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ABSTRACT 

To prevent antimicrobial resistance and inform better, antibiograms should distinguish 

different biomedical situations. It is also desirable that new antibiograms provide in vivo, 

temporal, and patient-specific immunological information.  Here, the informative ability of a 

pattern recognition-based method was explored with data collected from patients that 

experienced seven infectious syndromes (pneumonia, endocarditis, tuberculosis, syphilis, as 

well as skin and soft tissue, intra-abdominal, and/or urinary tract infections associated with 

meningitis). Interactions among seven dimensions (7D) were investigated: (i) space, (ii) time, 

(iii) temporal data directionality, (iv) immunological multicellularity, (v) antibiotics, (vi) 

immunomodulation, and (vii) personalized data.  Omissions and ambiguity (confounding 

different biological situations) occurred when static metrics were used in isolation, such as 

leukocyte percentages. In contrast, hidden information was uncovered when complexity and 

dynamics were assessed. The 7D approach grouped together observations that displayed 

similar immune profiles and identified antibiotics that modulated specific leukocytes. For 

instance, in tuberculosis, blood monocytes were modulated by isoniazid-related 

antimicrobials. In spite of the diverse syndromes analyzed, this proof-of-concept 

discriminated. It is suggested that the simultaneously exploration of numerous dimensions 

associated with complexity may be biologically interpretable, prevent ambiguity, promote 

research, expand machine learning-oriented methods, and support personalized medicine.   

 

INTRODUCTION 

New methods have been recently requested by physicians. Such calls respond to the  

‘reproducibility crisis´ of clinical research, characterized by up to 90% of irreproducible  
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studies.1 Numerous factors seem to cause this problem, which are not limited to statistical  

errors.2 They also include reductionist practices, e.g. (i) the ‘streetlight’ effect (measuring 

what is easily measured, but not biomedically relevant), (ii) dichotomous and static methods 

applied to biomedical conditions that may be dynamic and polychotomous; and (iii) research  

designs that ignore co-morbidities and interactions.1-7 

Because the unit of interest, in clinical medicine, is one patient (not a plurality, as in 

population medicine), neither averages nor linear models apply and, consequently, it cannot 

to be established whether one specific patient will benefit from a specific intervention.2, 8, 9 

Personalized medicine also requires novel cognitive approaches. The current emphasis 

(promoted by ‘evidence-based’ medical practices) expects clinicians to reason from the 

general (population average) to the particular (patient).  However, the history of each patient 

(including multi-morbidities and polypharmacy) also needs be considered.10, 11 

To address these issues, non-reductionist analyses of biomedical complexity and  

dynamics are needed. Because two patients receiving the same diagnosis may differ in 

outcomes, prognosis should also be explored. 2, 4, 9, 12, 13 Future methods should not utilize a 

single type of data but integrate theory with data that includes spatial-temporal dimensions.14-

17 In addition, ‘one person trials’ may be considered, which may investigate immunological 

multicellularity ‒a critical component in responses against infections.18-20    

Antimicrobial resistance is one example of the medical problems non-reductionist  

approaches should address. New strategies could go beyond the classic focus on antibiotic-

pathogen relationships and also interrogate the immune response of the host.21,22   

Research on immunomodulation has shown, for example, that norfloxacin promotes  

neutrophils, while linezolid suppresses phagocytosis, both in vivo and in vitro.23, 24 Similar  
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studies have shown that macrolides suppress bacterial infection of the lungs and reduce  

inflammation.25 Long-acting macrolide antibiotics, such as azithromycin, can protect even if 

given intermittently.26 To prevent multi-drug antimicrobial resistance, combinations of 

antibiotics and antibodies have been proposed.27 

Studies that investigate immunological multicellularity and/or immunological and  

antibiotic interactions matter clinically because, in many infections, empirical antibiotic 

treatments are prescribed when the identity of the pathogen is unknown. For instance, in 

pneumonia, pathogens may be isolated in only one third of the cases.28 Thus, earlier and in 

vivo assessments are needed to evaluate the efficacy of empirical treatments.  

