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Abstract 

Deep Neural Networks (DNN) have been recently developed for the estimation of Biological Age 

(BA), the hypothetical underlying age of an organism, which can differ from its chronological age 

(CA). Although promising, these population-specific algorithms warrant further characterization 

and validation, since their biological, clinical and environmental correlates remain largely 

unexplored. 

Here, an accurate DNN was trained to compute BA based on 36 circulating biomarkers in an Italian 

population (N=23,858; age≥35 years; 51.7% women). This estimate was heavily influenced by 

markers of metabolic, heart, kidney and liver function. The resulting Δage (BA-CA) significantly 

predicted mortality and hospitalization risk for all and specific causes. Slowed biological aging 

(Δage<0) was associated with higher physical and mental wellbeing, healthy lifestyles (e.g. 

adherence to Mediterranean diet) and higher socioeconomic status (educational attainment, 

household income and occupational status), while accelerated aging (Δage>0) was associated with 

smoking and obesity. Together, lifestyles and socioeconomic variables explained �48% of the total 

variance in Δage, potentially suggesting the existence of a genetic basis. 

These findings validate blood-based biological aging as a marker of public health in adult Italians 

and provide a robust body of knowledge on its biological architecture, clinical implications and 

potential environmental influences. 
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Introduction 

Ageing is a time-dependent biological process characterized by functional decline[1], often 

implying cognitive impairment and depressive symptoms, as well as an increased risk of several 

chronic disorders[2]. However, ageing progression differs among individuals, with some people 

showing a slower decline than others[3, 4]. To investigate the reasons for these discrepancies 

among subjects and monitoring healthy ageing in the general population, different approaches have 

been recently proposed, based on the computation of Biological Age (BA), i.e. the hypothetical 

underlying age of an organism, which can differ from its chronological age (CA)[5, 6]. The latter 

approaches include methods based on blood biomarkers[7–9], which are conceived as markers of 

organismal BA, and methods based on organ-specific measures, such as spirometry[10] and 

structural neuroimaging[4]. Until now, BA estimates were mostly based on linear regression 

methods, in which BA is a function of one or few bodily measures[7]. However, machine learning 

(ML) algorithms have been recently developed[8, 9, 11], showing very good accuracy in predicting 

CA[6]. Among ML methods, a cost-effective model based on Deep Neural Networks (DNN, i.e. an 

algorithm which resembles the structure and functioning of the human brain) has been proposed to 

estimate BA, using blood biomarkers as input features and CA as label[8, 9, 12]. The resulting 

discrepancy between biological and chronological age (Δage) can assume either positive or negative 

values, indicating accelerated or decelerated biological ageing, respectively. Δage was reported to 

significantly predict mortality risk in North-American populations[8], suggesting it may represent 

an effective marker of public health. However, BA estimates are highly population-specific[8]. 

Moreover, although there has been progress in improving the interpretability of such models[13], 

very little is known on the environmental influences on Δage. At present, deep learning blood-based 

Δage results only associated with smoking status[12], as are more classical markers of biological 

age based on the Klemera-Doubal method[14]. Recently, another blood-based ageing clock was 
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developed, MORTAL-bioage, based on the prediction of mortality risk by blood markers and 

chronological age through Cox Proportional Hazards (PH) models, and re-calibration of the risk in 

years[15]. The resulting biological age acceleration was negatively associated with physical 

activity, and positively with TV watching, and heavy alcohol drinking (>5 drinks/day), in addition 

to smoking status and number of cigarettes/day[15]. However, this clock had a different 

construction paradigm aimed at detecting mortality risk with the highest accuracy, and explicitly 

included age as predictor. We are not aware of any previous analysis of blood age with reference to 

socioeconomic indicators, while for other biological ageing (e.g. DNA methylation) clocks, 

significant associations were observed between accelerated ageing and disadvantaged 

childhood[16], as well as with years of education and economic disadvantage in adulthood[17]. 

Overall, there is a need to apply and validate deep learning based BA in different populations, 

testing their link with clinical outcomes and environmental influences, which remain largely 

unexplored. To this purpose, we developed a BA estimation algorithm based on blood biomarkers 

in an Italian adult population cohort, the Moli-sani study[6], and tested its predictive capacity of 

mortality and hospitalization risks for all and specific causes, as well as their association with 

common measures of mental and physical wellbeing. To identify environmental influences on BA, 

we also tested associations with lifestyle and socioeconomic factors, which are among the main 

modifiable risk factors of many health conditions[17, 18]. Moreover, there is a urgent need to 

identify the biological domains affected by biological ageing, so to target these domains for the 

development of future potential anti-ageing therapies. The wealth of clinical, biometric and 

environmental variables assessed within the Moli-sani study provides an unprecedented opportunity 

to investigate these aspects in a comprehensive manner, and to substantially contribute to the 

knowledge on such an easy-to-measure and financially efficient marker of ageing like blood age. 
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Methods  

Population of study 

All analyses were carried out within the Moli-sani study, a large population-based cohort of adult 

Italians (N=24,325; ≥35 years; 48.11% men) living in Molise, a small region located in central Italy 

with about 300,000 citizens. Between March 2005 and April 2010, men and women aged ≥35 years 

were randomly recruited from city-hall registries. Exclusion criteria were pregnancy, disturbances 

in understanding/willing processes, ongoing poly traumas or coma. The Moli-sani study was 

approved by the Ethical Committee of the Catholic University of Rome, and all the participants 

provided a written informed consent. 

