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ABSTRACT 18 

Pneumonia remains one of the leading causes of death worldwide, particularly amongst the 19 

elderly and young children. We performed a genome-wide meta-analysis of lifetime 20 

pneumonia diagnosis (N=266,277), that encompassed the largest collection of cases published 21 

to date. Genome-wide significant associations with pneumonia were uncovered for the first 22 

time beyond the major histocompatibility complex region, with three novel loci, including a 23 

signal fine-mapped to a cluster of mucin genes. Moreover, we demonstrated evidence of a 24 

polygenic effect of common and low frequency pneumonia associated variation impacting 25 

several other mucin genes and O-glycosylation, further suggesting a role for these processes in 26 

pneumonia pathophysiology. The pneumonia GWAS was then leveraged to identify drug 27 

repurposing opportunities, including evidence that supports the use of lipid modifying agents 28 

in the prevention and treatment of the disorder. We also propose how polygenic risk could be 29 

utilised for precision drug repurposing through pneumonia risk scores constructed using 30 

variants mapped to pathways with known drug targets. In summary, we provide novel insights 31 

into the genetic architecture of pneumonia susceptibility, with future study warranted to 32 

functionally interrogate novel association signals and evaluate the suitability of the compounds 33 

prioritised by this study as repositioning candidates.  34 
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 2 

INTRODUCTION 35 
Pneumonia is characterised as an acute infection of the lung, with fluid filled alveoli and 36 

resultant restriction of oxygen intake being a key hallmark of its pathophysiology. There are a 37 

number of mechanisms known to cause pneumonia, however, bacterial or viral infection are 38 

the most common aetiologies1. Pharmacological intervention in pneumonia treatment is largely 39 

dependent on the infection source – for instance, bacterial induced pneumonia is treated with 40 

antibiotics. Yearly mortality rates worldwide from pneumonia remain high, even in the 41 

developed world where access to antibiotics and routine hospital care is usually unrestricted2,3. 42 

This necessitates a greater understanding of the mechanisms involved in pneumonia 43 

susceptibility and pathogenesis, which could be leveraged to identify novel treatments and 44 

inform the repositioning of existing drugs. 45 

 46 

There has been considerable work undertaken to identify host factors which influence the onset 47 

and clinical course of pneumonia. Twin-based estimates of pneumonia heritability are still 48 

lacking, however, the heritability of death due to infections disease has been estimated as high 49 

as 40%, although further study is required 4. There have also been few studies which have used 50 

modern statistical genetics approaches to test for the existence of risk-increasing or protective 51 

alleles associated with pneumonia with sufficient power for surpassing genome-wide 52 

significance. Previously, a genome-wide association study of lifetime self-reported pneumonia 53 

diagnosis was published using participants obtained by 23andMe Inc. that identified a 54 

significant signal in the major histocompatibility complex (MHC) region on chromosome six5. 55 

We sought to increase statistical power to detect association signals by performing a genome-56 

wide meta-analysis of self-reported pneumonia in the 23andMe cohort with SNP effects on a 57 

clinically ascertained pneumonia phenotype from the FinnGen consortium. The genetic 58 

architecture of pneumonia was further interrogated to identify novel risk genes and salient 59 

biological pathways, along with an estimate of genetic correlation with clinically significant 60 

phenotypes. These data were then considered in light of drug repurposing and provided support 61 

to a number of plausible repositioning opportunities.  62 

 63 

 64 

 65 

 66 

 67 

 68 
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MATERIALS AND METHODS 69 

 70 

Genome-wide meta-analysis of pneumonia 71 

The genome-wide meta-analysis was performed using two primary study cohorts from 72 

23andMe Inc. and FinnGen (release 3), respectively, with full details of these cohorts and the 73 

meta-analysis procedure detailed in the supplementary methods. Summary statistics for a self-74 

reported pneumonia phenotype were obtained from 23andMe as outlined by Tian et al.5. This 75 

self-reported phenotype was derived from an online survey of 23andMe customers about their 76 

medical history. In the final GWAS after quality control (QC), there were 40600 cases and 77 

90039 controls. In addition, summary statistics for pneumonia were downloaded from the third 78 

release of the FinnGen database which combines genotype data from Finnish biobanks and 79 

digital health record data from Finnish health registries. The pneumonia phenotype chosen was 80 

All pneumoniae (J10 pneumonia), for which 15771 cases and 119867 controls were available 81 

for GWAS after QC. 82 

 83 

The 23andMe and FinnGen summary statistics were meta-analysed using an inverse-variance 84 

weighted model with fixed effects as implemented by METAL version March 20116. Firstly, 85 

we meta-analysed common variants, defined as sites with allele frequency > 1% in both the 86 

23andMe and FinnGen cohorts. Variants were retained if they were available in both summary 87 

statistics and had an imputation quality that exceeded a minimum of 0.3 or a mean of 0.5 for 88 

variants not physically genotyped, resulting in 6888413 sites with an effect size estimate from 89 

the meta-analysis and a total sample size of 266277 individuals. Imputed rare variants available 90 

in both studies were subjected to a stricter filtering threshold for imputation quality such that 91 

only variants with a minimum imputation quality > 0.5 or a mean value > 0.7 were subjected 92 

to meta-analysis, with 834366 low frequency variants considered. In both instances, we further 93 

tested for heterogeneity between the contributing studies using Cochran’s Q test. Genome-wide 94 

summary statistics from the IVW meta-analysis were processed using the FUMA v1.3.6 95 

(Functional Mapping and Annotation of Genome-Wide Association Studies) platform7. 96 

Genome-wide significant variants were characterised using the traditional P < 5 x 10-8 97 

threshold, whilst suggestive significance was defined using a more lenient threshold of P < 98 

1x10-5. We utilised the default settings for defining independent significant SNPs (r2 ≤ 0.6) 99 

and lead SNPs (r2 ≤ 0.1). The reference panel population for LD estimation was the UK 100 

biobank release 2b 10k White British panel, with LD blocks within 250 kb of each other merged 101 

into a single locus. We examined the effect of conditioning on two smoking GWAS via the 102 
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multi-trait-based conditional & joint analysis (mtCOJO) framework implemented in GCTA v 103 

1.93.2 beta (Supplementary Methods)8,9.  For the MUC5AC lead SNP, we additionally 104 

performed a phenome-wide association study using the IEUGWAS database version 3.7.0 105 

(https://gwas.mrcieu.ac.uk/), reporting SNPs using a conventional phenome-wide significance 106 

threshold of P < 1 x 10-5. Given the most significant association in this database was a GWAS 107 

of adult-onset asthma 10, we tested whether the association of SNPs proximal to MUC5AC was 108 

driven by the same underlying causal variant, assuming a single causal variant, via the coloc 109 

colocalisation methodology implemented in version 4 of the package 11. We also sought to 110 

replicate our results in two UK biobank (UKBB) pneumonia GWAS, specifically, a self-111 

reported pneumonia phenotype performed in the automated GWAS pipeline by the MRC IEU 112 

group (ukb-b-4533, https://gwas.mrcieu.ac.uk/datasets/ukb-b-4533/), as well as a phecode 113 

ICD-10 UKBB GWAS performed in an automated series of GWAS by the authors of the 114 

SAIGE methodology (https://pheweb.org/UKB-SAIGE/pheno/480) 12. 115 

 116 

Estimation of SNP-based heritability 117 

SNP based heritability was computed using LD score regression (LDSR) with 1000 genomes 118 

phase 3 LD scores and weights13. We converted the heritability estimate to the liability scale 119 

assuming the population prevalence of pneumonia as that of pneumonia in the FinnGen dataset 120 

(12.61%), as well as a more conservative estimate based on ICD-10 diagnosed pneumonia in 121 

the UK biobank (UKBB) sample (3.20% - Supplementary Methods).  122 

 123 

Finemapping genome-wide significant loci 124 

We finemapped the three-novel genome-wide significant loci outside of the MHC region by 125 

using a method which leverages asymptotic Bayes’ factors (ABF) to estimate credible sets 126 

under the assumption of a single causal variant14. Specifically, we utilised Wakefield’s method 127 

to approximate ABFs assuming a prior variance of 0.22, which reflects the belief that the 128 

confidence intervals of estimated variant effect sizes expressed as odds ratios ranging from 129 

around 0.68 to 1.48. Given that the posterior probability for causality of each variant is 130 

proportional to its Bayes’ factor, these can be summed until a prespecified probability (𝜌) is 131 

reached, thus, constituting a 𝜌 set of putative causal variants. In this study, we derived 95% 132 

credible sets. A single causal variant was assumed such that we did not have to account for LD 133 

between variants, which has been demonstrated to be problematic in finemapping studies 134 

which prespecify more than one causal variant using references external to the GWAS like the 135 