Investigations on antibiotic-immunological interactions could also shed light on the  

pathogenesis of major diseases and, consequently, influence vaccine development. For  

instance, very little is known on the pathogenesis of tuberculosis ‒a disease that requires 

better vaccines because current ones have only a 30% efficacy.29, 30  In particular, 

immunological-antibiotic interactions should elucidate whether antibiotics foster or inhibit 

the functions of immune cells.31, 32  

Since 1947, antibiotics have been investigated with in vitro tests (antibiograms or 

antibiotic sensitivity). Such tests have several limitations, including absence of dynamic 

perspectives, which only in vivo studies can provide.33-35 Because they lack personalized 

information, these tests inherently support the ´one dose fits all’ paradigm.´36 

While the problems associated with reductionism have been abundantly documented  

over two decades37-39, very few solutions have been proposed. Here an approach meant  

to ameliorate reductionism-related problems is advanced. 

To materialize this pursuit, novel tests used in infectious diseases should demonstrate  
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that they do not generate ambiguous results. Ambiguity refers to lack of decision-making not   

due to lack of data but because the data do not discriminate.40 Health trajectory (also known 

as temporal data  directionality) is one strategy that may prevent ambiguity.41 Trajectory 

differs from classic measurements of time: by using arrows that connect pairs of consecutive 

observations, the directionality of temporal data is unmasked, providing a new level of 

information.  Health trajectory is a person-centered metric that describes the ‘flight path of an 

object’, informing on the direction and/or speed of a health change. While trajectory has been 

studied with aggregate data, the complex dynamics of health trajectories have not been 

explored at personalized bases.42, 43 While trajectory has been investigated in infections, 

earlier studies did not assess antibiotics.40, 44 

  Data collected from patients affected by seven infectious syndromes were explored. 

They included endocarditis, pneumonia, tuberculosis, syphilis, as well as intra-abdominal, 

skin and soft tissue, and/or urinary tract infections associated with meningitis. The selection 

of syndromes was based on their prevalence, in-hospital mortality, and/or recent trends. For 

example, in the US, infective endocarditis results in prolonged hospitalization and is 

associated with 20% in-hospital mortality.45 Worldwide, pneumonia causes 2-3 million 

annual deaths and, in the US, approximately 100,000 in-hospital annual deaths.46,47 Intra-

abdominal infections may result in up to 36 % mortality.48 While rarely fatal, the prevalence 

of skin and soft tissue infections is rapidly increasing in the US.49 

Seven dimensions were explored: (i) three-dimensional (3D) space, (ii) time, (iii) 

trajectory, (iv) multicellularity, (v) antibiotics, (vi) immunological-antibiotic interactions, and 

(vii) patient-specific information. The goal of this study was to elucidate (i) whether  

ambiguity was a rare phenomenon, and (ii) if not, whether a non-reductionist approach could  
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prevent ambiguity, discriminate, and/or inform. 

 

MATERIALS AND METHODS  

Data 

Seventy longitudinal observations collected from nine adults diagnosed with infective  

endocarditis, pneumonia, tuberculosis, syphilis, intra-abdominal, skin and soft tissue, and/or  

urinary tract infections associated with meningitis were analyzed. Day 0 indicated the first 

consultation or the date of hospitalization.   

This study was conducted as described in Protocol #13-463, which was approved by 

the Institutional Research Protection Office committee of the Health Sciences Center, 

University of New Mexico on June 23, 2016 (protocol titled 'Small Dataset-Based 

Discrimination of Infectious Disease Pattern', Dr. M Iandiorio, PI). This protocol protects the 

identity of the patients investigated. The data were anonymized by a double-blind process in 

which the treating clinician does not participate in the analysis of the data and the data 

analyst does not receive any information that could identify the patients. Because this 

protocol allows the retrieval and analysis of clinical data from historical clinical records 

without a previous review, no waiver was requested and no decision from the competent 

authority was required in advance for any one study.  The identification numbers reported in 

this study were created by the analyst in order to perform the analysis  ̶ they do not / cannot 

identify any person. 

