD1 > 0.45) Then IDC

• If (CDH1 > 0.32 AND PSMD7 > 0.66) 
Then IDC

• If (GE_XPR1 > 0.56 AND CDH1 > 0.4 AND 
ARF1 > 0.2) Then IDC

c. Single Patient Care:  
Predict and Explain

d. Inspection 

d.1 Identification of Important Genes

d.2 Determination of 
Statistically Enriched Pathways 

d.3 Visualisation of Enrichment Map

Top features 
overall

Top features 
for class IDC

Top features 
for class ILC

CDH1
AURKA
FOXM1
PSMD7
HYOU1

…

CDH1
AURKA
FOXM1

NIP7
HYOU1

…

CDH1
FOXM1
PSMD7
AURKA
GRB7

…

Figure 2. Case study I - an instantiation of REM pipeline (Figure 1) with a single data modality on the benchside, and
"Inspection" functionality and "Single Patient Care" on the bedside. a. A neural network trained to predict histological
subtypes of breast cancer based on 1004 mRNA expressions. b. Ruleset extracted from the trained network using REM-D to be
used for single patient and cohort-wide analysis. c. The explanation for predicting the histological type of a hypothetical
patient (generated by randomly sampling numbers between 0 and 1 to represent the input features) in the form of specific rules
used for this prediction. d. Inspection of biological relevance of top recurring genes in the rulesets by ontology enrichment
analysis. The details of pathways enriched (orange and blue circles) can be found in Supplementary Table 8.

For the first case study, from predictive performance perspective, the extracted rules closely mimic the decision of the
neural networks (average fidelity of 88.4%). The average accuracy of the rules when used for prediction is 88.6%, which is
almost identical to the original neural network. Comprehensibility remains high too, making the ruleset easy to audit and
comprehensible for clinicians: the median of the size of the ruleset is 137, while the median of the average length of rules is
4.3 (i.e., rules have between 4 to 5 conditions). With respect to efficiency, rules are extracted efficiently in below 3 minutes
(median) with memory consumption of 573.231 megabytes (median), using the hardware stated in Section 4.2. Note that the
standard deviation across folds for comprehensibility and efficiency metrics can be high. Therefore, for these metrics we report
the median instead of average, which gives a clearer overview of the REM-D behaviour. We outline our hypothesis about this
observation in the Discussion section.

Regarding the second case study, the average accuracy and fidelity of the rules when used for prediction are 92.1% and
92.6%, respectively. This means that replacing the neural network with the ruleset compromises just over 3% of the accuracy.
The median of the size of the ruleset is 103, while the median length of rules is 5.1, ensuring a high degree of comprehensibility.
The efficiency remains high. It takes below 350 megabytes and 2 minutes to extract the rules, using the same hardware.

Given the high fidelity and accuracy of the extracted rulesets, when acting as a surrogate to the original model, they can
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R1: If (C0G7 <= 0.26 AND ARF1 <= 
0.42) Then ER-

R2: If (PYCRA > 0.22 AND CLNS1A <= 
0.13 AND STX10 > 0.46) Then ER+
…

R3: If (CT >  0.5 AND Grade > 2.5 
AND HT > 7.5) Then ER-

R4: If (Grade <= 2.5 AND
Age_At_Diagnosis <= 46.35 AND
CT > 3.5) Then ER+ 
…

b. Decision Tree for Predicting 
IHC Subtypes with Clinical Data 

c. Ruleset for 
Multi-Modality Reasoning

(data modalities)

a. Neural Network for Predicting IHC                
Subtypes with mRNA Expressions

mRNA 1

ER-

ER+
mRNA 
1000

mRNA 2

CT <= 0.5

Entropy = 0.5

Samples = 1583

Grade <= 2.5 

entropy = 0.274

samples = 326  

Age_At_Diagnosis

<= 46.35

entropy = 0.499 

samples = 70

CT <= 3.5 

entropy = 0.342

samples = 17 

entropy = 0.0

samples = 4

Class = ER+ 

HT <= 1.5 

entropy = 0.198

samples = 256

Grade <= 2.5 

entropy = 0.451

samples = 1257  

size <= 13.5 

entropy = 0.477

samples = 53

Lymph_Nodes_

Positive <= 13.5 

entropy = 0.215

samples = 13

Figure 3. Case study II - an instantiation of REM pipeline (Figure 1) with two data modalities on the benchside. a. A neural
network trained to predict IHC subtypes of breast cancer based on 1000 mRNA expressions. b. A decision tree trained to
predict IHC subtypes of breast cancer based on 13 clinical variables. c. Combination of rulesets extracted from mRNA
expressions using REM-D and from clinical variables using REM-T that gives rise to a ruleset for multi-modality reasoning to
be used for single patient and cohort-wide analysis.

target
DNN

accuracy
REM-D
accuracy

REM-D
fidelity

REM-D
duration (sec)

REM-D
memory (MB)

size of
ruleset

rules average
length

ILC/IDC 0.882 0.886 0.884 143.792 573.231 137 4.3
ER+/ER- 0.957 0.921 0.926 100.714 349.951 103 5.1

Table 1. Rule extraction from neural network when predicting ILC/IDC and ER+/ER- using mRNA expressions. Results
reported are average across five fold cross validation for accuracy and fidelity, and median for the rest of the metrics. Results
for each fold for ILC/IDC and ER+/ER- predictions are in Supplementary Tables 4 and 5, respectively.

be used for both cohort-wide analysis and single patient care planning (Figure 1i, j). On the cohort level, use cases include
analysing the overall ruleset to give an overview of features most frequently used in rules for a whole cohort or subgroups
within a cohort (e.g., IDC vs ILC patients or ER+ vs ER- patients in case studies I and II). Similarly, the threshold of features
used in rules can reveal information about the cohort (e.g., whether a gene expression value is consistently below or above
a level for a subgroup versus another - although the absolute gene expression values as they appears in the rules may not be
readily biologically meaningful, analysing their overall patterns may point towards their consistent over- or under-expression
for a certain condition, a very meaningful biological theme).