1000 genomes project panel15.  136 
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Gene-based and gene-set association 137 

Common variant (MAF > 0.01) SNP-wise P values were aggregated at gene-level using 138 

MAGMA v1.07b16, as described in the supplementary methods. The Bonferroni threshold for 139 

genic association was P < 2.68 x 10-6, accounting for the number of genes tested. Moreover, 140 

gene-based P values were leveraged for gene-set association using 1379 hallmark and 141 

canonical gene-sets from the Molecular Signatures Database (MSigDB)17. Rare variants (MAF 142 

< 0.01) were also aggregated at gene-level by leveraging the properties of the Cauchy 143 

distribution (Supplementary Methods). Code for the Cauchy combination test was obtained 144 

from (https://github.com/yaowuliu/ACAT) and outlined by Liu and Xie18,19.  The MAGMA 145 

approach for common variants accounts for dependency between P values by estimating their 146 

covariance as a function of pairwise LD in a population sample – however, there are 147 

methodological challenges with this approach for rare variants and likely much larger samples 148 

would be required for accurate estimation of dependency between rare variants, if any 149 

exists20,21. Therefore, we employed Cauchy transformation to combine P values as it guards 150 

against type I error inflation due to potential unknown covariance between rare variants 151 

(Supplementary Methods). In addition, we constructed a model for rare variant gene-set 152 

association analogous to the MAGMA approach for common variants that leverages gene-153 

based Z values (probit transformation of P). The same collection of pathways from MSigDB 154 

were considered, with genic Z values regressed against a binary indicator of set membership 155 

(βS), covaried for logarithmically transformed gene-length, and rare variant count per gene. A 156 

one-sided test was performed for βS, such that the null hypothesis is βS = 0 and the alternative 157 

βS > 0. Only gene-sets with rare variants overlapping at least 5 genes were retained.  158 

 159 

Transcriptome-wide association studies of pneumonia 160 

A transcriptome-wide association study (TWAS) of pneumonia was performed using the 161 

FUSION package22. We utilised GTEx v7 SNP weights from three tissues that would be 162 

plausibly involved in the pathophysiology of pneumonia (whole blood, lung, and spleen). We 163 

corrected for the number of cis-heritable genes outside the MHC region for which a TWAS Z 164 

could be calculated in each tissue (Supplementary Methods). For transcriptome-wide 165 

significant genes, we tested whether the expression and pneumonia-associated signal displayed 166 

statistical colocalisation as encompassed by the SNP weights with the coloc package as 167 

implemented by FUSION11. In addition, we probabilistically finemapped transcriptome-wide 168 

significant regions using the FOCUS approach to derive a credible set of putative causal genes, 169 

as described previously23. We utilised the default Bernoulli prior (𝑝 = 1 x 10-3) and chi-square 170 
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prior variance (𝑛𝜎! = 40) to approximate Bayes’ factors for each gene, and thus, derive the 171 

posterior inclusion probabilities (PIP) for each gene to be causal given its observed TWAS Z.  172 

 173 

 174 

Genetic correlation and causal inference 175 

We estimated genetic correlation between pneumonia and 180 high quality, European ancestry 176 

GWAS using LDSR as implemented by the LDhub application24. For Bonferroni significant 177 

genetic correlation estimates, we constructed a latent causal variable (LCV) model using the 178 

most significant trait from each LDhub phenotypic category and pneumonia to evaluate 179 

evidence for genetic causality between traits, as outlined extensively elsewhere25–27. A strong 180 

estimate of the posterior genetic causality proportion (GCP) was defined as significantly 181 

different from zero (one sided t-test) and an absolute GCP estimate > 0.6. Weak GCP estimates 182 

close to zero for genetically correlated traits imply that their relationship is potentially mediated 183 

by horizontal pleiotropy, whereby there are shared pathways, but the two traits do not likely 184 

exhibit vertical pleiotropy by acting within the same pathway. We additionally evaluated 185 

evidence for a causal relationship between HDL cholesterol and pneumonia by constructing a 186 

multivariable Mendelian randomisation (MR) model using the TwoSampleMR package28. This 187 

multivariable model leveraged genetic instrumental variables (IV) from three highly 188 

biologically interconnected lipid traits (LDL, HDL, and triglycerides) and estimated the effects 189 

of these IVs on the outcome conditioned on their association with the other two lipid classes29. 190 

 191 

Genetically informed drug repurposing 192 

We implemented three strategies to propose drug repurposing candidates: i) single loci drug-193 

gene matching, ii) genetic correlation and/or evidence of a putative causal relationship between 194 

a biochemical trait that could be targeted by an approved drug, and iii) precision drug 195 

repurposing using the polygenic scoring orientated pharmagenic enrichment score (PES) 196 

approach. Full details of these analyses are described in the supplementary methods. We 197 

utilised a panel of 50 biochemical GWAS performed by the Neale lab from the UK biobank 198 

which had high or medium confidence estimates of SNP heritability that were significantly 199 

different from zero (http://www.nealelab.is/uk-biobank) and estimated genetic correlation and 200 

the posterior mean GCP for trait pairs that survived Bonferroni correction. We sought to 201 

replicate the results of the multivariable MR for the three lipid classes (LDL, HDL, and 202 

Triglycerides) using the UK biobank GWAS. MR was then performed to evaluate further 203 

evidence for a causal effect between gamma-glutamyltransferase (GGT) and pneumonia, as 204 
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well as triglycerides and pneumonia (univariable estimate). Specifically, we defined 205 

independent, non-palindromic genome-wide significant variants as IVs and constructed four 206 

MR models with differing underlying assumptions (two inverse-variance weighted estimators 207 

with fixed or multiplicative random effects, weighted median estimator, weighted mode 208 

estimator, and MR-Egger)30–33. A series of sensitivity analyses to evaluate statistical evidence 209 

for confounding pleiotropy was then undertaken as outlined in the supplementary methods32–210 
35.  211 

 212 

The PES framework is based on the postulation that an enrichment of genetic risk within a 213 

biological pathway with known drug targets may be an impetus to repurpose a drug which 214 

modulates that pathway for individuals who carry the high genetic load mapped to the pathway, 215 

as described elsewhere36,37. Specifically, we identify druggable pathways with an enrichment 216 

of common variant associations relative to the rest of the genes tested and construct pathway-217 

based risk scores for these gene-sets (Supplementary Methods). We utilised the UK biobank 218 

(UKBB) cohort to test the association between a pneumonia PES and pneumonia phenotypes 219 

recorded for these participants38,39. These analyses are described in detail in the supplementary 220 

methods. Briefly, we retained 336,896 unrelated white British ancestry participants and 221 

13,568,914 autosomal variants that survived a series quality control steps, including, 222 

imputation quality filtering (INFO > 0.8), MAF > 1 x 10-4, call rate > 0.98, and filtering strong 223 

deviations from the Hardy-Weinberg equilibrium. Self-reported pneumonia diagnosis and 224 

ICD-10 codes from hospital inpatient records were used to construct the pneumonia phenotype 225 

(Supplementary Methods). There were 10,540 individuals from the genotyped subset of the 226 

cohort included in the PES calculation with a primary or secondary diagnosis using the ICD-227 

10 primary or secondary diagnosis codes relevant to pneumonia. In the strict phenotype 228 

definition, we defined cases as those satisfying ICD-10 criteria, and controls as all those who 229 

did not have one of those codes recorded along with any individual who self-reported 230 

pneumonia without a pneumonia ICD-10 code (NControls = 320,213). Individuals who self-231 

reported pneumonia but were not assigned a relevant ICD-10 code were excluded from the 232 

study cohort in this strict configuration. In the broad-phenotype definition, pneumonia cases 233 

were individuals with a relevant ICD-10 code or a self-reported lifetime pneumonia diagnosis 234 

(N = 15,138). In other words, the strict definition only included individuals with a pneumonia 235 

ICD-10 code. The PES was then constructed using common, autosomal variants outside of the 236 

MHC region mapped to genes in that pathway with PRsice2 assuming an additive model, with 237 

further details provided in the supplementary methods40. The P value threshold of including 238 
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variants in the PES was the same as what was used to identify the gene-set. A genome wide 239 

PRS for pneumonia susceptibility was also constructed in an analogous fashion.  240 