 

Assessment of biomedical validity 

Construct, internal, and external validity were investigated. Statistical validity was 

not determined because such a research goal is only justified after the other types of validity 
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are shown to be defensible. Because external validity depends on or follows construct and 

internal validities, demonstration of external validity was emphasized.50  

This study was designed to determine whether the data patterns, if any, were robust to 

both patient and syndrome variability. To that end, a dataset was constructed to include: (i) at 

least five infectious syndromes and nine patients; (ii) at least two infectious syndromes 

would be explored with data from two patients, (iii) at least one co-morbidity would be 

investigated; (iv) at least one patient was not treated with antibiotics; and (v) in at least one 

patient, longitudinal observations would not start with antibiotic treatments so pre-/post-

treatment data could be investigated. External validity was regarded to be plausible when at  

least one multicellular interaction (e.g., the lymphocyte % over the monocyte % or L/M  

ratio) distinguished non-overlapping data subsets, patients, trajectories, temporal phases  

and/or infectious syndromes.  

 

Analyses 

Distinct data patterns were identified as described elsewhere.4, 13, 40, 44  Partitioning  

into data groups that, internally, exhibited similar immune profiles, was conducted using a 

proprietary algorithm (US patent 10,429,389; 2019). Two- and three-dimensional (2D and 

3D) plots were created with a commercial package (Minitab Inc., State College, PA, USA). 

 

RESULTS 

Detection and prevention of ambiguity.  Analyses of individual cell types were ambiguous. 

For example, a patient diagnosed with endocarditis exhibited similar leukocyte percentages 

even when samples were collected 29 days apart (Figs. 1 A, B). Because leukocyte 
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percentages do not explore interactions, further analyses measured dimensionless indicators 

(DIs) designed to capture complexity. When time was investigated, DIs revealed numerous 

changes in trajectory, which differentiated two subsets that exhibited: (i) ´left-to-right´, and 

(ii) ´right-to-left´ flows, respectively (Figs. 1 C, D). Trajectory-based assessments showed 

non-overlapping data intervals of interpretable variables: when the lymphocyte percentage 

was divided over the monocyte percentage (the L/M ratio), two subsets were distinguished 

(Fig. 1 E). When spatial patterns and multicellular interactions were analyzed, the 7D method 

differentiated (i) two data subsets, as well as (ii) three data points that, previously, could not 

be separated (Figs. 1 F, G). Complex multicellular indices –the L/M ratio and an indicator of  

greater complexity (e.g., the [L/M]/[N/L] ratio)− discriminated more or better than leukocyte  

percentages (Figs. 1 B, G).  

Data collected from another patient diagnosed with endocarditis and treated with  

antibiotics highlighted the dynamics of the immunological-antibiotic interactions: 

differentiating two temporal phases, vancomycin and cefazolin both promoted and inhibited 

immune responses (SI Figs. 1 A-H). The discriminant ability of the L/M ratio was, again, 

documented: non-overlapping data intervals separated an earlier from a later data subset, 

even when the M percentage exhibited overlapping intervals (SI Figs. 1F, H).  

 

Short-term ambiguity and real-time antibiotic monitoring.  Skin and soft tissue infections 

(SSTI) also revealed ambiguity when investigated with isolated variables (Figs. 2 A-D). 

When the neutrophil/monocyte (N/M) and the lymphocyte/monocyte (L/M) ratios were 

explored, data points collected at the third and fourth day were assigned to separate clusters 

(Fig. 2 E). In contrast, data points recorded nine days apart were clustered together (Fig. 2 E). 
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When trajectory was considered, the M percentage revealed two data subsets orthogonal to 

one another, which exhibited different directionality (Fig. 2F). While the L and N 

percentages also displayed two subsets, they were not perpendicular to one another (Figs. 2 

G, H). Because only the M percentage changed directionality after antibiotic treatment, it was 

concluded that ceftriaxone and vancomycin immunomodulated monocytes (Fig. 2 I).  