 

Circulating biomarkers 

A number of circulating biomarkers were tested within the Moli-sani cohort, including: 

• lipid biomarkers, like total cholesterol, triglycerides, high (HDL) and low density 

lipoprotein (LDL), lipoprotein a (Lp(a)), apolipoprotein A1 (Apo-A1) and B (Apo-B); 

• markers of glucose metabolism: glucose, C-peptide, insulin; 

• liver enzymes: aspartate transaminase (AST) and alanine aminotransferase (ALT); 

• cardiac and vascular markers: N-Terminal Pro-B-Type Natriuretic Peptide (NT-proBNP) 

and high-sensitivity cardiac troponin I; 

• other hormones: testosterone and vitamin D; 

• hemostasis markers: D-Dimer, fibrinogen; 

• renal markers: uric acid, albumin, creatinine, cystatin-C; 

• inflammation marker: high sensitivity C-reactive protein (CRP); 
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• common haemochrome markers including red blood cell count (RBC) and distribution width 

(RDW), hematocrit (Hct), hemoglobin levels (Hgb), mean corpuscular volume (MCV), 

mean corpuscular hemoglobin (MCH) and concentration (MCHC), total white blood cells 

(WBC), lymphocytes (LY), monocytes (MO), granulocytes (GR), neutrophils (NE), 

basophils (BAS) and eosinophils (EO); platelet count (Plt), mean platelet volume (MPV), 

platelet distribution width (PDW) and plateletcrit (PCT). 

Details on laboratory measurements are reported in Supplementary Methods (Table S1). 

Data treatment and quality control 

All the analyses were carried out in R[19]. Unreliable blood markers levels - i.e. leukocyte counts 

whose fractions summed <99% (86) or >101% (9) - were set to missing. Missing values (Table S1) 

were then imputed through both the k-nearest neighbor algorithm of the VIM package[20], (kNN() 

function, k=10), and the minimum/maximum imputation, the latter employed when an explicit 

missing code for indicating values below/above detection levels was available (for creatinine, Apo-

A1, Apo-B, Lp(a), NT-proBNP, testosterone, troponin-I and VitD). Composite variables like total 

cholesterol, plateletcrit, hematocrit and MCH were removed to avoid collinearity, while we retained 

WBC and MCHC since these did not show very high correlations with other white and red cell 

parameters, respectively (Pearson’s r < 0.9; Figure S1). Participants reporting non-Italian ancestry 

(332) and/or non-faster status at the time of blood draw (135) were removed before analysis. After 

quality control, we had 23,858 participants (12,346 women; mean (SD) age = 55.9 (12.0) years) and 

36 circulating markers available for analysis, which underwent min-max normalization. 

  

Deep Neural Network for computation of Biological Age 

The Keras package (see URLs) was used to build a Deep Neural Network (DNN) algorithm for the 

prediction of BA, with circulating biomarkers, recruiting center and sex as input features, and CA of 
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each participant as a label. DNN showed the best performance among different algorithms in a 

similar setting, i.e., with reference to the pioneering works on the topic[8, 9]. Similarly, we applied 

the best-performing combination of hyperparameter settings used in other studies[8, 9, 12], which 

implied five layers with 2000-1500-1000-500-1 neurons, dropout rate of 35% after each layer for 

regularization purposes, Mean Squared Error (MSE) as optimization loss function and AdaGrad as 

optimizer[21]. We trained the network over 1,000 epochs, in a 80% random extraction of the dataset 

(N=19,086), with a 20% internal validation set and a batch-size of 32, to avoid overfitting. Then we 

evaluated the accuracy of the algorithm in an independent test set (remaining 20% of the dataset, 

N=4,772), in terms of Mean Average Error (MAE), Pearson’s correlation (r) and Nagelke’s 

coefficient of determination (R2) in univariate linear regression between BA and CA. A comparison 

between the training and the test set is reported in Table S2, indicating no major differences in 

sociodemographic, lifestyles and clinical characteristics between the two subsets. 

As in the indicated studies[8, 9, 12], we performed a permutation feature importance (PFI) analysis 

to identify those markers showing the largest influence on the prediction of BA. This implies 

shuffling measures of one marker at a time and then comparing the loss function (MSE) of the 

perturbed model with that of the full model (i.e. with no permuted feature). This analysis was 

carried out through the explain() and the variable_importance() functions of the DALEX 

package[22]. 