On the single patient level, rulesets can be simulated easily to get a prediction for a new patient. In addition, it can be
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explained why a prediction was made, where the explanation is in the form of rules that were satisfied (i.e., the conditions in
them were met) and thus counted towards the prediction (e.g., Figure 2c). Clinicians can also potentially perturb the patients
features (e.g., decrease their BMI) to check the impact of such change on the prediction of the model (e.g., checking whether
encouraging the patient to decrease their BMI changes their treatment outcome for the better).

Having assessed the extracted ruleset from quantitative perspective, in the next three sections, we focus on the qualitative
aspects. Each aspect is contextualised for one of the case studies and can be applied to the other case study in a similar fashion.

2.3 Extracted rulesets can be inspected using bioinformatics tools
Depending on the data modality, inspecting and verifying biological relevance of the rules may be challenging. This is in
particular the case when working with genomics data that is hard to interpret. Here we show how the interpretation can be done
by relying on bioinformatics tools. To inspect the biological relevance of the rules extracted for the case study I, we follow the
protocol in Reimand et al.22 that is based on well-established bioinformatics tools designed to interpret gene lists resulting from
experiments. Figure 2, parts d.2, and d.3 show the two major steps of the protocol after defining the gene list of interest in d.1.
These steps are: determining statistically enriched pathways (d.2), and visualising and interpreting the results (d.3). In line with
the protocol recommendation we use g:Profiler23 and EnrichmentMap24 for identifying pathways enriched in the gene list of
interest relative to what is expected by chance, and mapping them visually to facilitate identifying the main biological themes
they represent. As a proof of principle, we query the top 50 genes that appear in the rules for class IDC in g:Profiler for the
pathways they enrich in biological processes of GO25 and molecular pathways of Reactome26. The results are then passed on to
EnrichmentMap for visualisation and annotation. Supplementary Table 8 and Figures 7 and 8 include details on steps d.1, d.2
and d.3, respectively. A systematic approach to integrating rule extraction with bioinformatics, such as the protocol followed,
gives clinicians a biological insight to what the rules have captured and how biologically relevant that is to the task in hand.

In addition to genes, the rules include information about their expression, which may point toward the association of a
phenotype with over- or under-expression of some genes. In the case reviewed above, CDH1 is the most common feature. This
gene codes for a cadherin involved in the key Wnt-mediated beta catenin signaling. Close to 80% of the rules associated with
class ILC that include this feature prescribe an upper bound restriction for it, which is aligned with the reported association
of ILC tumour and the under-expression of CDH120, 21. In contrast, all the rules associated with class IDC that include this
feature restrict its lower bound. This means that these rules are more likely to get triggered and therefore predict IDC for
patients with over-expression of CDH1. In addition to CDH1, the three features that are commonly used in rules for both
classes are AURKA, FOXM1, HYOU1. All rules for class IDC restrict the lower bound for AURKA, FOXM1 and HYOU1.
This is likely to point towards the over-expression of these genes in IDC tumours. The opposite is true for rules associated
with class ILC: close to 99% and 95% of the rules limit the upper bound of AURKA and FOXM1, respectively; as well as all
the rules limiting the upper bound of HYOU1, making a case for potential under-expression of FOXM1 and HYOU1 in ILC
tumours. The connection between the boundaries of gene expression in the rules and various phenotypes can be explored in the
same fashion for the rest of the genes.

2.4 Extracted rulesets can be adjusted based on domain knowledge
There are various ways of incorporating domain knowledge expressed by clinicians. One way is for clinicians to express
important features to focus on. This information can be used to impose a hierarchy on the ruleset by assigning scores to
rules, where the score takes into account the inclusion of the preferred expressed features. We use an augmented hill climbing
algorithm for scoring rules. In the base version27 the algorithm assigns a score to each rule based on its coverage, accuracy and
length, where high accuracy and coverage are rewarded, while high score for length is penalised. In the augmented algorithm,
referred to as personalised ranking28, the rules that include features proposed by clinicians get additional scores and are thus
likely to rank higher in the hierarchy of rules (Equation 2, Methods). To show the impact of scoring, we pick four genes at
random (e.g., KCTD3, RARA, STARD3 and ERLIN2) and assume they are expressed as highly relevant by an expert when
predicting IHC subtypes using 1000 mRNA expressions (Figure 3a). Note that we used random selection to show the generality
of the ranking. In a real world setting the random genes can be replaced by, for instance, known cancer driver genes. The
frequency of favourite features in the top 70% of the ruleset increases when using personalised ranking (purple bars, Figure 4)
as opposed to the ranking merely based on coverage, accuracy and length (blue bars, Figure 4), indicating that the model is
indeed adjusted in the direction of expert knowledge. ERLIN2 is the exception, where the personalised ranking does not make
a difference. Potential reasons for this are the absence of more rules that include ERLIN2. High specificity of the rules that
include ERLIN2 could be another reason: although the ranking favours the inclusion of this feature, it does not favour long
rules that are highly specific.

2.5 Extracted rulesets can be integrated with rulesets from other modalities and models
Beside mRNA expressions, IHC subtypes can also be predicted from clinical data in METABRIC. Unlike the genomics part of
the data that tends to be high dimensional, the clinical part often consists of a handful of variables. We predict the IHC subtypes
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Figure 4. An instantiation of "Adjustment" functionality within REM pipeline (Figure 1): The impact of personalised ranking
on the increase in the number of higher rank rules (top 70% of the rules) including the preferred features expressed by
clinicians.

data modality
rule extraction

mode
rule extraction

accuracy size of ruleset rules average
length

mRNA REM-D 0.921 103 5.1
Clinical REM-T 0.81 29 4.6

mRNA + Clinical REM-D + REM-T 0.933 133 5.0

Table 2. Integration of rules extracted from mRNA data modelled using a neural network (mode REM-D) with rules from
clinical data modelled using a decision tree (mode REM-T), when predicting IHC subtypes. Results reported are median across
five fold cross validation. Results for each fold are in Supplementary Tables 5, 6 and 7 for mRNA, Clinical, mRNA + Clinical,
respectively.

from clinical data using a decision tree (Figure 3b). The average accuracy of decision trees across the folds is 81%, while the
median of the ruleset size and rule length are 29 and 4.6, respectively, as presented in Table 2, second row.

