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ABSTRACT 

We developed end-to-end deep learning models using whole slide images of adults 
diagnosed with diffusely infiltrating, World Health Organization (WHO) grade 2 gliomas 
to predict prognosis and the mutation status of a somatic biomarker, isocitrate 
dehydrogenase (IDH) 1/2. The models, which utilize ResNet-18 as a backbone, were 
developed and validated on 296 patients from The Cancer Genome Atlas (TCGA) 
database. To account for the small sample size, repeated random train/test splits were 
performed for hyperparameter tuning, and the out-of-sample predictions were pooled for 
evaluation. Our models achieved a concordance- (C-) index of 0.715 (95% CI: 0.569, 
0.830) for predicting prognosis and an area under the curve (AUC) of 0.667 (0.532, 
0.784) for predicting IDH mutations. When combined with additional clinical 
information, the performance metrics increased to 0.784 (95% CI: 0.655, 0.880) and 
0.739 (95% CI: 0.613, 0.856), respectively. When evaluated on the grade 3 gliomas 
TCGA dataset, which was not used for training, our models were able to predict survival 
with a C-index of 0.654 (95% CI: 0.537, 0.768) and IDH mutations with an AUC of 
0.814 (95% CI: 0.721, 0.897). If validated in a prospective study, our method could 
potentially assist clinicians in managing and treating patients with diffusely infiltrating 
gliomas. 
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INTRODUCTION 