 241 

We explored the phenotypic relevance of pneumonia PES profiles using a random subset of 242 

the UKBB (N ~ 10,000) for which a multiplex assay was performed to quantity 243 

immunoglobulin G (IgG) antibody response to a series of antigens for infectious agents 244 

selected for study, as outlined elsewhere41. The two phenotypes of interest here were a binary 245 

indicator of seropositivity for 14 infections with seroprevalence > 5% in our genotyped subset 246 

of the cohort, and amongst seropositive individuals, a continuous measure of antibody response 247 

(mean fluorescence intensity) to each antigen for that infection – termed seroreactivity. The 248 

correlation between PES or PRS and seroreactivity was assessed by linear regression, whilst 249 

logistic regression was utilised for seropositivity. Both models were covaried for sex, age, age2, 250 

ten SNP derived principal components, genotyping batch, and two QC metrics related to the 251 

antibody assay (Supplementary Methods). A heatmap of the regression t statistics was 252 

constructed using the ComplexHeatmap package42 253 

 254 

RESULTS 255 

 256 

Novel common and rare variant loci associated with pneumonia 257 

We performed a genome-wide meta-analysis of pneumonia using common and rare (MAF < 258 

0.01) overlapping variants from 23andMe and FinnGen release three, with 6,888,413 and 259 

834,366 common and low frequency sites tested, respectively. We estimated the SNP based 260 

heritability as approximately 3.24% on the liability scale (Fig. 1b), using the incidence of 261 

pneumonia in the FinnGen cohorts as the population prevalence (12.67%), although we 262 

acknowledge the population prevalence of pneumonia is difficult to quantify. As a result, we 263 

re-estimated h2 using a more conservative population prevalence value based on phenotype 264 

data from the UK biobank (3.20%), resulting in a lower estimate of h2SNP = 0.0213. The point 265 

estimate of SNP-based h2 was higher in the 23andMe cohort. h2SNP = 0.054, although the 266 

estimate was more precise in the meta-analysis than in 23andMe and FinnGen alone: ZMeta = 267 

9.26, Z23andMe = 7.44, and ZFinnGen = 4.12. In line with previous comparisons between self-268 

reported and clinically ascertained phenotypes, the heritability estimate was lower in FinnGen 269 

than 23andMe. There was some evidence of test statistic inflation when visualised as a QQ plot 270 

(Supplementary Figure 1), however, the proportion of the polygenic signal in the meta-analysis 271 
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attributed to model misspecification and/or confounding was around 11% (LDSR ratio = 272 

0.1145), whilst the mean 𝜒2 was large enough to estimate heritability (1.11). 273 

 274 

There were four common genomic loci that surpassed the conventional genome-wide 275 

significance threshold (P < 5 x 10-8, Table 1, Fig. 1a,c, Supplementary Fig. 2-5). The effect 276 

sizes of these common variant signals were small in accordance with expectation, with each 277 

SNP increasing or decreasing the odds of pneumonia by around 5%. Unsurprisingly, the most 278 

significant signal spanned the major histocompatibility complex (MHC) region, which has 279 

been previously published as associated with pneumonia in the 23andMe cohort5. Due to the 280 

complexity of this region, we define the MHC signal as a single locus, with the minor allele of 281 

the lead common SNP associated with a small reduction in the odds of pneumonia (OR = 0.94 282 

[95% CI: 0.92, 0.96], P = 6.44 x 10-13). The most significant novel common signal in this study 283 

was a region located on chromosome 11, with the lead SNP (rs28624253) located upstream of 284 

the MUC5AC gene that encodes a mucin protein, with three other genes that encode a mucin 285 

protein within 400 kilobases of the lead SNP MUC6, MUC2, and MUC5B. Importantly, 286 

rs28624253 was similarly associated in the 23andMe (P = 2.65 x 10-6) and FinnGen (P = 3.42 287 

x 10-6) cohorts and there was no appreciable evidence for differences in population structure 288 

between the input GWAS driving this signal. Mucins are heavily glycosylated proteins that 289 

play a number of important roles, particularly in relation to the maintenance of mucosal 290 

barriers43 . Mucin genes are known the exhibit somewhat pervasive genomic complexity and 291 

evidence of heterogeneity between populations, to ensure that this signal is not just an artefact 292 

of this, we performed a phenome-wide association study of the lead SNP and found that this 293 

variant was associated with only relevant phenotypes to pneumonia. Specifically, it was linked 294 

to adult-onset asthma, self-reported regular cough and mucus, and eosinophil count at a 295 

conventional phenome-wide significance threshold (P < 1 x 10-5). Given rs28624253 was 296 

associated with adult-onset asthma at a more stringent level of genome-wide significance, we 297 

tested whether the mucin signal observed for pneumonia and adult-onset asthma were driven 298 

by the same underlying causal variant and found strong evidence to support this hypothesis 299 

(posterior probability > 90%). We caution that this assumes the existence of a single causal 300 

variant, which may be unrealistic given the complexity of this region. As we visualise in 301 

supplementary figure 6, if one utilises a more conservative prior probability of a shared causal 302 

variant than there is some evidence that there is a different underlying causal variant but that 303 

the locus is still associated with both traits. It should also be noted that the odds increasing 304 

allele for pneumonia (G) is perhaps counterintuitively associated with decreased risk of asthma, 305 
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which suggests a multifaceted biological mechanism which may be related to the role of mucins 306 

in the airway. 307 

 308 

The third most significant locus encompassed several genes including SAMD8, DUSP13, and 309 

VDAC2, whilst locus four was largely intergenic, with some variants overlapping long-310 

noncoding RNAs with limited annotation information (Supplementary Text). There were also 311 

two loci that almost surpassed genome-wide significance; specifically, a locus physically 312 

mapped to the interleukin-6 receptor region (IL6R – lead SNP: rs12730036, P = 5.61 x 10-8), 313 

and a region on chromosome 12 where the lead SNP is mapped to an intron of TNFRSF1A, 314 

which encodes a tumour necrosis factor receptor (lead SNP: rs1800693, P = 5.5 x 10-8). We 315 

integrated functional genomic and annotation data to prioritise candidate genes from the novel 316 

genome-wide significant loci in this study, as described in the supplementary text. We found 317 

that genes in the non-MHC loci implicated by at least two lines of evidence were enriched in 318 

phenotypically relevant pathways such as mucus layer, lung fibrosis, and O-linked 319 

glycosylation of mucins (Supplementary Figure 5, Supplementary Text). .Interestingly, despite 320 

the meta-analysis combining a self-reported phenotype with clinically ascertained pneumonia 321 

diagnoses, only the lead SNP in the MHC locus demonstrated any significant heterogeneity in 322 

the effect sizes between the two cohorts (Cochran’s Q, PHet = 0.04, Table 1, Supplementary 323 

Text, Supplementary Figure 7). 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 
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Figure 1. Genome-wide meta-analysis of pneumonia susceptibility. (a) Manhattan 373 

plot of common variant GWAS for pneumonia, as is usual practice, each point is the -374 

log10 P value of a variant for association with pneumonia, with the red dotted line 375 

indicative of genome-wide significance (P < 5 x 10-8). Lead SNPs are highlighted and 376 

labelled on the plot, except for the MHC locus which we denote as “MHC” due to its 377 

complexity. (b) Estimates of SNP-based heritability (h2) on the liability scale for the 378 

23andMe and FinnGen cohorts individually, as well as the using the inverse-variance 379 

weighted effects meta-analysis of the two cohorts. The error bars represent the standard 380 

error of h2. (c) Region plots for the three-novel genome-wide significant loci outside of 381 

the MHC region, the LD for each variant with the lead SNP estimates from the 1000 382 

genomes phase III European reference set was utilised to colour the points.  383 

 384 

Table one: Lead SNPs within common genome-wide significant loci associated with 385 

pneumonia 386 

 Common (MAF > 0.01) lead SNPs were defined as independent SNPs (r2 < 0.1) within each genomic locus. 387 
The effect allele (EA) and non-effect allele (NEA) was reported for this table such that the effect allele was the 388 
minor allele. The effect allele frequency (EAF) is denoted in gnomAD v2.1.1 for non-Finish Europeans (NFE) 389 
and Finns (FIN). All odds ratio and their respective confidence intervals were calculated relative to the EA. 390 
Heterogeneity of effect between the 23andMe and FinnGen cohorts was tested using Cochran’s Q, with the P 391 
value of that test reported here (PHet). Due to the complexity of locus 1 (MHC), we report only a single common 392 
SNP for this locus.  Locus coordinates in in hg19 assembly.  393 
 394 

The novel genome-wide significant loci outside the MHC region were finemapped to estimate 395 

a 95% credible set of plausible causal variants assuming a single causal variant in each region 396 