To allow multi-modality reasoning, we combine the rules extracted from the decision tree, using REM-T, with the rules
from the neural network, using REM-D (Figure 3c). As displayed in Table 2, third row, this increases the accuracy of the ruleset
slightly over the five folds, in comparison with the ruleset that relies on rules extracted from the neural network only. The size
of the ruleset increases as expected, while the median of the average length of the rules drops below that of the rules extracted
by REM-D. More important than the slight increase in the accuracy is the fact that rules from different modalities modelled
with various models can indeed be integrated and contribute to one another.

3 Discussion
Heterogeneity and high volume of data in domains such as oncology challenge common statistical methods. Although DNNs
has shown promise in overcoming these challenges, they come with their own challenges due to lack of explainability. This
is evidenced by the scepticism of clinical community about ML systems29, 30 as well as the growth of interpretability and
explainability methods used in healthcare to address this problem. The majority of these methods are local, pointing to
important input features that were most influential in a prediction7, 31–33. Apart from vulnerability to adversarial attacks11–13

and scalability issues caused by the need for model retraining8 to generate explanation, user studies do not support feature
importance explanatory utility for human users14, 15. REM, the pipeline proposed here for explainable data analysis, provides a
global view of explainability by combining ML and MR. The ruleset models extracted by REM give an overview of the original
underlying model, while remaining usable for local explanation of individual predictions.

In addition to providing explainability, the rule-based nature of REM makes it a unique candidate for use in healthcare, due
to facilitating integration of heterogeneous data and incorporation of human-in-the-loop. Instead of using a single model for all
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b. Ruleset for Multi-Modality Reasoning (data and knowledge modalities)

AJCC 8th Edition Stage
a Class
Comment: Breast Cancer 

Stage pertaining to AJCC

8th Edition Guidlines

Stage0
a Class
hasTreatmentOption: Radiation 

Therapy, Surgery

hasRecommendedTest: 
Mammogram

Stage4
a Class
hasTreatmentOption: Chemotherapy, 

Targeted Therapy, Whole Body Treatment

hasRecommendedTest: Hormone 
Receptor Test, Histologic Typing, Receptor 

Testing, Pathology Report, HER2 Test

sub-class of sub-class of

sub-class of

a. Cancer Staging Ontology for Determining Tumour Stage

R1: If (C0G7 <= 0.26 AND ARF1 <= 
0.42) Then ER-

R2: If (PYCRA > 0.22 AND CLNS1A <= 
0.13 AND STX10 > 0.46) Then ER+
…

R3: If (CT >  0.5 AND Grade > 2.5 
AND HT > 7.5) Then ER-

R4: If (Grade <= 2.5 AND
Age_At_Diagnosis <= 46.35 AND
CT > 3.5) Then ER+ 
…

R5: If (ER- AND Grade1 AND HER2+ AND
M1 AND N1 AND PR- AND T4) Then Stage4  

R6: If (ER+ AND Grade3 AND HER2- AND 
M0 AND Tis ) Then Stage0
…

Figure 5. An instantiation of REM pipeline (Figure 1) with a combination of data and knowledge modalities on the benchside.
a. An existing ontology that formalises the medical guidelines in the latest AJCC Cancer Staging Manual. e. Rulesets from
ontological knowledge (yellow box) integrated with rules from data modalities (pink and grey boxes).

modalities, each modality is modelled using the prediction model that suits the data best, while the integration happens at the
rule level to allow multi-modality reasoning. As a result, deep learning and non-deep learning approaches can flexibly be used
in combination; and uninterpretable models such as DNNs are only used when they outperform more interpretable models such
as decision trees (e.g. See Supplementary Table 3) and are avoided otherwise. Once the rules are extracted and integrated,
clinicians can contrast them with their domain knowledge, manipulate them, and also impose hierarchy on them to emphasise
the subset of rules that may be more useful for a subgroup of patients (e.g., of specific ethnicity).

We demonstrated the use of REM and its functionalities in two breast cancer case studies. In the case study I (Figure 2) we
used genomics data to predict image-based targets. In the case study II (Figure 3) we looked at the complementarity of modalities
(e.g., mRNA expression and clinical) for predicting certain targets (e.g., IHC subtypes), and showed that modalities can indeed
contribute to one another when making predictions. Similar to these case studies, rules can be extracted from knowledge
modalities (e.g., electronic health records and biomedical ontologies) and integrated with data-driven rules. Figure 5 showcases
such a scenario. Rules extracted from data provide input to rules extracted from the Breast Cancer Staging Ontology34, which is
based on the latest AJCC Cancer Staging Manual35. In a hypothetical scenario, where the IHC subtypes and tumour stage of the
patients are unknown, the former can be predicted from data modalities (as demonstrated in case study II, Figure 3d) and used
in the prediction of the latter, assuming other variables required for this latter prediction (i.e., Grade, HER2 status, PR status, T:
severity of tumour size, N: severity of the spread to the lymph nodes, M: metastasize status) are known and provided as facts.

Rule extraction for interpretability purposes is very common in tree-based approaches36–38, however rule extraction from
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neural networks is rare, with the majority of methods being limited to rule extraction from networks with one hidden layer18.
Zilke et al.39 extract rules from networks with more than one hidden layer (i.e., DNNs), however, the approach has scalability
issues due to prohibitively high memory and time consumption4, 39. Due to these reasons, it is not possible to directly compare
Zilke et al.39 to REM-D, however, we discuss the algorithmic differences between the two that are crucial in time and memory
consumption in the Methods section. Another alternative for rule extraction from DNNs is that proposed by Nguyen et al.40.
This approach is restricted to networks that use ReLU as the activation function between hidden layers, and is therefore not
generally applicable. Kazhdan et al.41 propose another decompositional approach to extract information from Convolutional
Neural Networks (CNNs) layers in the form of “concepts”. Concepts, in the setting of images, are high-level semantic units
(e.g., lung opacity, foreign object) rather than individual input features (e.g., pixels, characters). While, using REM-D to extract
rules from image-based data modalities that are based on pixel-level features may not prove informative, image patches or
concepts can provide a great medium for REM-D to extract rulesets from CNNs that are based on high level units, meaningful
to humans11. In the case of other architectures such as recurrent neural networks (RNNs), similar to42, REM-D can extract
rulesets at every time step followed by a merge step to provide a global view of the underlying model. However, in contrast
to42, which provides transition rules that only describes the relationship between the output and the last hidden layer, REM-D
provides a hierarchy of rules across the entire architecture to provide explanations about the relationship between the inputs,
hidden layers, and outputs.