Diffuse gliomas are the most common primary brain tumors in adults. According to the 
World Health Organization (WHO) classification of tumors of the central nervous 
system1, the diffusely infiltrating gliomas are categorized into grade 1 to 4 based on 
histologic features such as mitotic activity, tumor cell pleomorphism and the presence of 
necrosis and/or microvascular proliferation1. Diffusely infiltrating low grade gliomas 
(LGGs) refer to grade 2 gliomas, which includes astrocytomas and oligodendrogliomas. 
High grade gliomas (HGGs) include grade 3 and grade 4 gliomas (glioblastomas, GBM). 
Over time, all LGGs progress to higher grade. A pair of slightly different terms, lower-
grade gliomas and higher-grade gliomas, are also often used to refer grade 2/3 gliomas, 
and GBM, respectively. GBM is the most aggressive type of diffuse gliomas with a 5-
year overall survival rate of less than 5%2 while the lower-grade gliomas usually have 
better prognosis with the median survival time of more than 7 years3. 
Isocitrate dehydrogenase (IDH) mutations are common in lower-grade gliomas with a 
prevalence of about 80%4. IDH mutations also occur frequently in secondary GBMs 
(progressed from lower-grade gliomas) but less so in primary GBMs5. IDH mutations are 
associated with better prognosis among patients with GBMs5 and lower-grade gliomas3,6.  
Treatment methods for diffuse gliomas include surgical resection at the time of diagnosis 
and subsequent radiation and/or chemotherapy. Recent retrospective studies and clinical 
studies suggest the presence of an IDH mutation is an important treatment indicator. For 
example, previous studies showed that extensive surgical resection is beneficial for 
patients with IDH-mutant astrocytomas7–10. Some studies found radiotherapy is more 
effective than temozolomide monotherapy for the treatment of patients with IDH-mutant 
1p/19q non-codeleted tumors11,12, and the effectiveness of photon beam radiation therapy 
in treating patients with IDH-mutant gliomas is being investigated by an ongoing clinical 
trial13. As for patients with IDH wild-type tumors, it has been proposed that conventional 
radiation therapy might work better given the more aggressive spread of gliomas lacking 
IDH mutations14. All of these underscore the importance of IDH mutation status in 
clinical treatment planning. 
Predicting survival times for adult diffusely infiltrating gliomas is of great interest in 
clinical practice, which can inform treatment and shared-decision making between 
physicians and patients. Prognostic factors for adult diffuse gliomas include age, gender, 
performance status, extent of tumor resection, and intrinsic factors of the tumor including 
grade, IDH mutation, chromosome 1p/19q status, and MGMT promoter methylation15,16. 
Although tumor tissues are graded according to well-established histological criteria, this 
process is time-intensive and it can be challenging to utilize this information for survival 
estimation. The development of deep learning models over the past few years provides 
unique opportunities to extract information from unstructured data such as whole slide 
images17–19. Several studies have used whole slide images to predict prognosis of patients 
diagnosed with diffuse gliomas and have shown promising results. Mobadersany et al.11 
predicted survival of patients diagnosed with grade 2 to 4 gliomas from the TCGA 
database, and they obtained a C-index of 0.741 in the testing phase. Another study done 
by Rathore et al.20 using all grade 2 to grade 4 gliomas from the TCGA dataset achieved 
an even higher C-index (0.79 to 0.85 for different subtypes). However, it is not clear what 
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type of loss function was used and how loss to follow-up was treated in this study. A 
recent study focused on grade 4 gliomas. The authors split the survival times into four 
categories and applied the cross-entropy loss function. A C-index which is commonly 
used to measure survival model performance, was not reported in that study21. 
Inferring IDH mutation status from histological images has also attracted interests over 
recent years. Despite the importance of IDH mutations in the clinical context, 
interrogating IDH mutational status can be time-consuming and expensive. However, if 
the IDH mutation information can be obtained from frozen section slides following 
surgery, both time and cost can be greatly reduced. A few studies have investigated 
whether whole slide images can be used for IDH mutation prediction. Momeni et al. 
applied deep recurrent attention models using TCGA dataset and obtained an AUC of 
0.8622. With a dataset combining 200 TCGA grade 2 to 4 cases and 66 private cases, an 
AUC of 0.920 was achieved in predicting IDH mutations23.  
Although there have been studies on the application of deep learning models using whole 
slide images of brain tumor patients, information on the performance of deep learning 
models among patients with lower grades is limited. A model trained using data across 
grade 2 to grade 4 cases can perform well in distinguishing high-risk patients from low-
risk patients with different grade of gliomas; however, it might not be able to differentiate 
high risk patients from low risk patients within the same grade. In this study, we set our 
focus on grade 2 gliomas (LGGs) and explored the use of deep learning models for 
survival prediction and IDH mutation status prediction utilizing the TCGA dataset. This 
is a more challenging task in comparison to previous studies due to the smaller sample 
size and more uniform cases. To mitigate this challenge, in our study, we use an 
ensemble deep learning framework similar to the established method proposed by 
Wulczyn et al.24. We also train and validate the models in repeated random splits of the 
dataset to obtain pooled out-of-sample predictions, a similar method adopted by 
Mobadersany et al.11, to ensure the stability and quality of our results. This approach 
helps to obtain the distribution of the model performance in the whole dataset and make 
the results not subject to unbalanced splitting.  