(Supplementary Tables 1-3). The variants encompassed by the 95% credible set for the 397 

Lead SNP Locus EA/NEA EAF 

(NFE) 

EAF 

(FIN) 

 

OR 95% 

CI 

PGWAS PHet 

rs9268966 MHC G/A 0.26 0.33 0.94 0.92, 

0.96  

6.44e-13 0.04 

rs28624253 chr11:1110395-

1232702 

G/A 0.37 0.41 1.05 1.04, 

1.07 

5.27e-11 0.44 

rs10762653 chr10:76815686-

76993015 

G/A 0.16 0.18 1.06 1.04, 

1.08 

2.70e-9 0.61 

rs264954 chr2:104056454-

104380545 

T/C 0.46 0.45 0.96 0.95, 

0.98 

4.44e-8 0.53 
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rs28624253 locus were all proximally upstream/downstream of MUC5AC, or within the gene 398 

itself, supporting the relevance of this mucin gene for that association signal. The second most 399 

significant novel pneumonia associated locus discovered in this study (rs10762653 lead SNP) 400 

had a smaller credible set, with the lead SNP having a considerably high posterior probability 401 

than the remaining credible set SNPs (PP = 0.676). Interestingly, the lead SNP for this locus 402 

has low estimated LD with other proximal genome-wide significant SNPs (Fig 1c), suggesting 403 

the existence of several causal variants that cannot be accounted for by this method. Finally, 404 

the intergenic region spanned by the third novel genome-wide significant locus yielded a large 405 

credible set of over 200 variants and, as a result, further functional interrogation is required to 406 

mechanistically interpret this locus.  407 

 408 

Smoking status was not included as a covariate in the respective GWAS meta-analysed, and 409 

thus, we sought to investigate whether genetic variants associated with smoking may confound 410 

our findings in this GWAS. Specifically, we genetically conditioned common variant 411 

associations on their effect size from a GWAS of smoking initiation and smoking heaviness 412 

using mtCOJO8. The effect sizes of the lead SNPs from the novel genome-wide significant loci 413 

were not greatly attenuated after conditioning on either of the smoking phenotypes and 414 

remained genome wide significant, with the exception of the locus tagged by rs264954 415 

(Conditioned on smoking initiation: P = 7.15 x 10-7; Conditioned on smoking heaviness: P = 416 

1.05 x 10-7). Furthermore, there was a slight reduction in the SNP heritability estimate on the 417 

liability scale, although this only amounted to a less than 0.5% difference after conditioning on 418 

either smoking phenotype – h2Conditioned on smoking initiation = 3.08%, h2Conditioned on smoking heaviness = 419 

2.95%. 420 

 421 

We also uncovered a genome-wide significant association between a rare intergenic variant in 422 

the MHC region and pneumonia - rs11962863, OR = 1.59 [95% CI: 1.44, 1.74], P = 1.15 x 10-423 
9. This relatively large effect allele, however, did display statistically significant heterogeneity 424 

in its effect between the two cohorts (P = 8.20 x 10-5). This locus is considerably rarer in the 425 

Finnish population (AF = 5.8 x 10-4) than non-Finnish Europeans in gnomAD (AF = 2.9 x 10-426 
3), which may account for its larger effect size in the FinnGen cohort. Due to the complexity 427 

of recombination and linkage in the MHC locus, the functional consequences of this variant 428 

remains difficult to interpret at an individual level without considering the local genomic 429 

context of affected individuals, such as HLA type. We also detected six additional regions with 430 
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rare variants that surpassed suggestive significance for association with pneumonia (P < 1 x 431 

10-5, Supplementary Table 4).  432 

 433 

We sought to replicate our genome-wide significant and suggestively associated common loci 434 

using two GWAS from the independent UK Biobank cohort – specifically, we utilised two 435 

automated GWAS that encompassed a self-reported pneumonia phenotype (NCase = 6572, 436 

NControls = 456,361) and ICD-10 derived pneumonia diagnoses (NCase = 10,059, NControls = 437 

398,538). We investigated both phenotyping approaches given our GWAS was a meta-analysis 438 

of self-reported and clinically ascertained data. In the self-reported pneumonia UKBB GWAS, 439 

we found that no SNPs replicated at genome-wide significance, however, the MUC5AC lead 440 

SNP was nominally associated in the same direction (𝛽 = 0.001, SE = 2.6 x 10-3, P = 0.022), 441 

with the MHC lead SNP also was also nominally significant (P = 0.03) and the remaining two 442 

lead SNPs demonstrated no significant evidence of replication. The ICD-10 phenotype GWAS 443 

in the UKBB did not replicate any of our non-MHC genome-wide significant SNPs at even 444 

nominal significance, although MHC SNPs were found to be nominally significant. It should 445 

be noted that a limitation of both GWAS is that they focused only on either the self-reported 446 

or clinically ascertained phenotype in the UKBB, meaning some controls plausibly would have 447 

had pneumonia, and thus, decreasing power. Moreover, the effective sample sizes (Neff) of 448 

these UKBB GWAS were markedly smaller than ours (177749 in the current discovery meta-449 

analysis versus 25915 and 39246, respectively).  450 

 451 

We also considered two very recent smaller sample-size pneumonia GWAS without publicly 452 

available summary statistics to see if we could replicate their findings. Firstly, Chen et al. 453 

performed a GWAS of pneumonia susceptibility and severity in the Vanderbilt University 454 

Biobank (BioVU, NCase = 8889, NControls = 60,767, Neff = 31019) , European ancestry cohort)44. 455 

They found that a genome-wide significant common signal in Europeans associated with 456 

pneumonia severity, with the lead SNP rs10786398 nominally associated in our meta-analysis: 457 

𝛽 = -0.029, SE = 0.001, P = 2.5 x 10-4, whilst we were unable to replicate the significant rare-458 

variant association signal from that study as the variant was not available in our analyses. 459 

Moreover, a meta-analysis of a smaller previous FinnGen release and ICD-10 (Neff = 94584) 460 

derived pneumonia in the UKBB found two genome-wide significant index SNPs in the 461 

15q15.1 region that were directionally consistent in our analyses, although not statistically 462 

significant, with a trend observed for rs76474922: 𝛽 = 0.025, SE = 0.01, P = 0.08 45. The SNP-463 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.01.24.21250424doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.24.21250424
http://creativecommons.org/licenses/by-nc/4.0/


 15 

based heritability estimate from that study also closely mirrored ours (3.3% on the liability 464 

scale), supporting the reliability of this study’s estimate in a larger sample.  465 

 466 

Gene and gene-set association further supports a role for mucin biology in pneumonia 467 

We performed gene and gene-set association to investigate associations with pneumonia 468 

beyond univariable SNP-phenotype relationships (Supplementary Tables 5,6). Six genes 469 

outside of the MHC region were significant in the meta-analysis after the application of 470 

multiple-testing correction (MUC5AC, MUC5B, DUPD1, SAMD8, DUSP13, and TOX), all of 471 

which were within genome-wide significant loci except for the TOX gene (P = 1.26 x 10-6), 472 

which plays a role in T cell persistence during response to a pathogen46,47. Gene-set association 473 

revealed a single gene-set for which its member genes were enriched with pneumonia 474 

associated common variation relative to all other genes tested: Termination of O-glycan 475 

biosynthesis – 𝛽 = 0.89, SE = 0.21, P = 1.05 x 10-5, q = 0.01. The strongest gene-based signal 476 

in this pathway was accounted for by two mucin genes that span part of the genome-wide 477 

significant loci on chromosome 11 (MUC5AC, MUC2), whilst there were four other mucin 478 

genes within this set that displayed a nominal gene-based association (P < 0.05) outside that 479 

region (MUC15, MUC16, MUC12, and MUC17). The signal from this gene-set remained 480 

relatively robust upon using a more conservative definition of the genic boundaries for SNP to 481 

gene annotation during gene-based association: 𝛽 = 0.66, SE = 0.19, P = 3.04 x 10-4.  Rare 482 

variants were then subjected to gene-based association by leveraging the properties of the 483 

Cauchy distribution, such that covariance between P values did not need to be estimated. No 484 

genes surpassed Bonferroni correction, considering genes with at least two rare variants. The 485 

most significant gene found upon testing all genic rare variants was ZNF19, P = 6.3 x 10-5, 486 

whilst FREM1 was the top gene (P = 8.16 x 10-4) considering variants annotated as exonic only 487 