We envision several exciting avenues for future development of REM on theory, application and biological relevance
fronts. Regarding the technical side, a limitation is when for large models the rule extraction is intractable or the number of
rules extracted is so high that it is difficult to claim interpretability. We demonstrate the complexity of rule extraction in the
Methods section and discuss ways of improving it. Related to number of rules, deep learning models often have multiple
optima of similar predictive accuracy, while their interpretability can vary considerably43. We postulate that neural networks
that give rise to a smaller number of rules in a shorter span of time and with less memory consumption, when subjected to
rule extraction, are those that are more interpretable and hence easier to explain with a smaller number of symbolic rules.
Our results (Supplementary Table 4 and Table 5) also suggest that the larger rulesets tend to have longer rules that are highly
specific due to inclusion of several conditions and are therefore less suited to generalise to unseen samples. To address this
limitation and control the number of rules extracted, we plan to use optimisation techniques that focus on optimising deep
models for human-simulatability44. Such optimisation is expected to encourage finding models whose decision boundaries
are well-approximated by small decision trees that in turn give rise to a small ruleset, which are less likely to overfit. Related
to facilitating the presentation of rulesets is providing visualization mediums. One way to realise this goal is to use existing
algorithms that learn trees from rulesets45, instead of directly from training data, to map rulesets to diagnostic decision trees
that are easy to visualise.

Application-wise, we believe that the deployment of REM for revealing the connections between various modalities can
prove very useful when cost consideration makes accessing some data modalities (e.g., genomics) challenging. For example,
genomics components involved in targeted gene panel testing, which are crucial in treatment planning, may be predicted based
on widely available imaging data46. Investigation of use of REM for extracting rules of going from widely available data
modalities (e.g., pathology imaging) to hard to access ones can be a step towards bringing personalised medicine to more
patients. Finally, in terms of biological relevance, investigation of connection between proteins coded by genes in individual
rules and sets of proteins participating in known pathways can shed light on the higher level biological functions that rules
capture. We are positive that accommodating such functionalities creates more synergy for REM to be used in conjunction with
other bioinformatics tools.

4 Methods

4.1 Data, pre-processing and feature selection
For all experiments we use a public breast cancer dataset of 1980 patients, METABRIC19, that aims to characterise breast
cancer subtypes based on genomics and imaging data as well as clinical data.

Feature selection in case study I. The aim of this case study is to predict the two main histological subtypes of breast
cancer, IDC and ILC (1547 IDC vs 147 ILC cases), using mRNA expressions. Feature selection from METABRIC for this
task is done based on existing bioinformatics findings: we use the 1,000 putative breast cancer genes identified in Curtis et
al.19, the significance of which is validated by revealing novel subgroups that have distinct clinical outcomes. These genes
are identified based on a landscape created by integration of copy number aberrations (CNA) and expressions that highlights
genomics regions which are likely to contain driver genes. Further bioinformatics findings show that in addition to distinct
morphology, mRNA expression profiling of the two main histological subtypes demonstrates distinct molecular differences20.
The main differences include the variant in expression of four genes: CDH1, MKI67, FOXA1 and PTEN. We add the mRNA
expression of these four genes to the 1,000 putative ones (Figure 2a).
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Feature selection in case study II. The aim of this case study is to predict the two main IHC subtypes of breast cancer,
ER+ and ER- (1506 ER+ vs 474 ER- cases), using mRNA expressions and clinical data. Similar to the above case study,
we use the mRNA expressions of the 1,000 putative genes (Figure 5a). The clinical data (Figure 5b) used in combination
with the genomics data consists of 13 variables (age at diagnosis, tumour laterality, Nottingham Prognostic Index, menopause
status, number of positive lymph nodes, chemotherapy agent, hormone therapy agent, radiotherapy agent, grade, tumour size,
histological type, stage, cellularity).

There are no missing values in mRNA expressions. Expressions are normalised and scaled to [0,1] prior to use. Occasional
missing values in clinical part are replaced by mean value for continuous variables. They are treated as a new category for
categorical variables to represent an unknown value. After pre-processing, the data is sampled into five-fold cross validation
splits based on the class distribution of the target.

4.2 Model selection
A fully connected neural network with two hidden layers is set up for the classification tasks of predicting histological subtypes
and IHC subtypes outlined above. We used Keras library47 for this. Tanh is used as the activation function for the hidden layers,
and softmax is used for the output layer. Adam optimiser48 is used for training without any regularisation. The weights of
classes are considered too when fitting the model. The batch size, number of epochs, and the number of neurons in the two
hidden layers are determined based on a grid search over the following parameters: batch-size = {16,32,64,128}, epochs =
{50,100,150,200}, layer-1 = {16,32,64,128} and layer-2 = {8,16,32,64}. Best performance (i.e., average AUC of five-fold
cross validation) is obtained with: batch-size=16, epochs=50, layer-1=128, and layer-2=16 when predicting histological
subtypes using 1004 mRNA expressions. Incidentally, the same applies to predicting IHC subtypes. When modelling clinical
data using a decision tree (Keras library47), rules were extracted without limiting the depth of the tree, as well as limiting trees
to depths 5, 10 and 15 (max_depth={5,10,15}). The splitting criterion used was "entropy". The accuracy of predicting IHC
subtypes was highest when maximum depth of the decision tree was limited to 5. All the experiments are done on a server with
66 GB RAM and 2 AMD 6367 processors.

4.3 REM-D rule extraction methodology
REM-D extracts rules (Algorithm 1) for a classification problem with n data points, ~x1,~x2, ...,~xn, each with an associated class,
yi ∈ {y1,y2, ...,yu}. Rules are extracted from a trained network with k hidden layers, {h0,h1, ...,hk,hk+1}, where h0 and hk+1
are the input and output layers. Each layer hi has Hi neurons. The input layer thus has as many neurons as the features available
for each data point: H0 = |~xi|. The number of neurons in the output layer equals to the number of classes: Hk+1 = u. The
activation values sampled at layer hi for data point ~x j are denoted as hi(~x j).