RESULTS 

Model performance and comparison with clinical features for prognosis prediction 
The average performance of the models with the chosen hyperparameters was 0.644 
(standard deviation = 0.107) in the 32 separate test splits. The ensembled predictions 
achieved a C-index of 0.715 (95% CI: 56.9, 83.0) for the prognosis prediction task over 
the entire dataset (Table 1). Several demographic and clinical variables were considered 
for survival analysis in our study. A Cox-proportional hazards model of age achieved a 
C-index of 0.745. When our WSI risk scores were added to the Cox model, the C-index 
was improved to 0.765 (difference = 0.020, 95% CI: -0.091, 0.100). Gender and race 
were unrelated to survival with C-index close to 0.5. The C-index when using only a 
clinical variable (primary diagnosis) was 0.572. By adding our WSI-based risk scores, the 
C-index was increased to 0.689 (difference 0.117, 95% CI: -0.003, 0.230) but still lower 
than WSI risk scores alone. IDH mutation status was another strong predictor with C-
index of 0.692 without WSI risk scores or 0.762 with WSI risk scores. When combining 
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age and IDH mutations, the C-index was 0.774 (95% CI: 0.658, 0.863), and adding our 
WSI-based risk scores improved the C-index slightly to 0.784 (difference = 0.010, 95% 
CI: -0.097, 0.085).  
Figure 1a and Figure 1c shows both age and WSI risk score can successfully identify 
high risk patients (age > 46 years or WSI risk score > 1.37) shortly after diagnosis. 
However, patients with intermediate risk were not significantly different from patients 
with low risk. Survival curves for patients with IDH mutations apparently separated with 
the survival curve for patients with IDH wild-type about half-year post diagnosis (Figure 
1b). Log-rank tests were significant for all three predictors. 
In the WHO grade 3 cases (Supplementary Table S3), the WSI-based risk scores had 
lower performance alone (0.654, 95% CI: 0.537, 0.768). Age and IDH mutations together 
achieved a C-index of 0.786 (95% CI: 0.683, 0.877). When combining WSI risk scores, 
the model performance improved slightly to 0.792 (0.701, 0.876). Kaplan-Meier curves 
for patients with WHO grade 3 gliomas are shown in Supplementary Figure S1. 
Model performance and comparison with clinical features for IDH prediction 
The AUC of the WSI-based models for prediction of IDH mutations was 0.667 (95% CI: 
0.532, 0.784) (Table 1 and Figure 1d). In addition, age is a strong predictor of IDH 
mutations with AUC of 0.689 (95% CI: 0.552, 0.816). Race is a weak predictor with 
AUC of 0.567 (95% CI: 0.480, 0.650). Combining race and WSI-based scores, the AUC 
was increased to 0.687. When combining age and race, the AUC was 0.711 (95% CI: 
0.585, 0.834). Including WSI-based scores raised the AUC to 0.739, with 0.028 
improvement (95% CI: -0.051, 0.078).  

Survival prediction performance:  C-index [95% CI] 

 Without WSI Risk 
Score 

With WSI Risk 
Score Difference 

None - 0.715 [0.569, 0.830] - 
Age 0.745 [0.627, 0.838]  0.765 [0.643, 0.865] 0.020 [-0.091, 0.100] 
Gender 0.509 [0.345, 0.630]  0.688 [0.528, 0.815] 0.179 [-0.007, 0.352] 
Race 0.520 [0.444, 0.554]  0.713 [0.568, 0.831] 0.193 [0.056, 0.322]* 
Primary diagnosis 0.572 [0.437, 0.707]  0.689 [0.539, 0.822] 0.117 [0.003, 0.230]* 
IDH mutations 0.692 [0.573, 0.807]  0.762 [0.602, 0.878] 0.070 [-0.048, 0.161] 
Age+IDH mutations 0.774 [0.658, 0.863]  0.784 [0.655, 0.880] 0.010 [-0.097, 0.085] 
IDH mutation prediction performance:  AUC [95% CI] 

 
Without WSI 

Predicted IDH 
Mutation Probability 

With WSI Predicted 
IDH Mutation 

Probability 
Difference 

None - 0.667 [0.532, 0.784] - 
Age 0.689 [0.552, 0.816] 0.726 [0.599, 0.845] 0.037 [-0.053, 0.097] 
Gender 0.536 [0.430, 0.643] 0.650 [0.507, 0.769] 0.114 [-0.078, 0.240]  
Race 0.567 [0.480, 0.650] 0.687 [0.560, 0.800] 0.120 [-0.002, 0.229]  
Primary diagnosis 0.519 [0.389, 0.641] 0.637 [0.472, 0.755] 0.118 [-0.090, 0.261]  
Age + Race 0.711 [0.585, 0.834] 0.739 [0.613, 0.856] 0.028 [-0.051, 0.078]  

Table 1. Model performance statistics for survival prediction task and IDH mutation 
prediction task, evaluated among patients with LGG. 95% confidence intervals were derived 
from 10,000 bootstrapping replications. Bold texts indicate best performance for each column. * 
indicates statistically significant difference (p < 0.05). 
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Figure 1. Kaplan-Meier curves and ROC curves evaluated among patients with LGG. (a), 
(b), (c) Kaplan-Meier curves by age, IDH mutations, and WSI risk score, respectively. P-value 
was calculated by log-rank test. (d) ROC curve for IDH mutation prediction. 