(Supplementary Tables 7,8).  Furthermore, we utilised the gene-based results to construct a 488 

competitive rare variant gene-set association model and tested the same gene-sets as in the 489 

common variant analyses (Supplementary Tables 9,10). While there were no gene-sets that 490 

survived multiple-testing correction utilising all genic rare variants or those with only exonic 491 

annotated sites, we found some support for B lymphocyte antigen response in the rare variant 492 

architecture of pneumonia, as the most significant association from the rare variant model was 493 

with the B cell antigen receptor pathway - 𝛽 = 0.59, SE = 0.19, P = 7.7 x 10-4. Interestingly, 494 

there was also a nominal rare variant signal amongst pathways related to carbohydrate 495 

metabolism (Metabolism of carbohydrates – P = 6.22 x 10-3, Glycosaminoglycan degradation 496 
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– P = 0.02) and glycosylation (N-glycan biosynthesis – P = 0.01), although these results must 497 

be interpreted cautiously given, they do not survive multiple testing correction.  498 

 499 

A transcriptome-wide association study was then undertaken to identify genes for which 500 

genetically predicted expression was correlated with pneumonia susceptibility. We selected 501 

SNP weights from three tissues which are plausibly biologically relevant to pneumonia 502 

pathophysiology: lung, whole blood, and spleen. After applying Bonferroni correction to the 503 

number of tests within each tissue outside the MHC individually, significant correlation was 504 

observed between decreased predicted expression of VDAC2 and pneumonia (Z = -4.39, P = 505 

1.15 x 10-5, Supplementary Table 11) using spleen tissue as the prediction model. The 506 

association between VDAC2 and pneumonia was also supported by SNP weights from the lung 507 

and whole blood, although these did not surpass the Bonferroni threshold: PLung = 5.52 x 10-4, 508 

PWhole blood = 9.97 x 10-4. We tested a related, but distinct hypothesis by assessing evidence for 509 

colocalisation between the GWAS signal spanning VDAC2 and the SNP weights from the three 510 

tissues utilised to construct the model of genetically predicted VDAC2 expression. 511 

Colocalisation assumes a biologically conservative parameter of a single shared causal variant 512 

that underlies the relationship between VDAC2 expression and pneumonia. We observed 513 

heterogeneity between the three tissues, with moderately strong evidence of colocalisation 514 

between VDAC2 expression and SNP weights from whole blood (PPH4 = 0.848), however, 515 

using lung and spleen expression SNP weights there was no strong evidence (PP > 0.8) for any 516 

of the five colocalisation hypotheses. In lung, there was evidence for an association between 517 

VDAC2 lung expression SNP weights and pneumonia (PPH3 = 0.568, PPH4 = 0.363), although 518 

we were not able to clearly determine whether there were two independent SNPs driving the 519 

association (H3) or a shared variant (H4). Interestingly, there was moderate support in the 520 

model leveraging the spleen SNP expression weights that this signal was only associated with 521 

pneumonia and not VDAC2 expression (PPH2 = 0.643), which could be driven by the spleen 522 

model of genetically regulated expression being somewhat less predictive (R2 = 0.038, best 523 

linear unbiased prediction), than in blood (R2 = 0.1, LASSO) and lung (R2 = 0.083, elastic net), 524 

respectively. Probabilistic finemapping of the marginal TWAS Z scores in the VDAC2 region 525 

was then undertaken using a multi-tissue panel to assess evidence for whether VDAC2 is the 526 

causal gene in this region. This locus was dense with genes, with 26 unique genes within the 527 

90% credible set of causal genes. There was moderate evidence that VDAC2 was the most 528 

probable causal gene at this locus given it had the largest absolute TWAS Z, the highest PIP 529 

for an individual model from the adrenal gland (PIP = 0.279), and a relatively large cumulative 530 
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PIP for all 17 VDAC2 models derived a variety of tissues that were finemapped (PIPCumulative 531 

= 0.683). Further investigation is thus needed to refine this locus.  532 

 533 

There were a number of other genes that trended towards surviving multiple-testing correction 534 

in spleen and the other two tissues – including, PLD4 in spleen and STPG1 in lung. We 535 

subjected genes that trended towards multiple testing correction (two orders of magnitude 536 

above the Bonferroni threshold) to gene-set overrepresentation analysis to identify gene 537 

ontologies enriched for these genes, with immune system process and immune response 538 

overrepresented after multiple-testing correction, supporting the biological relevance of this 539 

signal (Supplementary Table 12). For instance, downregulation of tumour necrosis factor 540 

receptor gene TNFRS19 in lung trended towards correlation with pneumonia, Z = -3.44, P = 541 

5.78 x 10-4.  542 

 543 

Pneumonia displays genetic correlation with clinically significant phenotypes 544 

We estimated genetic correlation between pneumonia and 180 GWAS using LDSR, with a 545 

significant non-zero estimate of genetic correlation obtained for twenty phenotypes after the 546 

application of multiple testing correction (P < 2.78 x 10-4, Supplementary Table 13, Fig. 2). 547 

Interestingly, the most significant genetic correlation was found between pneumonia and 548 

insomnia (rg = 0.496, SE = 0.075, P = 3.55 x 10-11), which supports previous observational data 549 

that insomnia and reduced sleep duration increased the risk of developing pneumonia48,49. In 550 

addition, we uncovered significant genetic correlation with other clinically interesting 551 

phenotypes including forced vital capacity (rg = -0.215, SE = 0.0361, P = 2.62 x 10-9), obesity 552 

(rg = 0.3023, SE = 0.0466, P = 9.15 x 10-11), and HDL cholesterol (rg = -0.2876, SE = 0.0664, 553 

P = 1.48 x 10-5).  554 
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 555 

 556 

Figure 2. Estimates of genetic correlation between pneumonia and a panel of 557 

GWAS that survive multiple testing correction. Each panel of the forest plot is the 558 

estimate of genetic correlation by LD score regression (+/- its standard error, denoted 559 

by the error bars). The dotted lines represent a genetic correlation of zero. Panels were 560 

grouped by the phenotypic category of the trait subjected to LDSR.  561 

 562 

 563 

A latent causal variable (LCV) model was then constructed for the most significantly 564 

correlated trait-pairs from each phenotypic category that comprised the 180 GWAS tested for 565 

genetic correlation. The LCV approach leverages the bivariate effect size distribution of 566 

SNPs in two GWAS and their LD scores to estimate a genetic causality proportion (GCP), 567 

such that, evidence of partial genetic causality can be distinguished from genetic correlation. 568 

We found strong evidence (|𝐺𝐶𝑃,| > 0.6) for partial genetic causality of cigarettes per day and 569 

HDL on pneumonia. Both posterior mean GCP estimates were significantly different from 570 

zero, however, the estimate of HDL  → pneumonia (𝐺𝐶𝑃, = 0.758, SE = 0.159, P = 2.20 x 10-571 
11) was more precise than that of cigarettes per day → pneumonia (𝐺𝐶𝑃, = 0.713, SE = 0.225, 572 

P = 3.51 x 10-3). The magnitude of the potential causal relationship between HDL and 573 

pneumonia was further investigated using mendelian randomisation (MR). Given the 574 

biological overlap between the genetic architecture of HDL and other lipid classes, we 575 

constructed a multivariable MR model that conditioned HDL instrumental variables on their 576 

association with LDL cholesterol and triglycerides, obtaining the SNP-exposure estimates 577 
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from the Willer et al. global lipids genetics consortium paper , as has been outlined elsewhere 578 
29,50. There was no evidence of a causal effect of HDL (P = 0.65) or LDL (P = 0.47) 579 

conditioned on the remaining lipid classes, although there was nominal evidence of a risk 580 

increasing effect of triglycerides on pneumonia – 𝛽 = 0.058, SE = 0.028, P = 0.035. These 581 

data highlight the complexities of distinguishing between confounding pleiotropy and 582 

evidence for causal relationships, with further work needed to resolve whether the 583 

directionally disproportionate variant effect sizes for HDL → pneumonia captured by the 584 

LCV model represent a true evidence for a causal relationship or whether other factors like 585 

triglycerides may explain this relationship. In addition, the effect of other confounders like 586 

BMI on these relationships cannot also be ruled out, although BMI did not show evidence of 587 

a causal effect in the LCV model.  588 

 589 

Opportunities for drug repurposing by leveraging the genetic architecture of pneumonia 590 

We sought to interrogate the pneumonia GWAS to propose novel drug repurposing candidates 591 

that could be useful to treat patients diagnosed with pneumonia more effectively. Firstly, we 592 

utilised a very liberal approach which identified genes that were targeted by approved drugs 593 

outside the MHC region physically mapped to loci associated with pneumonia at a minimum 594 

of a suggestive significance threshold (P < 1 x 10-5). There were five such genes that displayed 595 

a high confidence interaction with an approved pharmacological agent with a known 596 

mechanism of action – IL6R, SCNN1A, ATP2B1, ERBB2, and STAT5B). For instance, 597 