 

Associations with clinical risk and healthy aging parameters 

Once BA for each participant and the resulting discrepancy with CA were computed (Δage = BA - 

CA), we validated this new variable as public health marker in the test set (N=4,772). Information 

on lifestyles, wellbeing and socio-economic status had been collected at baseline[23] and classified 

as described below and elsewhere[24–26]. Passive follow-up data on clinical events of interest 

(deaths and hospitalizations) were collected and validated until December 31st 2015, through 
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linkage with hospital discharge records and regional mortality registry. A detailed description of 

variables and clinical events analyzed here can be found in Supplementary Methods.  

First, we tested predictivity of mortality and first hospitalization incident risks, for all and specific 

causes, through multivariable Cox PH models, after checking all the basic assumptions 

(proportionality of hazards, linearity of effect and absence of influential observations). Cox PH 

regressions were performed both on the continuous Δage, and comparing participants with 

accelerated (Δage > 5 years, i.e. BA >> CA) and slowed ageing (Δage < -5 years, BA << CA), 

versus a reference class with BA ~ CA (−5 ≤ Δage ≤ 5). Specific causes included cardiovascular 

(CVD), ischemic heart (IHD), cerebrovascular disease (CeVD) and cancer for both deaths and 

hospitalizations; deaths for other causes (including type-2 diabetes); and hospitalizations for type-2 

diabetes. Survival analyses were initially adjusted for sex and CA (Model 1), to compare them with 

prominent field studies[5, 8]. Then, more conservative models were built, incrementally adjusted 

for i) main prevalent health conditions (CVD, cancer and diabetes; Model 2), and ii) lifestyles and 

socioeconomic (SES) variables (Model 3). Specifically, only those covariates showing at least a 

trend of association (p<0.2) with both incident mortality/hospitalizations risk and Δage were tested 

in the enriched survival models, namely all prevalent conditions, all lifestyles except for physical 

activity and all SES variables (see below). All the above mentioned covariates showed also 

significant associations with incident clinical risks (p<0.05), in line with previous findings made in 

the Moli-sani study[18, 25–31]. For this analysis, a conservative Bonferroni correction for multiple 

testing of two different types of clinical events – deaths and hospitalizations - was applied (α = 

0.025). 

Second, we tested associations of Δage with physical and mental wellbeing, as assessed through the 

validated Italian version of the self-administered Short Form 36 (SF-36) test[32]. This scale - often 

taken as a measure of healthy aging[6] - tests health-related quality of life (QoL) involving both 

physical and mental domains, which include physical functioning, role limitations due to physical 
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health problems, bodily pain, general health perceptions, vitality, social functioning, role limitations 

due to emotional problems and mental health[33]. Again, incrementally adjusted models were 

applied, as above, and significance threshold was corrected for two different SF-36 subscales tested 

(α = 0.025). 

 

Associations with lifestyles and socioeconomic factors 

Last, we tested associations of ΔAge with modifiable risk factors, including both lifestyles and 

socioeconomic variables. Among lifestyles, we analyzed smoking habits (current and ex-smokers vs 

non-smokers, number of cigarettes/day and years of smoking within current smokers); adherence to 

Mediterranean Diet (moderate and high vs low)[28, 34]; alcohol consumption (lifetime abstainers, 

former drinkers, current drinkers of 12.1-24, 24.1–48 and >48 g/day vs occasional or current 

drinkers of 1-12 g/day), as in [26]; and level of leisure time physical activity (MET-h/day)[35]. As a 

proxy of lifestyles, we analyzed obesity, both comparing participants with body mass index (BMI) 

25-30 Kg/m2 and ≥30 Kg/m2 vs <25 Kg/m2, and testing continuous associations with Relative Fat 

Mass (RFM)[36]. 

Among socioeconomic variables, we tested associations with education level completed (lower, 

upper and post-secondary vs none/primary), occupational class (unemployed/unclassified, 

retired/housewives, manual skilled, unskilled and non-manual skilled vs professional/managerial 

workers), yearly household income (>40k, 25-40k, 10-25k vs <10k Euros/year), childhood SES 

(computed as in [18] and classified as high, intermediate and upper-low vs low), and housing status 

(dwelling one or more ownerships vs living in a rented flat). 

These factors were first analyzed separately in linear models adjusted for CA and sex (taking ΔAge 

as outcome), then in a multivariable setting including all the variables showing an association p<0.1 

with ΔAge in univariate models (see Results below). To avoid potential overfitting bias due to 
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multicollinearity of exposures, we applied a stepwise regression approach based on Akaike 

Information Criterion (AIC), through the stepAIC() function of the MASS package in R[37] (see 

Supplementary Methods). For this analysis, we applied a Bonferroni correction for ten independent 

variables – five lifestyles and five SES indicators – resulting in α = 5×10-3. 