Ruleset structure Prior to outlining the methodology for rule extraction, we present the structure of the ruleset extracted by
REM-D:

• Total ruleset: Rtotal =
⋃u

i=1 Ri
total

• Ruleset for each class: Ri
total =

∨m
j=1 Ri

j

• Individual rules: Ri
j = If antecedent then i

• Antecedent:
∧n

k=1 tk
• Terms: tk : h <= threshold or tk : h > threshold

The total ruleset is the union of rulesets for each class. The ruleset for each class is a disjunction of individual rules, each
of which is a conditional statement with an antecedent and the class they belong to as conclusion. The antecedent itself is a
conjunction of conditional statements referred to as terms that are conditions on the activation value of neurons.

Rule extraction algorithm In order to extract rules of the form described above from the network, REM-D first decomposes
the trained network into adjacent layers and then uses C5.049 to extract rules from pairs of layers in the network. Unlike
CART50, in addition to tree induction, C5.0 is also a rule extraction algorithm51. Compared with other tree induction and rule
extraction algorithms, C5.0 is faster than its predecessors C4.549 - which itself is the successor to ID352 - while consuming less
memory. It also builds smaller rulesets that are more accurate. A comparison of C4.5 and C.50 by the author of both algorithms
can be found in53.

When generating decision trees between layers, in order to identify the features that lead to a split, C5.0 uses entropy54 for
measuring purity. The information gain of a feature is calculated based on the difference of entropy in the segment before the
split and the partitions resulting from the split. The features with higher information gain are then used for splitting the data in
the decision tree. Once the tree is generated, nodes and branches that have little effect on the classification errors are pruned.
Rules are then extracted from the pruned tree and pruned further in accordance with their contribution to accuracy. The rules
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Algorithm 1 REM-D
Input: Artificial neural network {h0,h1, ...,hk+1}, training data {(~x1,y1), ...,(~xn,yn)}
Output: Ruleset approximating the neural network Rtotal

1: for class yv ∈ y1,y2, ...,yu do
2: Rv

initial ←{IF hk+1,v−1 > 1/u THEN yv}
3: Rv

total = Rv
initial

4: for layer j = k, ...,0 do
5: Ih j→h j+1 ← /0
6: T = Set(getTermsFromRuleset(Rv

total))
7: ~x1

′, ~x2
′, ..., ~xn

′← h j(~x1),h j(~x2), ...,h j(~xn)
8: for t ∈ T do
9: y1

′, y2
′, ..., yn

′← t(h j+1(~x1)), t(h j+1(~x2)), ..., t(h j+1(~xn))
10: Ih j→h j+1 ← Ih j→h j+1 ∪C5.0.0((~x1

′,y1
′),(~x2

′,y2
′), ...,(~xn

′,yn
′))

11: end for
12: Rv

total ← substitute(Ih j→h j+1 ,R
v
total)

13: Rv
total ← deleteUnsatisfiableRules(Rv

total)
14: Rv

total ← deleteRedundantTerms(Rv
total)

15: end for
16: end for
17: Rtotal ← R1

total ∪R2
total ∪ ...∪Ru

total
18: returns: Rtotal

extracted by C5.0, from each two adjacent layers, j and j+1, use the features from layer j. Thus, except when j is the input
layer, the rules use features in a hidden layer. To make sure that the final ruleset maps the input to the output, rules are merged
in a backward fashion, such that the hidden features in each rule are replaced by features in the previous layer until the input
layer is reached and all rules are expressed only in terms of input features. Algorithmic details are as follows.

The algorithm starts by iterating over each class (line 1). For each class, a rule is defined that maps the output layer to the
output classes (line 2). For example, if there are two classes, represented by neuron 0 and 1 in the output layer, which we
assume is layer 5, for the first one we have: Rv

initial = If h5,0 > 0.5 Then yv, where h5,0 refers to neuron 0 of layer 5. A total rule
is introduced for each class that only contains the initial rule to begin with (line 3). For the class in hand, each layer preceding
the output layer is considered in a descending order (line 4). For each layer and its proceeding layer an intermediate empty
ruleset is formed that is going to be populated with rules extracted from these two layers (line 5). Unique conditions (referred
to as Terms) that appear in the individual rules within the total ruleset are collected in a set (note that the set implementation
guarantees the uniqueness of these conditions, and avoids the need for looking for redundancies and deleting them after the
terms are collected) (line 6). These conditions are based on hidden neurons in the proceeding layer and need to be replaced with
conditions based on the neurons in the current layer till we reach the input layer. For this first the activation values sampled
from the current layer are noted (line 7). Next, each collected condition (line 6) is applied to the activations sampled from the
proceeding layer to give a target value (line 9). Then in line 10, the values noted in line 7 and targets from line 9 are passed on
to C5.0 algorithm for rule extraction. In the same line, the extracted rules will be added to the intermediate ruleset initiated
in line 5. By substituting (Algorithm 2) the updated intermediate rules into the total class ruleset, the rules for the class are
now described based on neurons in a layer one step closer to the input layer (line 12). Merging rules extracted from different
layers may give rise to unsatisfiable rules that have contradictory conditions (e.g., Age_At_Diagnosis > 65, Age_At_Diagnosis
<= 46) or rules with redundant conditions (e.g., Age_At_Diagnosis > 65, Age_At_Diagnosis > 67). Unsatisfiable rules are
deleted in line 13, followed by deleting redundant conditions in line 14. For optimisation purposes, substitution, satisfiability
and redundancy checking is done after each step of merging. This results in a lower number of shorter rules for the subsequent
merge step, thereby improving time and memory usage. The procedure is repeated until the input layer is reached and the rules
for each class are based on input features instead of neurons in the hidden layers. Finally, the rules that describe the behaviour
of the network for each class in terms of input features are combined to give the overall ruleset (line 17) that is returned as
output (line 18).

In order to make a prediction for a data point using the final ruleset, the majority vote is used: the ruleset for each class has
a vote for the prediction which is essentially the number of rules within the class ruleset that are satisfied by the data point. The
prediction for the data point is the class that has the majority vote (highest number of rules satisfied).