 

Without WSI 
Predicted IDH 

Mutation 
Probability 

With WSI 
Predicted IDH 

Mutation 
Probability 

Difference 

None - 0.727 [0.593, 0.834] - 
Age 0.746 [0.625, 0.838] 0.767 [0.646, 0.862] 0.021 [-0.069, 0.091] 
Gender 0.509 [0.344, 0.629] 0.704 [0.561, 0.823] 0.195 [0.041, 0.367]* 
Race 0.520 [0.445, 0.554] 0.719 [0.585, 0.831] 0.199 [0.075, 0.322]* 
Primary diagnosis 0.573 [0.433, 0.707] 0.700 [0.554, 0.818] 0.127 [0.001, 0.236]* 
WSI Risk Score 0.715 [0.573, 0.831] 0.723 [0.574, 0.839] 0.008 [-0.114, 0.081] 
Age+ WSI Risk Score 0.766 [0.646, 0.866] 0.771 [0.647, 0.867] 0.005 [-0.083, 0.062] 

Table 2. Performance of survival prediction using predicted IDH mutation probability 
evaluated among patients with LGG. 95% confidence intervals were derived from 10,000 
bootstrapping replications. Bold texts indicate best performance for each column. * indicates 
statistically significant difference (p < 0.05). 
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For WHO grade 3 cases (Supplementary Table S3 and Supplementary Figure S1), the 
WSI-based scores can predict IDH mutations with an AUC of 0.814 (95% CI: 0.721, 
0.897), which is much higher than the demographic and clinical predictors. When 
combining age, the AUC was 0.845 (95% CI: 0.759, 0.919), which is a statistically 
significant improvement over using only age as the predictor (0.122, 95% CI: 0.001, 
0.198). 
Prognosis prediction using WSI predicted IDH mutation probability 
Additionally, we explored if WSI predicted IDH mutation probability can be used to 
replace IDH mutation status measurement in predicting prognosis (Table 2). We found 
predicted IDH mutation probability alone achieved a C-index of 0.727, which is, notably, 
greater than WSI risk score (0.715) and IDH mutations (0.692). When combining with 
age, the C-index increased to 0.767 (95% CI: 0.646, 0.862), but not as good as combining 
age and IDH mutations (C-index = 0.774). Finally, when combining predicted IDH 
mutation probability with age and WSI risk score, the C-index was 0.771 which was 
better than age and survival risk score (0.766), but not as good as combining age, survival 
risk score and IDH mutations (0.784). 
Visualization of model predictions 
The average WSI-based risk scores across patients were 0.947 (standard deviation: 
1.587). Prediction results on the whole slide and patch level are shown in Figure 2, and 
Supplementary Figure S2. Increased tumor cell density and tumor cell atypia, i.e., 
increased nuclear size, hyperchromasia, and irregular nuclear contours, are associated 
with higher grade and worse prognosis. The images of the resection specimen in Figure 
2a show a diffusely infiltrating glial neoplasm with many areas of high cellularity and 
pleomorphism. This tumor was diagnosed at the time as an oligoastrocytoma (mixed 
glioma), and the patient died 1.4 years after diagnosis. The predicted risk score was high 
(10.77). The histology of this tumor differs dramatically from the one shown in Figure 
2b, which reveals only small foci of hypercellularity and atypia (insets, left). Much of the 
resection specimen from this 32-year-old man diagnosed with mixed glioma showed 
reactive astrogliosis and mildly infiltrated brain parenchyma (insets, right). The model’s 
low predicted risk score of 0.65 is consistent with the low grade histologic features of this 
tumor. The patient’s relatively long survival of six years corroborated the model’s 
performance.   

