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Abstract. Human mobility is the fuel of global pandemics. In this sim-
ulation study, we analyze how mobility restrictions mitigate epidemic
processes and how this mitigation is influenced by the epidemic’s degree
of dispersion.
We find that (even imperfect) mobility restrictions are generally efficient
in mitigating epidemic spreading. Notably, the effectiveness strongly de-
pends on the dispersion of the offspring distribution associated with the
epidemic. We also find that mobility restrictions are useful even when
the pathogen is already prevalent in the whole population. However, also
a delayed implementation is more efficient in the presence of overdisper-
sion. Conclusively, this means that implementing green zones is easier for
epidemics with overdispersed transmission dynamics (e.g., COVID-19).
To study these relationships at an appropriate level of abstraction, we
propose a spatial branching process model combining the flexibility
of stochastic branching processes with an agent-based approach allowing
a conceptualization of locality, saturation, and interaction structure.
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1 Introduction

In 2020, the COVID-19 pandemic emerged and countries all over the world dis-
cussed which non-pharmaceutical interventions (NPIs) to implement to suppress
or mitigate the spread of the novel SARS-CoV-2 pathogen [1]. Currently, in early
2021, a similar situation arises due to the uncertainty surrounding the appear-
ance of the novel strains B117, 501yv2, and P1 [8]. Mobility restrictions are an
important class of interventions, ranging from closures of international borders
over restrictions to stay within a certain radius of one’s home to complete stay-
at-home orders. The hope is that these measures constrain local outbreaks and
that the virus reaches fewer susceptible host populations. Mobility restrictions
could also help in creating so-called green zones within an infected population
[5,6]. However, the effectiveness of NPIs depends on the epidemic’s properties.

Overdispersion is a property of an epidemic’s propagation. Specifically, each
infected individual creates a certain number of secondary infections (aka off-
spring). This number depends on many factors and can be modeled using a
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Fig. 1: Example trajectory with Gaussian spatial kernel with σ = 0.008, two
offspring-candidates, and pt = 0.1 (until 200 agents are recovered, then pt = 0.0).

discrete probability distribution called offspring distribution. The mean of the
offspring distribution at time point t is the effective reproduction number Rt. In
the theory of stochastic branching processes, this probability distribution is the
same for all agents and is independent of time t [4]. The offspring distribution
can be characterized in terms of its dispersion (a measure of variance w.r.t. the
mean). In the presence of high dispersion, many individuals produce zero or
very few offspring while few individuals (so-called supers-spreaders) infect many
others. Typically, the offspring number is generated as follows (i): sample an
individual reproduction number Ri from a Gamma distribution with mean R0

and shape parameter k and (ii): sample the offspring number of agent i using
a Poisson distribution with mean Ri. Dispersion is typically quantified using
the shape (aka dispersion) parameter k (smaller k implies higher dispersion) [4].
Combining a Gamma with a Poisson distribution results in a negative binomial
distribution (NBD). For COVID-19 it has been reported that 80% of new in-
fections can be traced back to only 15% of infected individuals relating to a k
around 0.3 [7] (earlier work found k = 0.1 [2] and k = 0.25 [9]). Of particular
importance for this work is the association of high dispersion with an increased
die-out probability. Hence, it has been speculated that SARS-CoV-2 has to be
introduced multiple times to a susceptible population in order to ignite an out-
break [3]. This property suggests a higher efficiency of mobility restrictions.

2 Spatial Branching Process

The default model type to study dispersion is a stochastic branching process [4]
(BP). The state of a BP is a tree that grows over time. The children of a node
correspond to the individuals infected by that node (i.e., its offspring). In each
step, the number of offspring is sampled for each leaf. The epidemic is over when
all leaves have zero offspring. An advantage of the BP model is the small number
of parametric assumptions (all relevant aspects of the pathogen/environment are
modeled with the offspring distribution). The BP model has two disadvantages
for our purposes. There is no inherent form of locality in the model and no
natural saturation (typically, an epidemic slows down when more agents become
recovered/immune).

We account for this by placing the population in a Euclidean space. The
number of offspring (offspring candidates to be more precisely) is still sampled
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Dispersion

Fig. 2: F.l.t.r.: Preliminary results for Exp. 1 to Exp. 3. x-axis: Local-
ity/mobility measure. y-axis: Final epidemic size/herd immunity threshold.
Color indicates dispersion (smaller k implies higher dispersion).

from an offspring distribution but the spatial relationship influences which indi-
viduals are chosen. Moreover, an infection attempt is rejected if the new offspring
candidate is already immune or infected. To model spatial movements more ex-
plicitly, we can randomly reposition agents. Note that the set of agents is fixed
from the beginning (cf. Fig. 1 for an example).

Model State. The global state is given by a set of agents A. Each ai ∈ A is
annotated with a position xi ∈ [0, 1]2 and a local state si ∈ {S, I,R} (susceptible,
infected, recovered). We initialize xi according to a 2d-density ν.

Model Dynamics. The global state changes randomly in discrete-time accord-
ing to a discrete univariate offspring distribution α, a spatial interaction kernel
β : R≥0 −→ R≥0, and a travel probability pt ∈ [0, 1]. In each time step, for each
infected agent ai:

1. Reposition ai with probability pt according to ν.
2. Generate offspring candidates, denoted Oi ⊂ A and infect all susceptible

agents in Oi.
3. Set si = R.

Regarding step 2: The offspring-count |Oi| is sampled from α. Given |Oi|, choose
each aj (i 6= j) to be in Oi with a probability proportional to β(|| xi − xj ||).

3 Experiments

We use 104 agents, R0 = 2.0, a Gaussian spatial kernel, and a mixture of 16
2d-Gaussians to generate the spatial positions (to mimic some population struc-
ture). Results are given in Fig 2. We compare a fixed offspring distribution where
the (unsaturated) offspring count is always R0 = 2 with an NBD with varying
k. Note that k = ∞ leads to a Poisson offspring distribution as the variance of
the Gamma distribution converges to zero. In the first experiment, we vary the
variance, σ, of the spatial interaction kernel and set pt = 0. Thereby, we can
directly measure the influence of locality (smaller σ implies higher locality). In
the second experiment we fix σ = 0.007 and vary pt. The value σ = 0.007 is
such that the epidemic still dies out early with high probability for all offspring
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distributions with mean 2.0. This way, we measure locality by explicitly account-
ing for mobility. In the third experiment, we study delayed mobility restrictions.
That is, we wait until 200 agents are infected (over varying pt), and then set
pt = 0.

The experiments consistently show that reducing mobility (in terms of σ or
pt) has a stronger impact on the final epidemic the more dispersion is present in
an epidemic’s transmission dynamics. This applies even if the mobility restriction
is imperfect or implemented with some delay. Julia code is available1.

4 Conclusion

The relationship between dispersion, branching processes, and locality is under-
explored in literature. We hope to spark interest in theoretical and practical work
in this matter. For instance, it would be worthwhile to investigate if one can
find optimal borders or levels on which mobility restrictions constitute the best
trade-off between social costs and effectiveness. Understanding how to implement
hierarchical mobility restrictions is also largely an open problem. Conclusively,
this work can be seen as evidence that implementing a green zone strategy might
be easier for epidemics that admit a higher dispersion.
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