C5.0 parameters The default parameter values are used in C5.0 (Algorithm 1, line 10). “winnowing” attribute is set to
“True” and the number of “minCases” per leaf is determined by grid search. Winnowing in C5.0 works by calculating a feature
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Algorithm 2 Substitution Procedure
1: procedure SUBSTITUTE(Ih j→h j+1 ,R

v
total)

2: Rv
temp← /0

3: for rule ∈ Rv
total do

4: a← []
5: for t ∈ getTermsFromRule(rule) do
6: a← a+getAntecedent(Ih j→h j+1 , t)
7: end for
8: for C ∈CartesianProduct(a) do
9: Rv

temp← Rv
temp∪ f ormRule(C)

10: end for
11: end for
12: Rv

total ← Rv
temp

13: returns: Rv
total

14: end procedure

importance for each feature based on error rate increase in the training set if the feature was excluded. When set to “True”,
winnowing allows C5.0 to use only the important features for tree induction and rule extraction. The minCases parameter stops
the decision tree from splitting further if the number of samples in each node drops below the set minimum number of cases
after a split. For each experiment we extracted rules by setting the minCases values to: minCases= {5,10,15,20} and chose the
value that gave the most accurate final ruleset. When predicting histological subtypes, this value was 10, while 5 was the best
value when predicting IHC subtypes.

Substitution algorithm The substitution procedure replaces the terms in individual rules of a class ruleset with the antecedent
of the individual rules within the intermediate ruleset that has these terms as conclusion. For example, if we have t AND t ′→ y
and within intermediate ruleset we have the following two rules a→ t and a′→ t ′, then the substitution gives rule a AND a′→ y.
This substitution essentially replaces the terms appearing in the rules of total ruleset with terms from a previous layer. As a
result, the rules for the class are now described based on neurons in a layer one step closer to input layer.

The procedure starts with initiating a temporary ruleset for the class in hand (line 2). It then iterates over individual rules
in the class total ruleset (line 3). For each of them an empty list is initiated (line 4). For each term in the rule (line 5), the
intermediate ruleset is searched for rules with this specific term as conclusion. Those found are added to the list initiated
earlier (line 6). If a rule has two terms t1 and t2, there may be several intermediate rules that have each term as conclusion, thus
the list may look like [{a1

1,a
2
1}{a1

2,a
2
2,a

3
2}], where a1

1,a
2
1 are antecedents for t1 and a1

2,a
2
2,a

3
2 are antecedents for t2. Cartesian

product of antecedent sets gives all possible combinations when substituting terms in rules within total ruleset (line 8). Each
combination forms a new individual rule that is added to the temporary ruleset for the class (line 9). Once this procedure is
repeated for each rule, the temporary ruleset replaces the total ruleset (line 12). The updated total ruleset is returned in line 13.

Complexity analysis of REM-D The theoretical complexity of REM-D (Algorithm 1) equals: number of classes × [(number
of C5.0 calls× complexity of C5.0) + (number of hidden layers + 1)× [ complexity of substitution + complexity of satisfiability
checking + complexity of redundancy checking]]. The notation used throughout this analysis is as follows:

• u: umber of classes

• k: number of hidden layers

• n: number of data points

• m: number of features (i.e., neurons)

• x: maximum number of rules in each class ruleset

• y: maximum number of terms in each rule

• z: maximum number of substitutions for each term

Number of C5.0 calls (Algorithm 1): This number is equal to the sum of cardinality of set T , defined in line 6, across all
layers. Set T consists of terms in the rules extracted between two adjacent layers proceeding the current layer j (line 4). Since
there is only a single term in the initial Rv

total , the cardinality of set T for the first hidden layer is 1. The C5.0 call for this term
generate n−1 new unique terms in the worst case scenario. Here is why: in the absence of pruning, the number of new terms is
the same as the number of non-leaf nodes in the tree generated by C5.0. In order to calculate the maximum number of non-leaf
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nodes, we first look at the maximum number of leaf nodes. In the worst case scenario a tree induced between two layers has n
leaves, where n is the number of data points. The total number of non-leaf nodes in a complete binary tree with n leaves is
n−1. Given that the number of new terms is the same as the number of non-leaf nodes of the tree, we end up with n−1 terms
in the worst case scenario. Since these newly generated terms will substitute the term in the initial Rv

total , the number of unique
terms in the newly formed Rv

total after substitution is equal to n−1. This means that the cardinality of set T for layer j−1 is
n−1 and hence C5.0 will be called n−1 times. Each of the calls again will give rise to n−1 new terms, the sum of which
amount to (n−1)(n−1) = (n−1)2. The continuation of this process makes the total number of C5.0 calls for a class equal to:

1+(n−1)+(n+1)2 + · · ·+(n−1)k =
k
∑

i=0
(n−1)i = 1−(n−1)k+1

1−(n−1) .

Complexity of C5.0 (Algorithm 1): C5.0 is a binary tree induction algorithm the complexity for which is known as m×n2

in the worst case scenario, where n is the number of data points and m is the number of features for each data point. In REM-D
m refers to the number of neurons in layer j (line 4).

Complexity of substitution (Algorithm 2): complexity of this procedure depends on the total number of rules in a class (line
3) and the Cartesian product calculated in (line 8). Assuming that the maximum number of rules in each class ruleset, terms in
each rule and substitutes for each term are x, y and z, respectively, the overall complexity of substitution procedure is x× zy.

Complexity of satisfiability and redundancy checking (Algorithm 1): We established x and y as the maximum number of
rules in a ruleset and maximum number of terms within each rule, respectively. Satisfiability and redundancy checking both
require iterating through every term in a rule for every rule, thus for each of this operations we have the complexity of x× y.

The overall complexity is thus: u× [( 1−(n−1)k+1

2−n )× (m×n2))+(k+1)[(x× zy)+(2×x×y)]]. Determined by the dominant
factor in O(u[(nkm)+ k[xzy + xy]]), nk and zy, the complexity grows exponentially with the number of layers and maximum
number of terms in each rule. This is a limitation that can make rule extraction infeasible for large datasets. In practice however,
C5.0 automatically does a considerable amount of pruning which makes the worst case scenarios avoidable. There are also
interventions such as limiting the depth of trees between layers discussed earlier that can help with the empirical complexity.
Other interventions include using parallel computing for multiclass problems to extract class rulesets simultaneously and
using subsampling for large datasets, where only a fraction of n is used to build the trees between layers. In addition, feature
sampling55 can be used to bound the number of m used for tree induction.