DISCUSSION 

In this study, we have shown that by using deep learning models on WSIs, we are able to 
achieve promising results for predicting prognosis and IDH mutations on the lower-grade 
gliomas dataset from the TCGA database. The performance of the deep learning model 
based on WSIs alone is better than the model based on the primary diagnosis and some 
demographic variables such as race and gender, but not as good as age at diagnosis. 
Combining WSI-based deep learning predictions with demographic and clinical features 
could further improve the model performance to up to 0.784 for the prediction of 
prognosis and 0.739 for the prediction of IDH mutations. We also found if WSI predicted 
IDH mutation probability is used instead of IDH mutation status measurement, we can  
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Figure 2. Example predictions on whole slide images for prognosis prediction. (a) A 59-year-
old female patient diagnosed with mixed glioma, died 1.4 year after diagnosis. The predicted risk 
score is 10.77. (b) A 32-year-old man diagnosed with mixed glioma, died 6 years later. The 
predicted risk score is 0.65. 
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still obtain a C-index of 0.771. Our results were further validated using WHO grade 3 
patients which were not used during the training and hyperparameter selection. 
Previous work on the application of deep learning models to LGG datasets is relatively 
limited. Studies using less restrictive data inclusion/exclusion criteria reported higher 
performance in the survival prediction task11,25 and IDH mutation prediction task23. This 
lower performance in the stage 2 only patients could be due to the smaller sample size 
and less variation in the disease severity.  
During initial experiments, we noticed that for a single data split, the higher performance 
in the validation dataset does not necessarily translate to higher performance in the test 
dataset. This could be due to unbalanced sampling when sample size is small. We also 
found that a discrepancy in validation and test AUC occurred in Liu et al.’s study23. For 
example, the AUC for their baseline model achieved an AUC of 0.920 on the test set, 
while in the validation dataset the AUC is 0.823. This highlights the difficulty in 
obtaining a balanced train/validation/test splitting with limited sample size. Our adoption 
of the repeated data splits and pooling method can ameliorate this problem. 
There are several limitations to this study. First, the sample size in the study is relatively 
small and the number of lost to follow-up is substantial. With only a total of 296 patients 
(among which 49 were observed at the endpoint and 44 were IDH wild-type), developing 
a deep learning framework is challenging. The small sample size also limited the power 
to detect statistically significant improvement by using the predictions based on WSIs 
over only demographic and clinical information. Secondly, we did not evaluate the 
performance of our models on additional datasets; thus, the generalizability of this 
method needs further validation. Thirdly, the cause of death was not recorded in the 
TCGA dataset, thus our ground truth might not be accurate for all the samples which 
could affect the model performance. 
Notably, histological information could only explain part of the variance in survival time. 
Other information, such as the location of the tumor, treatment, and comorbidities are 
also important determinants of the progression of the disease. In this study, we did not 
include important clinical data, such as treatment, in our analysis, as the detailed 
information was not available in the TCGA dataset. In future work, we will pursue 
expanding our dataset and include this additional relevant information in our analysis. 
We expect incorporating additional demographic, clinical, and genetic/molecular 
information in our method could potentially improve the ability to predict prognosis of 
patients diagnosed with LGG. 