 

Results 

Accuracy of the DNN algorithm and most predictive biological features 

The best performing DNN showed accurate BA estimates, compared to CA values (MAE = 6.00 

years; r = 0.76; R2 = 0.57; Figure S2), in line with previous studies in the field[8, 13]. Based on the 

PFI analysis, the most important biological features influencing BA values in our DNN were 

cystatin-C, NT-proBNP and sex, all showing an increase in the loss (MSE) function of the 

algorithm >30%, compared to the baseline model (Figure 1). The resulting difference between BA 

and CA (Δage) showed slightly higher values in men compared to women (mean (SD): -0.61 (7.63) 

vs -1.19 (7.91); Student’s t = -2.55, p = 0.01). Δage was normally distributed (Figure S3) and 

negatively correlated with CA in the test set (Figure S4), as seen for other biological ageing 

acceleration estimators[16, 38, 39]). 

 

Clinical significance of Δage 

Δage significantly predicted the incident risk of all-cause mortality and first hospitalizations (Table 

1a, b and Figure 2a, b). Over 4,767 participants with mortality data available in the test set (283 

death events, median follow-up 8.27 years), each yearly increase in Δage was associated with a 7% 

(CI=5-10%) increase in all-cause mortality risk (p=5.8×10-11; Table 1a). Subjects with BA >> CA 

showed a 134% (49-266%) increase of risk, while participants with BA << CA showed a 49% (32-

61%) decrease, compared to those with BA falling within CA ± 5 years. This trend was 
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substantially consistent across different causes of death, except for cancer, and in more conservative 

models adjusted for prevalent health conditions (Model 2), lifestyles and socioeconomic variables 

associated with Δage (Model 3; Table 1a).  

Similarly, the analysis of first hospitalizations (N=4,771, 2,027 all-cause admissions, median 

follow-up 7.10 years) revealed an increased risk by 3% (CI=2-4%; p=9.1×10-16) per year increase in 

Δage (p=9.1×10-16; Table 1b), with biologically older participants showing a 30% (14-48%) 

increase and younger participants showing a 27% (29-35%) decrease of risk compared to those with 

BA ~ CA. Again, this trend was confirmed by hospitalizations for all specific causes but cancer and 

remained significant in enriched models adjusting for prevalent chronic conditions and 

lifestyles/SES, for all but IHD events (Table 1b). 

Both physical and mental wellbeing showed a negative association with Δage (β(SE) = -0.30(0.09) 

and -0.81(0.10) years per SD increase in SF-36 scales). However, incremental adjustments for 

health conditions and main determinants of disease notably reduced effect sizes of these 

associations (Table S3). 

 

Association of Δage with main lifestyle and socioeconomic factors 

The analysis of modifiable risk factors revealed statistically significant associations of Δage with 

lifestyle variables or their proxies (Table 2a). Δage was significantly associated with smoking status 

(β(SE) = 1.38(0.22) years for current vs never-smokers), adherence to Mediterranean Diet (β(SE) = 

-0.90(0.30) for high vs low adherence), and alcohol consumption (β(SE) = 0.92(0.23) years for life-

time abstainers vs occasional and current drinkers who drank <12 g/day). Obesity, which is heavily 

influenced by lifestyles, was positively associated with Δage (β(SE) = 1.73(0.22) years for 

participants with BMI ≥30 vs <25 Kg/m2), as was RFM too, but not leisure time physical activity 

(Table 2b). 
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Among socioeconomic variables (Table 3), educational attainment showed a significant trend of 

association across all the levels tested, but only upper secondary (β(SE) = 1.17(0.24) years, 

compared to primary school) and post-secondary level (1.24(0.32) years) survived correction for 

multiple testing (p < 5×10-3). A concordant trend was observed for occupational class, with 

unemployed presenting the highest increase in Δage compared to professional/managerial workers 

(2.86(0.70) years). Likewise, yearly household income was consistently associated with Δage 

(β(SE) = -1.92(0.41) years for participants who declared >40k vs <10k Euros), as was housing 

status, whose association however did not survive correction for multiple testing. 

In a stepwise multivariable regression modelling together lifestyles and SES factors, smoking 

status, obesity, adherence to Mediterranean Diet, alcohol consumption, occupational class, 

household income and housing status were retained (adjusted-R2 = 0.48). Although all the variables 

showed concordant associations with univariate models, only those with smoking status, obesity 

and occupational class remained statistically significant, while others were only nominally or 

marginally significant (Table S4).  

 

Discussion  

We reported the first application of a deep learning algorithm to estimate biological age based on 

blood markers (BA) in an Italian population. This provided not only biological hints into the ageing 

process, but also a detailed characterization of the resulting accelerated ageing index (Δage), from a 

biological, clinical and epidemiological perspective.  