Comparison of REM-D with Zilke et al.39 Zilke et al.39 uses C4.5 for tree induction and rule extraction between layers,
while REM-D uses C4.5’s successor C5.0, due to the fact that C5.0 is more time and memory efficient and it extracts more
accurate rulesets.

In39 first intermediate rules between all layers are extracted and stored, which requires a considerable amount of memory,
and then they are subject to a final merge step. In favour of decreasing memory consumption, REM-D avoid storing all the
intermediate rules. Instead, it merges the rules extracted between layers incrementally (e.g., rules extracted between layers 4
and 5 will be merged with rules extracted between layers 3 and 4 as soon as the latter become available).

Unlike39, REM-D does not extract rules from layers in isolation to one another. To improve time and memory consumption,
after each step of merge, REM-D checks the newly formed set of rules for satisfiability and redundancy and only considers the
non redundant terms within specifiable rules in the next rule extraction step. This essentially means dealing with less number of
rules and also shorter ones.

4.4 REM-T rule extraction methodology
REM-T extracts rules (Algorithm 3) for a classification problem with n data points, ~x1,~x2, ...,~xn, each with an associated class
yi ∈ {y1,y2, ...,yu}. Rules are extracted from a trained random forest or decision tree. Here we explain the rule extraction from
random forest, the procedure for decision tree is identical to that of random forest with a single tree.

The algorithm starts by iterating over each class (line 1). A total rule is introduced for each class (line 2). For each tree in
the random forest (line 3), the branches of the tree (line 4) are traversed. If the branch ends at a leaf node that has the same
label as the class (line 5), the algorithm creates a rule from it by the conjunction of conditions in each node in the branch and
adds the created rule to the total ruleset for the class (line 6). Similar to Algorithm 1 (line 14) redundant terms are deleted
(line 10). The total rulesets for each class are combined to give the overall ruleset (line 12) that is returned as output (line 13).

4.5 Rule scoring and ranking
The basis of personalised rule scoring and ranking is the score proposed by Mashayekhi et al.27,

Rule-Score =
cc− ic
cc+ ic

+
cc

ic+ k
+

cc
rl

(1)

where cc and ic are the number of training samples covered by the rule and classified correctly and incorrectly, respectively, by
the rule. rl denotes the rule length. k is set to 4 as per original work in Mashayekhi et al.27. However, other positive values can
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Algorithm 3 REM-T
Input: random forest rf , training data {(~x1,y1), ...,(~xn,yn)}
Output: Ruleset Rtotal

1: for class yv ∈ y1,y2, ...,yu do
2: Rv

total ← /0
3: for tree ∈ rf do
4: for branch ∈ tree do
5: if getLea f (branch) == class then
6: Rv

total ← Rv
total ∪ createRule(branch)

7: end if
8: end for
9: end for

10: Rv
total ← deleteRedundantTerms(Rv

total)
11: end for
12: Rtotal ← R1

total ∪R2
total ∪ ...∪Ru

total
13: returns: Rtotal

Figure 6. The impact of personalised ranking on increase in the number of higher rank rules (top 70% of the rules) that
include the preferred features picked by clinicians, where x ranges from 1 to 5.

be used for k as its role is mostly to avoid the denominator becoming zero, and no significant change in the results is observed
by modifying k.

In the personalised rule scoring and ranking proposed by Müller28, where the assumption is that a list of preferred features
is in hand, the equation is extended as follows:

Personalised-Rule-Score =
cc− ic
cc+ ic

+
cc

ic+ k
+

cc
rl

+
x

i+2
(2)

where i refers to the feature’s index in the list of preferred features: the lower the index, the more important is the feature. For
a fixed x, the first feature (index 0) adds x/2 to the score, while the second feature (index 1) adds less (x/3) and so on. The
positive constant x can be tuned to give the desired impact.

In the ranking imposed in case study II (Figure 4) we assumed all features are equally preferred (i.e., i = 0) and experimented
with x ranging from 1 to 5 (Figure 6). Some values of x such as 4 and 5 give the most consistent results across all features in
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terms of increasing the number of rules that include the preferred features, while others are less consistent and may give more
boost to only a certain feature. The results presented in Figure 4 use x = 5 in personalised ranking.

Data and Code availability
All of the data and code necessary to reproduce our experimental findings cab be found at https://github.com/
ZohrehShams/IntegrativeRuleExtractionMethodology.
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Supplementary materials
Abbreviations and essential definitions

Abbreviations
ML: Machine Learning, MR: Machine Reasoning, DNN: Deep Neural Network, REM: Rule Extraction Methodology,
REM-D: Rule Extraction Methodology from Deep Neural Networks, REM-T: Rule Extraction Methodology from Trees

Essential Definitions
Interpretability: The degree to which “how” a model makes a prediction is understandable
Explainability: The degree to which “why” a model makes a prediction is understandable
Bench-to-bedside: the process of translating the results of research done in the laboratory into developing new ways

of treating patients
Care pathway: A patient’s clinical plan of care
Feature importance: Set of domain features (i.e. piece of data or evidence) that contributed the most to a prediction
Verifiability: The degree to which the biological relevance of a model can be determined
Simulatability: The ease of generating a prediction for an input by following the operation of a model
Reasoning: Applying rules towards making predictions
Accuracy: The degree of alignment between the predictions of an extracted ruleset model and ground truth
Fidelity: The degree of alignment between the predictions of an extracted ruleset model and the predictions of the

original model they are extracted from
Efficiency: Time and memory consumed to extract ruleset models
Comprehensibility: The number of rules in a ruleset and their average length

Rule extraction details for case study I
Table 3 shows that the neural network model outperforms the decision tree model and the random forest model in terms of
AUC, despite their high accuracy. The parameters used for the neural network model were outlined in the Method section.
The random forest model used 50 trees each with maximum depth of 10 and half of the features considered at every split. The
decision tree model also used a maximum depth of 10. Class weights were considered in both random forest and decision tree
models.

decision tree random forest neural network
fold accuracy AUC accuracy AUC accuracy AUC

0 0.897 0.718 0.918 0.639 0.903 0.811
1 0.879 0.723 0.918 0.609 0.906 0.813
2 0.846 0.666 0.929 0.617 0.870 0.804
3 0.876 0.698 0.905 0.589 0.908 0.731
4 0.885 0.624 0.914 0.578 0.825 0.78

average 0.877 0.686 0.917 0.606 0.882 0.788

Table 3. A performance comparison between Decision Tree, Random Forest and Neural Network with 1004 mRNA
expressions as input and ILC/IDC as output.