MATERIALS AND METHODS  

Data Source 
The digitized hematoxylin and eosin (H&E) stained whole slides used in this project were 
obtained from The Cancer Genome Atlas (TCGA) database. TCGA database is de-
identified and is publicly available on the Web. Therefore, this project does not meet the 
requirements of human subject research. Only low-grade diffuse gliomas were included 
in our analysis (number of patients = 307). There are two different types of whole slide 
images (WSIs) in this dataset, namely formalin-fixed paraffin-embedded (FFPE) slides 
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and frozen section slides26. Since the frozen section slides contain many artifacts, we only 
included FFPE slides in our dataset (number of patients = 296, number of WSIs = 524).  
Demographics and clinical information were also downloaded from the TCGA website. 
For the deceased patient, the follow-up time was derived from “days to death”. For 
patients who were alive at the last follow-up, the follow-up time was derived from “days 
to last follow-up”. IDH mutation status was derived from IDH1 and IDH2 mutations 
variables. Eight participants without IDH mutation information were excluded from IDH 
related analysis. Demographic and clinical information including age, gender, race, and 
primary diagnosis, was used in our analysis for comparison purposes. The average age of 
the patients in our dataset was 40.9 years with a standard deviation of 13.0 years. Among 
those, 55.7 percent were men, and the majority (91.6%) of the patients were white. The 
proportions of patients diagnosed as astrocytoma, oligoastrocytoma, and 
Oligodendroglioma were 19.9%, 43.9% and 36.1%, respectively. 80.2% of the patients 
had an IDH1 mutation, while 4.5% of the participants had an IDH2 mutation 
(Supplementary Table S1).  
To further evaluate the performance of our method, we obtained the grade 3 glioma cases 
from the TCGA database for testing purposes only (number of patients = 194, number of 
whole slides images = 319). The data processing procedure for grade 3 cases is the same 
as the grade 2 cases. The distribution of demographic variables was similar to grade 2 
cases, and IDH mutations were present in 68.6% of the cases (Supplementary Table S2). 
 

 

Figure 3. An overview of the deep learning pipeline for prognosis prediction. Patches of size 
224×224×3 are randomly sampled from whole slide images at a 10× magnification level. The 
ResNet-18 Convolutional Neural Network transformed each patch into a 512×1 vector. Average 
pooling is performed at the patient level. The patient level vectors then go through a two-layer 
fully connected network with final output size of 1, which can be interpreted as risk scores. Cox 
proportional hazards loss is calculated using the risk scores with consideration of follow-up time 
and vital status. The gradient is calculated and backpropagated through the fully connected layers 
and the ResNet-18 layers to train the entire model. 
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Preprocessing of whole slide images 
As WSIs are large in size and cannot fit in GPU memory, several preprocessing steps 
were taken to extract patches from the original images. We loaded the WSIs at the 
magnification factor of 10× (1μm/pixel) and extracted patches with a size of 224×224 
pixels without overlap. Background patches were excluded by using color thresholding. 
A total of 1,887,767 patches were generated through this process. 
Model Architecture 
For the prognosis prediction task, our model architecture is adapted from the proposed 
work by Wulczyn et al.24 and is illustrated in Figure 3. In summary, for each batch, 𝑛𝑛 
participants were randomly chosen from the training dataset. For each participant, 𝑘𝑘 
patches were randomly selected. These patches were fed into a deep learning model. The 
ResNet-18 model with pre-trained ImageNet weights was used as the backbone model27, 
and a fully-connected layer was replaced by an identity layer. The output size for each 
patch was 512. We then averaged the feature vectors over 𝑘𝑘 patches for each participant 
and used the pooled features for risk estimation through a subsequent two-layer neural 
network with 128 neurons and 1 neuron for each layer, respectively. The final output can 
be interpreted as risk scores and the loss is calculated as the negative log Cox partial 
likelihood, which is defined as 

𝐽𝐽(𝛽𝛽) =  −
1
𝑛𝑛
Σ𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖[𝑥𝑥𝑖𝑖 − log (Σj∈R(Ti)exp (𝑥𝑥𝑗𝑗))] 

where 𝑛𝑛 is the number of patients, 𝑥𝑥𝑖𝑖 is the risk score, 𝑦𝑦𝑖𝑖 is the event indicator (0 for alive 
and 1 for death), 𝑅𝑅(𝑇𝑇𝑖𝑖) is the risk set at the event time of 𝑖𝑖th patient. 
The model architecture for the binary IDH mutation prediction task is similar to the one 
for prognosis prediction, except that the final output size is 2. Since the percentage of 
participants with IDH mutations was much larger than that of participants without IDH 
mutations, we used weighted cross-entropy loss to handle the imbalanced dataset by 
assigning a larger weight to cases without IDH mutations. 
During validation, 100 random patches were selected for each patient in the validation 
group for a balance between variations and efficiency. All the patches were used when 
making out-of-sample predictions for cases in the test set. 
Model evaluation metrics 
Concordance index (C-index), which is defined as the proportion of concordant pairs 
among all possible pairs, was used as the evaluation metric of our prognosis prediction 
model. Area under ROC (receiver operating characteristic) curve (AUC) was used as the 
evaluation metric for the binary classification tasks. 