Tocilizumab is a monoclonal antibody that targets IL6R which has been suggested as a 598 

repurposing opportunity to use for severe illness following SARS-CoV2 infection, although 599 

results from randomised controlled trials have been mixed in terms of efficacy51. We examined 600 

these genes in the TWAS analyses, however, only IL6R was significantly cis-heritable in one 601 

of the three tissues we utilised. Interestingly, there was a trend towards a correlation between 602 

downregulation of IL6R and increased odds of pneumonia, which would not support the use of 603 

anti-IL-6 receptor agents like tocilizumab – Z = -3.148, P = 1.64 x 10-3. In contrast, the lead 604 

SNP and odds increasing allele of the IL6R locus in this GWAS has been associated with 605 

increased IL6R levels in a protein quantitative trait loci study (pQTL), which would support 606 

the efficacy of tocilizumab. We caution that the pQTL signal is in high LD with a missense 607 

variant (rs2228145), and thus, antigen binding affinity may be altered to create an artefactual 608 

pQTL association. These antigen-binding affinity related effects require further investigation, 609 

particularly in light of the phenomenon of the non-synonymous rs2228415 C allele displaying 610 

correlation with increased protein abundance from the pQTL study52 but with decreased 611 
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expression via RNAseq derived eQTL estimates from whole blood by GTEx, along with 612 

decreased CRP levels in the UK biobank, a well-characterised biomarker of IL-6 receptor (IL-613 

6R) inhibition. Previous functional analyses of the rs2228145 non-synonymous allele have 614 

demonstrated that it likely impairs IL6 signalling, with increased expression of soluble 615 

circulating IL-6R but downregulation of the membrane bound isoform53. As a result, we 616 

conclude that based on the genetic association alone that the anti-inflammatory effect of IL-6R 617 

blockade may have a risk-increasing impact on pneumonia, although further work is required 618 

to evaluate tocilizumab as a potential repurposing opportunity, particularly as its efficacy 619 

would likely be dependent on its temporal application in the clinical course of the disease. 620 

 621 

A panel of 50 metabolites and blood cell count phenotypes from the UK biobank (UKBB) with 622 

moderate to high confidence SNP-based heritability estimates were then tested for genetic 623 

correlation with pneumonia (Supplementary Table 14). The concept underlying this is that if 624 

there is evidence of a relationship between a biochemical trait and pneumonia, then a drug 625 

which modulates that trait in a risk-decreasing direction could be clinically useful, and thus, 626 

repurposed for pneumonia. We found 13 biochemical traits from the UKBB panel that were 627 

correlated with pneumonia after multiple-testing correction (Supplementary Table 15). The 628 

most significant correlation was a positive genetic correlation with triglycerides, followed by 629 

a positive correlation with glycaeted haemoglobin (HbA1c), which is interesting given 630 

previous evidence that hyperglycaemia has a deleterious effect on lung function27,54.  The 631 

correlation between HbA1c and pneumonia may not be necessarily driven by glycaemic 632 

biology, particularly as HbA1c is strongly influenced by haematological factors, although we 633 

did observe weak evidence for a positive correlation between glucose and pneumonia that does 634 

not survive multiple testing correction (P = 0.01, Supplementary Table 15). It should be noted 635 

that this UKBB sample is a larger sample size than the triglyceride GWAS subjected to LDSR 636 

in the broad LDhub GWAS panel from earlier in the manuscript, and thus, the estimate is more 637 

significant in this analysis. In addition, the HDL GWAS from the UKBB was not included due 638 

to anomalous estimates of large standard error when considering its heritability estimate 639 

(Supplementary Methods). There was only very weak evidence from the LCV model for a 640 

potential causal influence of triglycerides on pneumonia (𝐺𝐶𝑃, = 0.465, SE = 0.226, P = 0.052, 641 

Figure 3a), although this broadly supports the results of the lipid multivariable MR described 642 

earlier in the manuscript that provided nominal evidence of a deleterious impact of increased 643 

triglycerides. We attempted to replicate the earlier multivariable MR results using the LDL, 644 
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HDL, and triglyceride GWAS from the UK biobank as the exposure traits rather than the Willer 645 

et al. global lipids genetics consortium GWAS, with an analogous result that demonstrated an 646 

odds-increasing effect of triglycerides but a non-significant effect of LDL or HDL cholesterol 647 

(Supplementary Table 16). We followed this up by estimating a univariable estimate of 648 

triglycerides → pneumonia, with a 5.4% mean increase in the odds of pneumonia per standard 649 

deviation increase in triglycerides across the five MR methods utilised (Supplementary 650 

Methods, Supplementary Table 17). The causal estimate was only statistically significant in 651 

the case of the two IVW estimators: OR = 1.056 [95% CI: 1.01, 1.104], P = 0.017 (IVW 652 

multiplicative random effects), however, the remaining models had relatively consistent point 653 

estimates of the effect of triglycerides on pneumonia (Figure 3b). There was some nominal 654 

evidence of heterogeneity amongst IV exposure-outcome estimates (Q = 212.51, df = 168, P = 655 

0.01), however, the Egger intercept was not significantly different from – thus, we observed 656 

no direct statistical evidence of confounding pleiotropy. As a result, these data suggest a 657 

potential repurposing opportunity for drugs prescribed for hypertriglyceridemia, such as statins 658 

and fibrates, with the caveat that the MR and LCV models from this study provide only 659 

relatively weak to moderate support, particularly as the mean posterior GCP estimate was low, 660 

and thus, genetic correlation could contaminate the MR estimate.  661 

 662 

The remaining LCV models for biochemical traits genetically correlated with pneumonia did 663 

not indicate any strong evidence of partial genetic causality, with the exception of a putative 664 

effect of gamma-glutamyltransferase (GGT) on pneumonia that approximately reached the 665 

threshold for a strong point estimate of the GCP - 𝐺𝐶𝑃, = 0.59, SE = 0.212, P = 1.08 x 10-4. 666 

GGT is an enzyme that is commonly characterised as a biomarker of liver dysfunction, with 667 

some evidence of an immunological role for this enzyme, as well as its involvement in alveolar 668 

gas exchange. We further investigated this putative causal relationship by leveraging 207 669 

independent SNPs associated with GGT (P < 5 x 10-8) in the UK biobank as IVs – approximated 670 

variance explained by IVs = 6.47%, F-statistic = 114.91. The five MR models implemented in 671 

this study yielded a roughly similar effect size per SD increase in GGT that increased the odds 672 

of pneumonia (mean pneumonia OR per SD GGT increase = 1.055, Supplementary Table 18). 673 

However, the estimates were not statistically significant, with the exception of the weighted 674 

median model (OR = 1.087 [95% CI: 1.01, 1.17], P = 0.025). There was evidence of 675 

heterogeneity amongst the IV exposure-outcome effects, which may be indicative of 676 

confounding pleiotropy (Q = 301.87, df = 206, P = 1.501 x 10-5), although given the large 677 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.01.24.21250424doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.24.21250424
http://creativecommons.org/licenses/by-nc/4.0/


 22 

number of IVs observed heterogeneity is not a surprising phenomenon. Importantly, there was 678 

no statistical evidence of pleiotropy from the intercept of the MR egger model. We caution that 679 

statistical approaches to assess pleiotropy do not and cannot rule out a confounding influence 680 

on the MR estimate, and detailed biological annotation of the IVs would be warranted to 681 

investigate this further. In summary, there may be a causal relationship between GGT and 682 

increased odds of pneumonia which could support inhibition of this enzyme as a treatment 683 

target, with several GGT inhibitors under active development and explored for use in 684 

respiratory illness55,56.  685 

 686 

Furthermore, we compared the MR estimate of the effect of a standard deviation increase in 687 

GGT and triglyceride concentration on the odds of pneumonia to an observational estimate 688 

from the UK biobank sample (Supplementary Methods). We found that the observational 689 

association between a standard deviation increase in triglyceride concentration and pneumonia 690 

was analogous to the univariable and multivariable MR estimates (OR = 1.059 [95% CI: 1.042, 691 

1.076], P = 2 x 10-12), whilst the observed association between GGT and pneumonia was 692 

stronger than the MR estimate, with each standard deviation associated with a 13.54% [95% 693 

CI: 12.43%, 14.56%] increase in the odds of pneumonia amongst UK biobank participants.  694 