 

Biological domains of blood ageing 

Among the wealth of biological features used in the DNN, cystatin-C was by far the most influent 

in the estimation of BA, followed by NT-proBNP and sex. Cystatin-C is an index of glomerular 
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filtration rate and of kidney function, along with creatinine[40], which was also among the most 

influential markers. A lower cystatin-C level has been associated with successful ageing (i.e. free of 

cardiovascular disease, cancer, and chronic obstructive pulmonary disease, with intact physical and 

cognitive functioning) in elders, even within a range of relatively normal kidney function[41]. 

Interestingly, DNA methylation-based surrogates for cystatin-C significantly predict mortality risk 

and have been integrated (among others) in a recent version of the epigenetic clock, GrimAge[42]. 

NT-proBNP is a precursor of the Brain Natriuretic Peptide (BNP), which is produced by the left 

heart ventricle under wall stretching stress and is an index of conditions like heart failure, left 

ventricular dysfunction, acute coronary syndromes and stroke[43]. Sex has been reported as one of 

the most predictive features of BA also in previous studies along with other prominent features such 

as glucose, liver enzymes and cholesterol markers, all having an impact on ageing and lifespan[8, 9, 

12, 13]. This evidence suggests that the domains with the largest influence on the biological ageing 

process include metabolic, heart, kidney and liver function. 

 

Clinical implications and correlates of blood ageing 

When characterizing the discrepancy between biological and chronological age from a clinical point 

of view, we observed that Δage significantly predicted incident all-cause mortality risk in our 

population, with effect sizes similar to those detected in North-American populations[8, 15]. Here, 

we extended this evidence to specific causes of mortality like CVD – in line with previous evidence 

for other ageing clocks[44] - and to hospitalization risk for all and specific causes like CVD and 

diabetes, albeit in this case the associated risk was generally more modest. To our knowledge, this 

is the first time evidence is provided that links biological ageing and hospitalizations, although an 

association between subjective age (i.e. how old one person feels) and incident hospitalizations was 

previously reported in US cohorts[45]. Of note, we did not observe any significant association of 

accelerated biological ageing with incident cancer risk, which was instead previously observed for a 
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mixed blood-lung measure[14]. Similarly DNA methylation age was previously reported to increase 

incident risk of colorectal[46] and breast cancer[47]. At present, it is difficult to say whether this is 

due to the low number of heterogenous cancer cases analyzed (which unavoidably affects power), 

or to the fact that blood age as computed here actually does not represent a risk factor for cancer, 

contrary to other aging clocks like methylation[48]. Larger studies focusing on blood-based BA and 

on specific cancer types will allow to clarify this aspect. 

Δage showed significant negative associations with health-related quality of life scales representing 

physical and mental wellbeing, which are considered important components of healthy ageing[3] 

and have been associated with perceived ageing[49]. Although these scales have never been tested 

with a pure blood age clock, QoL is associated with frailty[50] and the SF-36 physical component 

correlates positively with accelerated biological ageing based on mixed instrumental (blood and 

respiratory) biomarkers[51]. Importantly, by modelling the physical and mental component in the 

same regression, our results support the existence of independent associations of the two QoL 

domains tested, specifically underlining the importance of the mental component in decelerating 

ageing, in addition to the physical one. 

Of interest, while adjustment for main chronic conditions did not heavily affect the associations 

observed with incident mortality/hospitalization risk and only partly attenuated those with 

physical/mental wellbeing, adjustment for lifestyles and SES showed different behaviors. As for 

mortality risk, this did not determine any substantial change in estimation, while this was more 

evident for hospitalizations, especially for diabetes and mostly IHD events. The associations with 

QoL subscales were notably affected by adjustment for the main determinants of disease, with 

mental wellbeing becoming non-significant after correcting for lifestyles and SES factors. These 

observations may be explained by three alternative hypotheses. First, lifestyles/SES may represent 

confounders in the relationship between biological aging and clinical outcomes, especially for 

hospitalization risk and measures of frailty like physical/mental QoL. Second, biological aging 
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discrepancy may represent a mediator in the associations between lifestyles/SES and clinical 

outcomes, reported elsewhere[18, 25–31]. While this represent a fascinating and previously 

untested hypothesis, the data currently available do not allow to formally test it (see Strengths and 

Limitations below). Third, the associations surviving corrections for lifestyles/SES suggest that 

these may be partly due to common genetic influences between biological aging and clinical 

risks/indices. In our view, it is conceivable that all these explanations may apply. 