 

Pattern reproducibility.  A second SSTI case demonstrated that ambiguity may occur even  

when temporal data directionality is measured (SI, Figs. 2 A-H). While uni-dimensional (1D)  

analyses of percentages could be ambiguous (SI, Figs. 2 E, F), 3D analyses of complex  

interactions discriminated (SI Fig. 2G).  

The N/M ratio was demonstrated to be a well conserved function: it informed in two  

SSTI patients (Figs. 2 and SI 2). Within one day, the complex [N/M]/[L/M] ratio indicated  

recovery after nafcillin was administered (SI, Fig. 2H).  

Ambiguity was also found in pneumonia:  two data points were ambiguous when the 

neutrophil and monocyte percentages were evaluated (Fig. 3 A, B). In contrast, the analysis 

of complexity, dynamics, and trajectory identified two non-overlapping data subsets (Figs. 3 

C-F). The pattern recognition/based method discriminated earlier (at day 9, when the N/L 

ratio was used [Fig. 3 G]) than when the N% was measured (Fig. 3 A) as opposed to day 18 

and indicated that recovery was not initiated by any one antibiotic (Fig. 3 H). 

 Multidimensional analysis discriminated two subsets of intra-abdominal infections 

(Figs. 4 A-E). In contrast, the analysis of individual cell types failed to distinguish data 

subsets (Figs. 4 F-H).  Ceftriaxone and metronidazole appeared to modulate a complex 

function characterized by the [L/M]/[N/L] ratio (Fig. 4 E). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.22.21249954doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.22.21249954
http://creativecommons.org/licenses/by-nd/4.0/


10 

 

 

Redundancy and immune-modulation in tuberculosis.  Discrimination did not depend on 

any one dimensionless indicator: three different group of DIs (the L/M, [L/N]/[M/N], and 

[L/M]/[M/L] ratios)  differentiated two 3D data subsets (Figs. 5A-D).  In contrast, leukocyte 

percentages did not discriminate even when tested in pairs (Figs. 5 E-G). Yet, when 

antibiotics were measured, both 3D and 2D analyses revealed that monocytes were 

modulated by the isoniazid-related antibiotics (Figs. 5 H, I).  

Ambiguity was also observed in neurosyphilis (boxes, SI, Figs. 3 A, B). When complexity  

and trajectory were measured in space/time, two data subsets were distinguished, which  

differed in both L/M and [L/M]/[M/L] ratio values (SI, Figs. 3 C-E). When trajectory was  

assessed, these metrics distinguished three subsets (SI, Fig. 3 F). When antibiotics were  

considered, the 3 subsets were reconfigured, indicating that clindamycin, aztreonam and  

trimethoprim/sulfamethoxazole modulated a complex function characterized by the 

[L/M]/[M/L] ratio (SI, Fig. 3 G).   

 

Feedback patterns in co-morbidities.  Ambiguity was associated with co-morbidities  

(Fig. 6A). When space, time, immunological multicellularity, and trajectory were 

investigated, three temporal phases were observed, which revealed circular (feedback-like) 

data patterns (Figs. 6 B-E). When antibiotics were also investigated, amphotericin B was the 

only antifungal associated with all temporal phases (Fig. 6 F). When leukocytes were 

explored over time, a ‘V’ shape pattern supported the notion that lymphocytes were 

modulated by amphotericin B (Figs. 6 G-I). 
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DISCUSSION 

Nine out of 9 assessments revealed various expressions of ambiguity. They were prevented  

and more or novel information was extracted when seven dimensions were investigated. 

Findings are discussed along methodological and clinical perspectives. 