Table 4 displays the details of rule extraction using REM-D for case study I reported in the Results and Method sections.

18/22

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2021. ; https://doi.org/10.1101/2021.01.25.21250459doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.25.21250459
http://creativecommons.org/licenses/by-nc/4.0/


fold
DNN

accuracy
REM-D
accuracy

REM-D
fidelity

REM-D
duration (sec)

REM-D
memory (MB)

size of
ruleset

rules
average length

0 0.903 0.888 0.903 143.792 573.231 155 4.3
1 0.906 0.885 0.891 32.06 146.538 6 1.8
2 0.870 0.867 0.861 143.881 642.576 137 7.7
3 0.908 0.902 0.929 59.239 227.721 18 2.4
4 0.825 0.888 0.837 157.059 630.239 240 6.6

average 0.882 0.886 0.884 107.206 444.061 111.2 4.6

Table 4. Rule extraction from neural network with 1004 mRNA expressions as input and ILC/IDC as output.

Rule extraction details for case study II
Tables 5 and 6 show the details of rule extraction using REM-D and REM-T from mRNA and clinical data as outlined in the
case study II, while Table 7 displays the details of their integration.

fold
DNN

accuracy
REM-D
accuracy

REM-D
fidelity

REM-D
duration (sec)

REM-D
memory (MB)

size of
ruleset

rules
average length

0 0.950 0.927 0.932 103.31 699.958 178 5.1
1 0.955 0.942 0.952 101.202 349.951 103 5.1
2 0.955 0.949 0.944 100.714 466.281 182 5.4
3 0.957 0.896 0.919 37.186 301.164 14 2.9
4 0.97 0.889 0.884 37.762 117.204 17 3.0

average 0.957 0.921 0.926 76.035 386.912 99 4.3

Table 5. Rule extraction from neural network with 1000 mRNA expressions as input and ER+/ER- as output.

fold
REM-T
accuracy

size of
ruleset

rules
average length

0 0.768 28 4.6
1 0.788 30 4.7
2 0.803 29 4.6
3 0.848 29 4.6
4 0.841 30 4.4

average 0.81 29.2 4.6

Table 6. Rule extraction from decision tree with 13 clinical variables as input and ER+/ER- as output.

fold
REM-D + REM-T

accuracy
size of
ruleset

rules
average length

0 0.927 206 5.0
1 0.952 133 5.0
2 0.952 211 5.3
3 0.922 43 4.0
4 0.911 47 3.9

average 0.933 128 4.7

Table 7. Rule integration from neural network and decision tree.
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Interpretation of the results using enrichment analysis
Table 8 lists the genes that are occurring the most in the overall rulesets and rulesets for each class across five folds, when
predicting histological types (Section 2.1 - Step d.1 of Figure 2). Genes listed for class IDC are passed on to g:Profiler23 for
functional profiling using “Ordered query” option and “Data sources” set to “GO biological process” and “Reactome”. The
detailed results are presented in Figure 7, which is an expansion of abstract results presented in Step d.2 of Figure 2. The
connection between pathways is visualised using EnrichmentMap24 with the False-Discovery Rate (FDR) q-value cutoff set to
0.01. The visualisation is displayed in Figure 8, where similar pathways representing major biological themes are clustered
automatically using “AutoAnnotate”56 on the basis of word frequency within the pathway names. As highlighted in Step d.3 of
Figure 2, the main annotation found automatically are “Cycle phase cell” and “Telomere organization maintenance”. Figure 8
includes the name of pathways within each cluster, studying of which shows how annotations are extracted using the word
frequency within the pathway names.

Top 50 features
overall

CDH1, AURKA, FOXM1, PSMD7, HYOU1, GRB7, EDC4, CSPP1, PPP1R14B,
CIAPIN1, TOP2A, FAM91A1, UQCRB, NIP7, SAMM50, ROGDI, MCM10, NUBP1,
ACTL6A, COG2, RCOR3, JOSD1, GTPBP4, TMEM219, COX4I1, GGPS1, DYNLL2,
METRN, POP1, MRPS7, PARN, PPP2R5A, MAPK3, ALDH9A1, RFWD3, PEX11B,
ZNF622, SLC35B1, OGFOD1, WDR68, TBCE, SRP9, ATP6V1H, CCNE2, BCL7C,
STX3, TTPAL, HEATR3, DUS2L, BOP1

Top 50 features
for class IDC

CDH1, AURKA, FOXM1, NIP7, HYOU1, CIAPIN1, PEX11B, SRP9, RFWD3, PARN,
MCM10, UQCRB, HEATR3, GTPBP4, TMEM219, ALDH9A1, PPP2R5A, CCNE2,
TTPAL, TOP2A, EIF3E, PSMD7, SAMM50, CYHR1, SNRPA1, RAD51C, KIAA0146,
DUS2L, RFWD2, THOC6, TOM1L1, TLK2, GRB7, IMPAD1, EDC4, CCNE1, FAM91A1,
FLYWCH2, GPR172A, NADSYN1, PSMC6, TERF1, JOSD1, RRS1, FAM96B, USF1,
NSMCE2, DNAJA2, RAB25, BCKDK

Top 50 features
for class ILC

CDH1, FOXM1, PSMD7, AURKA, GRB7, EDC4, PPP1R14B, CSPP1, HYOU1,
FAM91A1, ROGDI, TOP2A, CIAPIN1, ACTL6A, NUBP1, COG2, RCOR3, UQCRB,
SAMM50, COX4I1, GGPS1, JOSD1, DYNLL2, METRN, POP1, MRPS7, MAPK3,
ZNF622, SLC35B1, OGFOD1, WDR68, TBCE, ATP6V1H, MCM10, STX3, BOP1,
GTPBP4, BCL7C, MRPL28, TMEM219, PSMC2, MAF1, ANKRD11, PDSS1, NUDT5,
PPP2R5A, LTV1, ALG1, GPR172A, DUS2L

Table 8. Extension of the list in Figure 2d.1: Top 50 most recurring genes in rulesets across five folds.
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