Training-validation data splits 
The data splitting was performed at the patient level to avoid the information leak across 
partitions. Due to limited training data, to ensure more balanced group splits, we first 
sorted the patients by vital status and follow-up time, then created multiple 4-patient-
blocks. Within each block, we assigned 2 patients to the training group and 1 patient to 
each of the validation and test groups. This random splitting was repeated 8 times for the 
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purpose of hyperparameter tuning, and was repeated another 24 times for model 
evaluation (as explained below). 
Hyperparameter tuning 
Within each random data split, our deep learning model was fit on the training split, with 
its performance monitored using the validation split. When the training is finished, out-
of-sample prediction was obtained for the test dataset. We repeated this process in all of 
these 8 repetitions and used the average validation performance metrics to choose the 
best set of hyperparameters. The final set of hyperparameters chosen was batch-size of 
𝑛𝑛 = 8 patients with 𝑘𝑘 = 8 patches for each individual (64 patches per batch in total), 
initial learning rate of 1e-4 for the fully connected layers and 3e-7 for the convolutional 
layers. 
Data augmentation methods, such as random horizontal and vertical flips and color 
jittering, were used during training time. To mitigate overfitting, we applied an L1 
penalty with regularization strength of 0.01 on the fully connected layers. Adam 
optimization was used for training. Cosine annealing was used as the learning rate 
scheduler. Each model was evaluated when every 20,480 (i.e., 320 steps) patches were 
used and training was stopped after 96 thousand steps. 
Bootstrapping on out-of-sample predictions 
After training and hyperparameter tuning across the first 8 random splits, we trained the 
models with the same hyperparameters using the additional 24 random splits. These 32 
models provided 32 out-of-sample predictions. The test set size for each model was one 
fourth of the total dataset. Because each participant was selected into the test dataset with 
a probability of 0.25, the number of out-of-sample predictions for a participant follows 
the Poisson distribution with a mean of 8 (min = 2, max = 18). We ensembled all the out-
of-sample predictions by averaging them as the final prediction.  
Subsequently, we performed a bootstrapping method to evaluate the model performance. 
To do so, we randomly selected 296 observations from the entire dataset with 
replacement as the training dataset (about 63% of the patients). A statistical model (Cox 
or logistic) using demographic and clinical information with/without deep learning 
predictions was fit on the training dataset. The participants who were not selected formed 
the test dataset (about 37% of the patients) and were used to evaluate the performance of 
the statistical model. We repeated this process 10,000 times to estimate the distribution of 
C-index and AUC without or with deep learning predictors as well as their difference. 
The deep learning framework was implemented in PyTorch (version 1.1.0). The 
statistical tests were performed using R (version 3.6.1). 
Results visualization 
Kaplan-Meier curves were used to present the observed survival probability over time by 
tertiles of age and WSI risk score, and IDH mutation status. The Kaplan-Meier curves 
were replicated for patients with grade 3 gliomas using the same cut-offs. For the IDH 
mutation prediction task, ROC curves were plotted with age and WSI-based IDH 
mutation probability as the predictor. 
To visualize the model performance at the whole slide level, we selected two patients 
from prognosis prediction task and another two from IDH mutation prediction task. For 
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the prognosis prediction task, we chose one patient who died shortly after diagnosis, and 
another patient who survived at least 5 years after diagnosis. For the IDH mutation 
prediction task, we chose one patient with an IDH mutation and one without. One whole 
slide image was selected for each patient. Representative regions from the slide were 
selected for a more detailed view.  
Data availability 
This project's source of data is the TCGA database, which is publicly available on the 
Web (https://portal.gdc.cancer.gov/projects/TCGA-LGG). 
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