 

Methodological considerations 

Ambiguity was observed in all patients. Given its ubiquity, it is suggested that  

ambiguity may contribute to the reported ´reproducibility crisis´ of published research.1  

Ambiguity is related to synergism and pleiotropy: the same structure (e.g., a cytokine  

or a cell) can perform many (and even opposite) functions, at different times. Monocytes/  

macrophages illustrate how ambiguity occurs: they promote neutrophil activity at the 

beginning of the immune response and, a few days later ‒when the early inflammatory stage  

ends‒, they destroy neutrophils.51 Therefore, a ´10% monocyte´ value can be ambiguous  

because it can occur in different biomedical conditions or times, as shown in Fig. 3B.  

Because infection-related data are, at least, four-dimensional, ambiguity is 

mathematically intractable.13, 52, 53 Any biomedical variable may have a very large number of 

combinations (if not infinity) when all dimensions are considered, i.e., for any value of 

´width´, there are many possible values of ´height´, ´depth´, and ´time.´ Yet, ambiguity may 

disappear when context is added.53 Here contexts were explored considering (i) temporal 

interactions (the dynamics of immunological multicellularity with and without antibiotics) 

and (ii) other dimensions.  

The information provided by the non-reductionist approach may result from the 

complexity and dynamics of multi-scalar and multicellular interactions. When changes occur 
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at small temporal scales ‒e.g., molecular processes that take place at a nanosecond scale‒, 

any study based on a larger scale (e.g., days) will miss such changes.54 These errors are 

prevented when temporal data directionality is measured: arrows pointing at different 

directions indicate changes. In addition, the simultaneous analysis of up to seven dimensions 

can generate richer information on multi-level, inter-dependent biological interactionss.55 

While the analysis of complexity is not always informative, finding demonstrated that 

dynamics (longitudinal data on leukocytes and antibiotics) both informed and explained. 

The 7D approach is compatible with classic statistics as well as machine (statistical)  

learning.56 Because current machine learning (ML) approaches provide correlational but not  

causal information, they are not explanatory and, consequently, their actual predictability  

(also known as overfitting) is rather poor.32, 57  ML is associated with big datasets, which  

assume static (stable) relationships and tend to use aggregate (not personalized) data.58  

According to their transparency and interpretability, machine learning methods are 

categorized as ´black’ or ´white box.´ While black box models are not transparent, they have 

been reported to be highly informative when complexity is captured; yet, white box models 

are favored because they can be interpreted.59 Both ML versions share two aspects: (i) 

dependency on large numbers (a possible limitation when n=1), and (ii) linearity and  

reductionism, including the assumption that causes are independent, not interdependent.50    

The complexity-oriented method differs from the two research traditions mentioned 

above: while new ´white box´ approaches have recently been applied in machine learning-

related research on antibiotics, they are still influenced by linear models.57 In contrast, the 

non-reductionist approach discriminated regardless of any data distribution because it was 

based on 3D data shapes (patterns that do not depend on numerical cutoffs). Because 
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biomedicine is complex, dynamic, non-linear, and composed of interdependent processes, the 

method here described can complement both black- and white-box approaches, countering 

the overfitting attributed to machine learning.60 This approach can also be applied with other 

dimensions, including molecular and genomic data. 

 

Clinical applications  

I. Personalized medicine. 

The non-reductionist approach circumvents both the risks associated with ambiguity  

and the limitations of research designs that depend on population metrics, which tend to  

ignore co-morbidities. Because co-morbidities are associated with poly-pharmacy and  

exposure to diverse environments and lifestyles, patient-centered (not population-based) 

approaches are needed, followed by extensive evaluations, i.e., studies on external validity or  

generalizations.61, 62 

While co-morbidity (two of more medical conditions diagnosed in the same person)  

has been reported in 23% of the US general population, and more than 60% of the population 

above 65 years of age63, randomized clinical trials (RCT) assume that only one medical 

condition exists.64 Yet, infectious and non-infectious syndromes –such as tuberculosis, 

human immunodeficiency virus, and malaria, as well as diabetes mellitus and tuberculosis−  

tend to yield worse outcomes and affect more people than when they act alone.65, 66, 67 