 

Environmental associations with blood ageing 

Disentangling the relationship between Δage and the main determinants of disease, namely 

lifestyles and socioeconomic status[17], we corroborated previous associations with smoking 

status[12, 15] and provided evidence that adherence to a healthy (Mediterranean) diet slows down 

ageing, in line with previous observational[17, 52] and interventional studies analyzing epigenetic 

age[53]. On the contrary, the lack of evidence of a link between physical activity and slowed 

biological ageing is discordant with previous evidence reported for blood[15] and brain age[54], but 

concordant with studies on DNA methylation age[17, 52]. Similarly, a protective effect of moderate 

alcohol drinking on ageing was apparent in occasional/current drinkers who drank 1–12 g/day, in 

comparison with life-time abstainers. Our finding is not directly comparable with previous reports 

of increased blood ageing for subjects drinking >2 and >5 alcohol units/day (equivalent to >24 and 

>60 g/day, respectively) compared to abstainers[15], but it is in line with a protective effect of 

moderate alcohol consumption against mortality and hospitalization risk[26, 55]. A proxy measure 

of lifestyles, obesity, was also positively associated with ageing acceleration, considering both 

BMI-based weight categories and linear associations with RFM. This is in line with previous 

associations with other mixed blood-lung [14] and epigenetic clocks[17, 52].  

The analysis of socioeconomic variables suggested a potential slowing-down effect of higher SES, 

with more educated participants being biologically younger than their CA compared to less 
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educated ones. Similarly, participants in higher financial income strata were biologically younger 

than those in the lowest, as were workers in with higher occupational classes compared to 

unemployed. Although to our knowledge no BA estimator based on blood markers has ever been 

tested with reference to SES, our findings are consistent with inverse associations of years of 

education with slowed biological ageing, both at the brain[54] and at the epigenetic level[17]. The 

latter DNA methylation measure was also positively associated with an economic disadvantage 

index based on low income, education, unemployment, occupational class, and other variables[17]. 

Conversely, we found no evidence of association between childhood SES and Δage, which was 

instead observed elsewhere for a DNA methylation clock[16]. This discrepancy may be explained 

by different populations tested and methods of SES assessment or, more likely, by the different BA 

estimator used, leading to hypothesize that childhood disadvantage may affect the epigenetic 

domain rather than circulating markers. Further studies are needed to clarify this aspect, as well as 

whether the “pro-ageing” effect of SES is reversible, e.g. through the use of trajectories[17]. 

The associations above were generally confirmed in a multivariable stepwise regression model, 

although important variables like education level and healthy (MeDi) diet were not retained or not 

significant anymore. This could be justified by the type of analysis carried out, where collinear 

variables not explaining additional variance in the model were removed through the stepwise 

approach, or did not explain a significant proportion of Δage variance. In this perspective, it may 

well be that, e.g. part of the association with MeDi was also explained by obesity – which is heavily 

influenced by diet[56] – or that the effect of education was fully explained by other correlated SES 

variables[29, 57]. Since this represent the first multivariable analysis of lifestyles and SES 

determinants of biological ageing, there are no terms of comparison and further studies are needed 

to clarify these overlaps. Prominently, all the lifestyles/SES indicators tested explained �48% of 

the total Δage variance, supporting again the existence of genetic underpinnings to account for at 

least part of the remaining variance, which would be hardly explained in toto by other non-genetic 
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factors like environmental pollution. Although this hypothesis is in line with previous evidence for 

brain age[11, 58, 59], the genetic basis of blood ageing remain totally unexplored. 

 

Strengths and Limitations 

This study represents one of the largest and probably broadest assessment of clinical implications 

and environmental influences of blood age. Some limitations, however, should be mentioned. First, 

we did not perform a systematic hyperparameter tuning due to the need of extra powered 

computational infrastructure, therefore limiting our explorations to hyperparameter settings 

computed as optimal by previous studies [8, 9, 12]. However, the lower sample size of our study 

and the accuracy of our algorithm in line with previous ones, indicate only a small chance for 

significant performance improvement of our DNN. Second, other biological age markers showed a 

higher accuracy than blood age, e.g brain age[5, 11], although these are based on more expensive 

and less commonly tested neuroimaging measures that have limited applicability to large cohorts 

and in public health programs. Third, other biological age acceleration markers are better in 

predicting mortality risk[15], but only focus on accurately estimating this risk, which is only one 

aspect of the ageing process. Other aspects that should not remain neglected include the relationship 

with equally important components, like hospitalizations and wellbeing, which we tested here for 

the first time. Last, the fact that blood markers, lifestyles/SES and QoL were assessed all at the 

same time point does not currently allow to further disentangle their complex relationship and to 

clarify the role of lifestyles and SES factors, e.g. whether they represent only confounders of the 

relationship between Δage and clinical outcomes, or whether they represent ancestral exposures, 

with Δage playing a mediation role. The upcoming availability of active follow-up data in the Moli-

sani study will help clarifying this aspect. 
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Conclusions 

In conclusion, although the proposed deep learning blood-based BA marker needs further 

investigation to clarify clinical implications, environmental and genetic influences, our study 

provides sufficient proof of validity as a public health tool and calls for development and testing in 

different populations. Moreover, it corroborates the existence of a genetic basis for biological 

ageing. Last but not least, our data suggest the utilization of Δage as an index of personalized health 

in the general population, potentially driving public health interventions aimed at slowing down 

biological ageing. 
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Figure 1. Permutation Feature Importance (PFI) analysis. 