Interestingly, these associations were also consistent amongst individuals in the UK biobank 695 

with relatively lower risk of pneumonia, that is, non-smoking females aged 45 or younger at 696 

time of assessment – triglycerides: OR = 1.335 [95% CI: 1.13, 1.555], P = 2.67 x 10-4, GGT: 697 

OR = 1.354 [95% CI: 1.161, 1.553], P = 2.75 x 10-5. These variables are extremely 698 

heterogeneous and there are many potential confounders of the observed effect sizes, however, 699 

it supports the inferred relationship from the LCV and MR models.  700 
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Figure 3. Investigating the potential utility of modulating biochemical traits as 718 

drug repurposing opportunities for pneumonia. (a) Latent causal variable models 719 

constructed between genetically correlated trait pairs after Bonferroni correction. Each 720 

point represents the genetic causality proportion, with the y axis denoting the precision 721 

of the GCP estimate, that is, its Z score. The genetic correlation estimate between the 722 

two traits was utilised to shade the points, with the larger points also indicative of a 723 

larger GCP Z score. A positive GCP estimate is indicative of partial genetic causality 724 

of the biochemical trait → pneumonia, whilst a negative estimate represents the 725 

converse. (b) A Mendelian randomisation (MR) analysis of the effect of genetically 726 

proxied gamma glutamyl-transferase (GGT) and triglycerides on the odds of 727 

pneumonia. The scatter plot visualises the effect of each instrumental variable SNP on 728 

GGT or triglycerides verses its effect on pneumonia, with the regression trend line the 729 

MR estimate from each of the five models implemented. Similarly, the forest plot 730 

indicates the pneumonia odds ratio for each of the MR models, with the error bar 731 

indicative of the 95% confidence intervals. The MR models were as follows: mode = 732 

weighted mode estimator, median = weighted median estimator, IVW-FE = inverse-733 

variance weighted estimator with fixed effects, IVW-MRE = inverse-variance weighted 734 

estimator with multiplicative random effects, Egger = MR-Egger regression. 735 

 736 

 737 

Precision drug repurposing to treat pneumonia 738 

 739 

We implemented the pharmagenic enrichment score (PES) approach to identify drug 740 

repurposing candidates that could be targeted more precisely based on genetic risk27,37. Briefly, 741 

the PES is a genetic risk score specifically within a biological pathway that is targeted by 742 

approved drugs. The concept underlying the PES is that individuals with elevated genetic risk 743 

within a particular druggable set of genes may benefit from a pharmacological agent that 744 

modulates the pathway in question. Firstly, we identified five druggable pathways that 745 

displayed an enrichment of the common variant genetic architecture of pneumonia at one of 746 

four P-value thresholds for the inclusion of variants in the model (FDR < 0.05, Table 2, 747 

Supplementary Table 19, Supplementary Methods). These included two complement-related 748 

pathways, p53 signalling, and bile acid metabolism.  749 

 750 
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Table 2. Candidate druggable gene-sets that could be utilised to calculate pharmagenic 751 

enrichment scores 752 

PES gene-set PT1 P Example drug/nutraceutical 

P53 signalling pathway 0.05 2.13 x 10-8 Fostamatinib 

Lectin induced complement pathway 0.05 2.98 x 10-8 Human immunoglobulin 

Complement pathway 0.05 6.81 x 10-8 Zinc 

Bile acid metabolism 0.005 1 x 10-6 Atorvastatin 

RIG-I-like receptor signalling pathway 0.005 1.58 x 10-5 Etanercept 
1PT = P value threshold for variant inclusion in the model 753 
 754 

There were a number of diverse compounds that targeted these pathways, with compounds 755 

identified as repurposing candidates through testing whether there was a statistically significant 756 

overrepresentation of their targets in the gene-set, along with high confidence single drug-gene 757 

interactions (Supplementary Tables 20,21). For instance, targets of the micronutrient zinc were 758 

overrepresented amongst genes in the Complement pathway gene-set, supporting previous 759 

evidence that zinc can modulate complement activation 57,58.  760 

 761 

Characteristics of pneumonia pharmagenic enrichment scores 762 

 763 

We investigated the properties of these five scores in the UKBB cohort. Interestingly, there 764 

were no large correlations (all r < 0.07) between the PES and a genome-wide polygenic risk 765 

score for pneumonia, which supports our hypothesis that pathway-based risk scores may 766 

provide novel biological insights that are not encompassed by PRS constructed from variants 767 

throughout the genome. Both the genome wide PRS and the PES profiles were not significantly 768 

associated with pneumonia diagnosis (self-reported/clinically ascertained or clinically 769 

ascertained only, Supplementary Tables 22,23, Supplementary Methods). This is perhaps not 770 

surprising given the low SNP heritability of pneumonia and the heterogeneity of the phenotype 771 

– however, we believe this does not preclude the relevance of PES at an individual level. For 772 

instance, given the putative relationship between hypertriglyceridemia and increased odds of 773 

pneumonia, as supported by this study, we tested the relationship between the pneumonia Bile 774 

acid metabolism PES and measured triglycerides in the UKBB. There was a small but 775 

significant positive correlation between the PES and triglyceride concentration – 𝛽 = 0.01, SE 776 

= 0.002, P = 1.69 x 10-4, which was significant even after adjusting for statin use or using 777 

triglyceride values as the outcome variable winsorized at three standard deviations above the 778 
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mean to guard against an excessive influence of outliers (𝛽 = 0.01, SE = 0.002, P = 1.43 x 10-779 
4). This relationship with triglycerides was not seen using genome wide PRS (β = 1.57 x 10-4, 780 

SE = 0.002, P = 0.93).  781 

 782 

 Associations between pneumonia pharmagenic enrichment scores and host susceptibility to 783 

infection 784 

 785 

The relationship between PES, as a function of host genetic susceptibility to pneumonia, and 786 

antibody response to infection was then assessed in a subset of the UKBB with these data 787 

available and passing our genotyping QC thresholds (N = 6443). We implemented these 788 

analyses given the host-immune response is directly relevant to pneumonia and if the PES 789 

displays distinct correlations with antibody response compared to genome-wide pneumonia 790 

PRS, it would emphasise the potential biological utility of the PES framework. Firstly, we 791 

tested the association between each PES and antibody response to 28 antigens amongst 792 

individuals with detectable levels of antibodies for 14 infections (seroreactivity, Fig. 4c, 793 

Supplementary Table 24). The strongest relationship between a PES profile and seroreactivity 794 

was a positive correlation between the Complement pathway PES and IgG response to the 795 

major capsid protein VP1 of the BK polyomavirus, with each SD increase in the PES associated 796 

with a 0.05 (0.01) SD increase in antibody response, P = 4.1 x 10-4, which trended towards 797 

surviving multiple testing correction (q = 0.07). There was no association between genome 798 

wide PRS and IgG mediated response to this antigen. There were other nominally significant 799 

correlations observed (Fig. 4a), with most of these correlations positive and potentially 800 

indicative of an increased immune response. In addition, susceptibility to infection 801 

(seropositivity) was also investigated (Supplementary Table 25). For instance, a nominal 802 

association uncovered between RIG-I-like receptor signalling pathway and decreased odds of 803 

herpes simplex virus-1 infection (OR = 0.93 per SD in score [95% CI: 0.87, 0.98], P = 4 x 10-804 
3), whilst Complement pathway PES was nominally associated with increased odds of positive 805 

H. pylori serostatus - OR = 1.07 per SD in score [95% CI: 1.01, 1.12], P = 0.02.  806 

 807 

 808 

 809 

 810 

 811 

 812 
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 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

Figure 4. The relationship between host genetics pneumonia pathway based 839 

pharmagenic enrichment scores and antibody response. (a) Nominally significant 840 

associations between pneumonia PES and seropositivity as a binary variable. The forest 841 

plot denotes the odds ratio of each infection serostatus (error bars represent 95% 842 

confidence intervals) per SD increase in the PES tested. The infections abbreviated are 843 

as follows: MCV = Merkel Cell Polyomavirus, JCV = Human Polyomavirus JCV, HSV 844 

= herpes simplex virus 1, HSV2 = herpes simplex virus 2, H. pylori = Helicobacter 845 

pylori. (b) IgG response (mean fluorescence intensity) to the major capsid protein VP1 846 

a b 
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of the BK polyomavirus in the 10th percentile (1st decile, denoted 1), 50th percentile (5th 847 

decile, denoted 5), and 90th percentile (10th decile, denoted 10) of the complement 848 

pathway PES amongst the genotyped subset of the UKBB subjected to antibody 849 

screening included in our analyses. (c) Heatmap of the regression t statistic 850 