Because up to 81.3% of RCT have excluded patients presenting with co-morbidities, the 

external validity of such designs is unknown. Because they assume that no interactions exist, 

RCT also lack construct validity.68, 69 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.22.21249954doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.22.21249954
http://creativecommons.org/licenses/by-nd/4.0/


14 

 

 II- Pathogenesis- and vaccine development-related research 

As previously reported, the N/L ratio reached high levels in bacterial pneumonia.70 A 

remarkable decrease of this metric was noticed before treatment started (from ~90 to ~15 

N/L values, Fig. 3G). This was a desirable outcome because, in pneumonia, mortality may 

follow a protracted inflammation, which may remain even after bacterial clearance.71 

The observed isoniazid-related immunomodulation of monocytes (Fig. 5 I) may be of  

interest in vaccine development against tuberculosis. At least two factors may explain the  

poor efficacy of vaccines against tuberculosis31: (i) evaluations based on aggregate data,  

which promote confounding because they cannot distinguish poor immunogens from poor  

responders; and (ii) evaluations that measure isolated structures (e.g., a specific cell type) but  

do not assess functions. In contrast, this study utilized personalized data to investigate  

multicellular interactions. Thus, the research design here described may investigate  

individual-level factors which, in tuberculosis, may influence vaccine efficacy.72 

Antibiotic-leukocyte temporal interactions differed among leukocytes: a double linear  

process (first, decreasing; later, increasing) was observed between the M% and time but the 

early linear relationship was not observed when either the L% or N% were investigated over 

time (Figs. 5 E-G). Hence, the evidence indicated modulation of monocytes: the M% rapidly 

and linearly decreased in blood before isoniazid-related treatment was prescribed and only 

increased, also linearly, after that therapy was applied. 

The findings reported in Fig. 5 also corroborated a study that related blood monocytes  

to ex vivo protection against tuberculosis. The same report attributed an informative role to  

the L/M ratio.73 Because the L/M ratio distinguished data subsets across five patients and  

syndromes (Figs. 1-5), its external validity was documented.50  
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III - Antibiotic- and antibiogram-related applications 

Classic antibiograms (or antibiotic sensitivity tests) have six limitations. They include 

lack of (i) in vivo, (ii) dynamic, (iii) personalized, and (iv) immunological information, and 

also (v) delayed results and (vi) procedures that do not facilitate the real-time evaluation of 

therapies.36  

Furthermore, in vitro and in vivo systems are likely to differ, e.g., the concentration of 

iron is rather high in vitro but low in vivo.74, 75 Because antibiograms ignore dynamics and 

depend on growth inhibition, they cannot investigate antibiotic bactericidal activity in drug-

tolerant bacteria.76,77 Because these tests do not inform at personalized level, they cannot 

explore  immunomodulation. Yet, the 7D approach may help to understand antimicrobial 

resistance. For instance, amoxicillin-resistant pneumococci and penicillin-resistant S. aureus 

may escape phagocytosis due to direct and indirect actions of these bacteria on neutrophils.78, 

79 It has been claimed that the first step toward new strategies against antimicrobial resistance 

is the development of new antibiograms, which should be personalized.80 Furthermore, the 

long turnaround (48-72 hours) of antibiograms promotes empirical antibiotic therapy (which 

may ineffective) and fosters antimicrobial resistance.80, 81  

Findings support the view that, when ambiguity is prevented, the six problems 

described above could be avoided. In addition, antimicrobial agent-associated 

immunomodulation could be investigated. The fact that amphotericin modulated 

lymphocytes in a co-morbidity case (Fig. 6 G) corroborated (with in vivo data) in vitro 

reports on the effect of this antibiotic on immunosuppressed patients affected by fungal 

infections.82, 83 While in vivo synergism between amphotericin and linezolid has been 
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reported in studies conducted with flies, to the best of our knowledge, this is the first study 