 

 

Bars indicate the importance of each biological feature used for the prediction of BA in the DNN 

algorithm, based on the ratio between loss function (MSE) in the perturbed model (i.e. after 

permutation of a given variable) and loss function in the full model (with no permuted variable). 

The higher the ratio, the more the perturbed model is altered and the more important is the permuted 

feature. 

Abbreviations: NT-proBNP = NT-proB-type Natriuretic Peptide; ALT = alanine aminotransferase; 

AST = aspartate transaminase; HDL/LDL = high/low density lipoprotein; Lp(a) = lipoprotein-a; 

Apo-A1/-B = apolipoprotein A1/B; VitD = vitamin D; CRP = high sensitivity C-reactive protein; 

RBC = red blood cell count; RDW = red cell distribution width; Hgb = hemoglobin; MCHC = mean 

corpuscular hemoglobin concentration; LY, MO, GR, NE, BAS, EO, WBC = lymphocyte, 

monocyte, granulocyte, neutrophil, basophil, eosinophil and total white blood cell count; Plt = 

platelet count; MPV = mean platelet volume; PDW = platelet distribution width. 
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Figure 2. Survival curves of all-cause a) mortality and b) first hospitalization risk vs Δge. 

a) 

 

b) 
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Subjects with predicted Biological Age (BA) within five years from their Chronological Age (CA) 

(red curve) were compared to participants with BA at least five years younger (green curve) and 

older than their CA (blue curve), as in [8]. 
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Table 1. Associations of Δage with incident a) mortality and b) first hospitalization risk. 

a) 

Cause of  
death 

N (events) 
Model 1 

HR [95% CI] 
(p-value) 

Model 2 
HR [95% CI] 

(p-value) 

Model 3 
HR [95% CI] 

(p-value) 

All causes 4,767 (283) 
1.07 [1.05; 1.10] 

(5.8×10-11) 
1.06 [1.04; 1.09] 

(8.5×10-9) 
1.06 [1.04; 1.08] 

(6.5×10-7) 

CVD 4,765 (100) 1.13 [1.09; 1.17] 
(6.6×10-10) 

1.12 [1.08; 1.16] 
(9.8×10-9) 

1.11 [1.07; 1.16] 
(2.9×10-7) 

IHD + CeVD 4,765 (60) 1.11 [1.06; 1.17] 
(7.4×10-6) 

1.10 [1.05; 1.16] 
(3.6×10-5) 

1.10 [1.05; 1.16] 
(1.1×10-4) 

Cancera 4,563 (83)a 1.02 [0.98; 1.06] 
(0.27) 

1.02 [0.98; 1.06] 
(0.39) 

1.01 [0.97; 1.05] 
(0.59) 

Other 4,767 (71) 1.08 [1.04; 1.13] 
(2.2×10-4) 

1.08 [1.03; 1.12] 
(7.1×10-4) 

1.08 [1.04; 1.12] 
(2.4×10-5) 

 

b) 

Cause of  
hospitalization 

N (events) 
Model 1 

HR [95% CI] 
(p-value) 

Model 2 
HR [95% CI] 

(p-value) 

Model 3 
HR [95% CI] 

(p-value) 

All causes 4,771 (2,027) 1.03 [1.02; 1,04] 
(9.1×10-16) 

1.03 [1.02; 1.03] 
(2.2×10-11) 

1.02 [1.01; 1.03] 
(2.0×10-7) 

CVD 4,771 (771) 1.05 [1.04; 1.06] 
(3.8×10-14) 

1.04 [1.03; 1.05] 
(1.6×10-9) 

1.04 [1.02; 1.05] 
(1.6×10-7) 

IHD 4,771 (187) 1.05 [1.03; 1.08] 
(2.8×10-5) 

1.03 [1.00; 1.06] 
(0.02) 

1.02 [1.00; 1.05] 
(0.08) 

CeVD 4,771 (135) 
1.03 [1.00; 1.06] 

(0.07) 
1.02 [0.99; 1.05] 

(0.13) 
1.02 [0.98; 1.05] 

(0.35) 

Cancera 4,569 (235)a 
0.99 [0.97; 1.01] 

(0.26) 
0.99 [0.96; 1.01] 

(0.21) 
0.98 [0.96; 1.01] 

(0.19) 

Diabetes 4,771 (80) 
1.09 [1.05; 1.13] 

(5.4×10-6) 
1.06 [1.02; 1.10] 

(5.4×10-3) 
1.04 [1.00; 1.09] 

(0.05) 
 