(beta/standard error) for the correlation between each PES and PRS with respective IgG 851 

response to antigens amongst individuals seropositive for that infection. Hierarchical 852 

clustering was applied to the rows and columns using Pearson’s correlation distance. 853 

 854 

DISCUSSION  855 

In this study, we uncovered the first significant association signals for lifetime pneumonia 856 

susceptibility outside of the MHC region. Interestingly, there was also a novel low frequency 857 

variant in the MHC itself which reached genome-wide significant that confers a relatively large 858 

(~ 59%) increase in the odds of pneumonia, reflecting the immense heterogeneity spanned 859 

within this region. Further analyses of the MHC signal are warranted, particularly to 860 

deconvolve specific HLA types that may contribute to pneumonia susceptibility and 861 

progression. Each of the loci beyond the MHC identified this study were relatively complex, 862 

although we were able to derive a 95% credible set for the most significant non-MHC locus on 863 

chromosome 11 that implicated the mucin gene MUC5AC. It should be noted that our fine-864 

mapping approach is relatively biologically naïve as it assumes a single causal variant, and 865 

thus, the involvement of other genes remains unclear. MUC5AC is an interesting candidate 866 

given that it has been previously implicated in the pathogenesis of respiratory illness and the 867 

role of mucins in physical defence against pathogens via mucociliary clearance59. This heavily 868 

glycosylated protein is lowly expressed in normal respiratory epithelium, however, is 869 

upregulated upon in response to perturbagens, such as viral infection60,61. We posit that 870 

upregulation of MUC5AC may be deleterious in the context of pneumonia given recent 871 

evidence that this protein can enhance airway inflammation induced by viral infection62, 872 

although dissection of the mechanisms of variants in this locus are warranted, particularly given 873 

the apparent discordant relationship of this signal we observed on the odds on asthma. 874 

Interestingly, there are some preliminary data that suggests MUC5AC is upregulated in the 875 

airway mucus of patients with severe COVID-19, although these studies were conducted using 876 

small sample sizes63,64. There was also evidence of a more expansive polygenic signal amongst 877 

mucin and beta-galactoside/N-acetylgalactosaminide genes in the termination of O-glycan 878 

biosynthesis pathway, whereby sialic acid residues conjugated to mucins can terminate O-879 

glycan biosynthesis65. Interestingly, therapies specifically targeting mucin-linked O-880 
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glycosylation are now under active development, including a recently proposed hexosamine 881 

analog that demonstrated potent inhibition of O-glycan biosynthesis and downregulation of 882 

neutrophil infiltration in rodents66. 883 

 884 

Drug repurposing is an attractive downstream application for GWAS, and we demonstrate its 885 

potential utility for pneumonia through three distinct methods. Causal inference between 886 

biochemical traits and pneumonia may provide repositioning opportunities along with a greater 887 

understanding of pathological mechanisms in the disorder. For instance, we reveal evidence to 888 

suggest a potential protective effect of HDL cholesterol and a deleterious impact of elevated 889 

triglycerides on the odds of pneumonia. These data support observational data that lower 890 

baseline HDL and elevated triglycerides have risk-increasing properties for pneumonia67–69, . 891 

We emphasise that our data only provided weak to moderate support for a causal influence of 892 

lipid abundance on pneumonia, and replicated, well-powered randomised controlled trials are 893 

needed to definitively assess the suitability of lipid-modifying agents like statins. A key 894 

limitation of proposing drug repurposing candidates for the phenotype as a singular entity is 895 

that it ignores the inherent heterogeneity of pneumonia onset and clinical course. It has been 896 

shown previously that individual genes supported by GWAS significantly increase the 897 

likelihood of a candidate drug being successfully approved from the phase I stage 70, however, 898 

the relevance of more expansive association signals relating to biological networks for 899 

precision medicine remains unclear As a result, we sought to implement an approach which 900 

seeks to target drug repositioning opportunities to those with elevated genetic risk within 901 

pathways relevant to the compound (PES, one of the prioritised pathways for the construction 902 

of a PES was the Bile acid metabolism gene-set, further supporting the relevance of compounds 903 

that modulate cholesterol. In the UKBB cohort, we demonstrated that these scores were distinct 904 

from genome-wide PRS, and thus, may offer biological insights that were missed by using a 905 

genome-wide score. For example, the Bile acid metabolism PES was positively correlated with 906 

triglyceride levels, whilst this was not observed for PRS. We caution that one cannot draw a 907 

causal inference from this relationship. In addition, the putative relationship between PES and 908 

IgG response to antigens is biologically relevant both in terms of increased and decreased 909 

antibody response. One can conceptualise the phenotype of pneumonia as having a contribution 910 

from increased likelihood of infection, but also an aberrant inflammatory response once 911 

infected with a pathogen. The distinct signal observed with these IgG phenotypes for the 912 

pathway-based PES compared to genome-wide PRS, therefore, further highlights the potential 913 

utility of the PES framework. Further work is required to evaluate the suitability of compounds 914 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.01.24.21250424doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.24.21250424
http://creativecommons.org/licenses/by-nc/4.0/


 30 

that modulate the PES pathways of interest and to categorise drug repurposing candidates based 915 

on their suitability for prevention and/or treatment of pneumonia. The key advantage of the 916 

PES framework is that only individuals with relevant genetic background in a pathway of 917 

interest would be prioritised for the respective repurposing candidate, which would be useful 918 

given the polygenic nature of complex disorders. Detailed discussion of the strengths and 919 

limitations of the PES methodology have been featured in previous publications27,37. 920 

 921 

There are a number of important limitations that should be considered in light of the pneumonia 922 

GWAS itself and our drug repurposing analyses. Firstly, this GWAS was conducted using 923 

samples from European ancestry as large, diverse, genotyped cohorts with pneumonia status 924 

information are not yet available. It will be critical to translate findings related to host-genetic 925 

influences on pneumonia that future efforts strive to collect trans-ancestral data, particularly 926 

due to concerns about the portability of European GWAS signals and the advantages in 927 

finemapping afforded by including multiple ancestries71. The SNP heritability for pneumonia 928 

derived in this study was also relatively low, and it remains unclear how heterogeneity amongst 929 

the phenotype definition of pneumonia may contribute to this. In other words, given that 930 

pneumonia is caused by a variety of factors and may go undiagnosed in some individuals, 931 

detailed phenotyping data would potentially assist in resolving the genetic architecture of this 932 

disorder. For example, a GWAS on susceptibility verses pneumonia severity will likely reveal 933 

different biological insights. This could also be aided by stratified analyses by age, given 934 

pneumonia is more pervasive in the elderly. The putative drug repurposing candidates 935 

suggested in this study must also be viewed in light of the low heritability of pneumonia and 936 

need for clinical validation. Despite these challenges, we believe that further resolving the host-937 

genetic architecture of pneumonia will be invaluable to public health efforts to more effectively 938 

prevent and manage the illness. In summary, we revealed novel genome-wide significant loci 939 

associated with life-time pneumonia susceptibility beyond the MHC region. These data 940 

provided some support for the potential utility of triglycerides and GGT as treatment targets 941 

for pneumonia, however, randomised controlled trials are now required to establish the efficacy 942 

of such interventions. Moreover, the pharmagenic enrichment score approach may provide a 943 

precision medicine-based intervention for drug repurposing for pneumonia prophylaxis and 944 

treatment given an individual’s composition of genetic risk. The properties of these scores and 945 

the prospects of integrating them with other clinical metrics warrants further research.  946 

 947 

 948 
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All data in this study are publicly available, summary statistics from 23andMe Inc. can be 1005 

obtained upon application to the company. As per 23andMe data sharing policies, we are 1006 

only able to release 10,000 SNPs from our meta-analysis, which we have made available on 1007 

GitHub 1008 

(https://github.com/Williamreay/Pneumonia_meta_GWAS_drug_repurposing/tree/master/Su1009 

mmary_statistics). The full GWAS summary statistics for the 23andMe discovery data set 1010 

will be made available through 23andMe to qualified researchers under an agreement with 1011 

23andMe that protects the privacy of the 23andMe participants. 1012 

Researchers wishing to recapitulate our meta-analysis can apply for access for the 23andMe 1013 

subset of the study (https://research.23andme.com/dataset-access/), and then meta-analyse 1014 

with FinnGen release 3 summary statistics as described in our manuscript. Code utilised in 1015 
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this study is available also on GitHub - 1016 

https://github.com/Williamreay/Pneumonia_meta_GWAS_drug_repurposing.  1017 
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