that reports in vivo, human-based evidence of synergic interactions involving amphothericin, 

linezolid, and flucytosine.84, 85 Because numerous interactions may occur when antibiotic, 

antiviral, antifungal and/or antituberculosis drugs are prescribed, in vivo and personalized 

monitoring of therapies are needed.86, 87 

In conclusion, findings supported the construct, internal, and external validity of a  

highly multi-dimensional method that, in vivo, prevents ambiguity, provides patient- 

specific (personalized) and immunologically explicit (white box) information on infection  

disease-related dynamics of antibiotic-mediated immuno-modulation. To determine its  

replicability, additional studies are recommended. 
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FIGURE LEGENDS 

Figure 1. Detection and prevention of ambiguity in endocarditis. Revealing ambiguity, 

three numerically similar observations were found at different time points (A, B). Over time, 

dimensionless indicators differentiated two data directionalities (trajectories): from ‘left-to-

right’ and from ‘right-to-left’ (C, D). Trajectory distinguished two data subsets, which 

displayed non-overlapping intervals of L/M and [L/M]/[M/N] ratios both when time was not 

and was considered (E, F). When space, time, and multicellularity were analyzed, the three 

data points previously regarded as ambiguous were clearly differentiated (G). 

 

Figure 2. Detection and prevention of ambiguity and antibiotic modulation of 

monocytes. Ambiguity was also found in a case of skin/soft tissue infections (A, B). The 

analysis of immunological complexity and trajectory identified two data subsets, including 

observations recorded one day apart (which were assigned to different subsets) and 

observations collected 9 days apart (which were clustered together, C-E). When time, 

trajectory, and specific leukocyte cell types were considered, two subsets were distinguished 

which did not include or included information on antibiotic therapy (the earlier and later 

subsets, respectively, F-I). Because only the monocyte percentage data displayed subsets  

orthogonal to one another and showing opposite directionalities, findings supported the 

hypothesis that ceftriaxone and vancomycin, together, modulated monocytes (F-I).   

 

Figure 3.  Earlier discrimination in pneumonia.  Ambiguity was documented twice when 

leukocyte percentages were analyzed over time (A, B). The analysis of complexity, time, and 

trajectory revealed two non-overlapping data subsets (C-F) which: (i) discriminated earlier 
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(at day 9, when the N/L ratio was used [G], as opposed to day 18 when the N% was 

measured, A), and (ii) indicated that recovery was not initiated by any one antibiotic (H). 

 

Figure 4. Multicellular modulation in an intra-abdominal infection. The analysis that 

included multicellular complexity, trajectory, time, and antibiotics in space discriminated two 

data subsets (A-E). In contrast, the analysis of individual cell types did not discriminate (F-

H).  Ceftriaxone and metronidazole modulated not a single cell type but a complex function 

characterized by the [L/M]/[N/L] ratio (E). 

 

Figure 5.  Monocyte modulation in tuberculosis.  While a multidimensional analysis 

distinguished two subsets that revealed non-overlapping values (A-D), no pair of leukocytes, 

when measured as percentages, identified such subsets (E-G). An additional subset was 

identified when antibiotics were measured, which was associated with isoniazid-related 

therapy (H). When the trajectory of specific cell types and antibiotics were tested, isoniazid-

related therapy seemed to modulate monocytes (I). 

 

Figure 6. Lymphocyte modulation in multi-morbidity. Ambiguity was expressed as  two 

temporal observations, collected six days apart, that expressed similar values of lymphocyte 

(L), neutrophil (N) and monocyte (M)  percentages  (A). However, the combination of space, 

immunological complexity, trajectory, time and antibiotics distinguished three non-

overlapping data subsets that expressed feedback (a circular pattern, B-E). Amphotericin 

characterized all data points included in the last subset (F), which modulated lymphocytes  

but no phagocytes (G-I).  
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Figure  2  
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