Risk estimates for a) deaths and b) hospitalizations for all and specific causes are expressed as 
Hazard Ratios (HR) with 95% Confidence Interval (CI) per year increase in Δage, as calculated by 
Cox PH regression models with time-on-study on the time scale and competing risk of dying/being 
hospitalized for other causes, adjusted for sex and Chronological Age (CA). Statistically significant 
Hazard Ratios (p < 0.025) are highlighted in bold. Final sample size (N) indicates the number of 
samples actually analyzed with a case-complete approach in the test set (Model 1), after removing 
samples with missing event and follow-up data. a Participants with a diagnosis of cancer at 
recruitment or with an incident cancer event in the first year of follow-up were removed for this 
specific analysis, as in [61]. Abbreviations: CVD = cardiovascular disease; CeVD = 
cerebrovascular disease; IHD = ischemic heart disease.  
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Table 2. Association of Δage with main a) categorical and b) continuous lifestyle variables or 

proxies. 

 

a) 

Lifestyle variable Levels/Variables Beta SE p N 

Smoking status 
(Missing = 10) 

Never smokers  
(reference) 

-  -   - 2390 

Current smokers 1.38 0.22 2.1×10-10 1066 
Previous smokers 0.34 0.21 0.11 1306 

Obesity  
(Missing = 6) 

<25 Kg/m2  
(reference) 

-  -   - 1260 

[25-30[ Kg/m2 0.13 0.21 0.52 1997 

≥ 30 Kg/m2 1.73 0.22 4.6×10-15 1509 
Adherence to  

Mediterranean Diet  
(Trichopulou score, 

Missing = 22)  

Low (0-3) -  -   - 1485 

Moderate (4-6) -0.47 0.18 0.01 2788 

High (7-9) -0.90 0.30 2.8×10-3 477 

Alcohol consumption  
(Missing = 188) 

Occasional/current drinkers  
(1–12 g/day)  
(reference) 

-  -   - 1202 

Life-time abstainers 0.92 0.23 9.4×10-5 1221 

Former drinkers 0.03 0.42 0.94 215 

Current drinkers (24.1-48 g/day)  0.05 0.27 0.87 806 

Current drinkers (12.1-24 g/day)  0.15 0.28 0.58 682 

Current drinkers (>48 g/day) -0.20 0.33 0.56 458 
 

 

b) 

Lifestyle variable Unit Beta SE p N 

Smoking habits 
(within Current smokers) 

Cigarettes/day 0.02 0.01 0.24 1066 
Years of 
smoking 

0.04 0.03 0.13 1066 

Leisure physical activity MET-h/day -0.001 0.08 0.99 4772 

Obesity Relative Fat 
Mass 1.02 0.15 4.6×10-11 4766 

 

All associations were adjusted for sex and Chronological Age (CA). Beta values indicate the 

variation in Δage (years) a) associated with each class compared to reference (for categorical 

variables) and b) per Standard Deviation (SD) increase in the continuous variables. Statistically 

significant associations (p < 5×10-3) are highlighted in bold. 
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Table 3. Association of Δage (BA-CA) with socioeconomic factors. 

 

 

SES variable Levels Beta SE p N 

Education level 
completed 

  
Missing: 7 

  

None/primary school  
(reference) 

-  -  -  1236 

Lower secondary -0.60 0.25 0.02 1342 

Upper secondary -1.17 0.24 1.96×10-6 1632 

Post-secondary -1.24 0.32 8.29×10-5 555 

Occupational class 
  

Missing: 0 
  
  
  

Professional and managerial 
(reference) 

 -  -  - 963 

Non-manual skilled 0.31 0.23 0.18 1664 

Manual unskilled 1.01 0.27 1.7×10-4 844 

Manual skilled 1.31 0.26 5.6×10-7 982 

Retired/housewife 1.44 0.42 6.1×10-4 248 

Unemployed/unclassified 2.86 0.7 4.8×10-5 71 

Yearly household income 
(Euros) 

  
Missing: 0 

  
  

<10.000 
(reference) 

 -  - -  318 

[10.000-25.000] -0.12 0.36 0.74 1402 

]25.000-40.000] -1.15 0.37 1.9×10-3 1010 

>40.000 -1.92 0.41 2.2×10-6 552 
Not declared -0.48 0.35 0.17 1490 

SES during childhood 
  

Missing: 142 
  

Low  
(reference) 

 -  - -  657 

Upper-low -0.12 0.26 0.65 1640 

Intermediate -0.28 0.28 0.32 1423 

High -0.29 0.32 0.36 910 

Housing 
  

Missing: 8 

Rented flat  
(reference) 

 - -   - 454 

Dwelling ownership -0.07 0.28 0.81 3884 

>1 dwelling ownership -1.02 0.39 8.3×10-3 426 
 

All associations were adjusted for sex and Chronological Age (CA). Beta values indicate the 

variation in Δage (years) associated with each class, compared to reference. Statistically significant 

associations (p < 5×10-3) are highlighted in bold. 
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