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Abstract

Explainable artificial intelligence provides an opportunity to improve prediction accuracy over standard

linear models using “black box” machine learning (ML) models while still revealing insights into a complex

outcome such as all-cause mortality. We propose the IMPACT (Interpretable Machine learning Prediction

of All-Cause morTality) framework that implements and explains complex, non-linear ML models in

epidemiological research, by combining a tree ensemble mortality prediction model and an explainability

method. We use 133 variables from NHANES 1999–2014 datasets (number of samples: n = 47, 261) to

predict all-cause mortality. To explain our model, we extract local (i.e., per-sample) explanations to verify

well-studied mortality risk factors, and make new discoveries. We present major factors for predicting

x-year mortality (x = 1, 3, 5) across different age groups and their individualized impact on mortality

prediction. Moreover, we highlight interactions between risk factors associated with mortality prediction,

which leads to findings that linear models do not reveal. We demonstrate that compared with traditional

linear models, tree-based models have unique strengths such as: (1) improving prediction power, (2)

making no distribution assumptions, (3) capturing non-linear relationships and important thresholds, (4)

identifying feature interactions, and (5) detecting different non-linear relationships between models. Given

the popularity of complex ML models in prognostic research, combining these models with explainability

methods has implications for further applications of ML in medical fields. To our knowledge, this is

the first study that combines complex ML models and state-of-the-art feature attributions to explain

mortality prediction, which enables us to achieve higher prediction accuracy and gain new insights into

the effect of risk factors on mortality.

1 Introduction

Machine learning (ML) has spurred significant advances in healthcare, especially in the vital areas of diagnosis

and prognosis. Notable diagnostic studies include diabetic retinopathy detection in ophthalmology images [1],

lung cancer classification from histopathology images [2] and skin cancer classification [3]. Many of these
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Figure 1: Overview of the IMPACT model and analyses. (A) We use the NHANES (1999-2014) dataset
which includes 133 variables and 47,261 samples. The variables can be categorized into four groups: demographics,
examination, laboratory and questionnaire. We train the model using different follow-up times and different age
groups. (B) IMPACT combines tree-based models with an explainability method. Specifically, IMPACT (1) trains
tree-based models are trained for mortality prediction using NHANES dataset (2) uses TreeExplainer to provide
local explanations for our models. (C) We illustrate the advantages of interpretable tree-based model compared to
traditional linear model in epidemiological studies. (D) We further analyze all mortality models and demonstrate
the effectiveness of IMPACT to verify existing findings, identify new discoveries, verify reference intervals, obtain
individualized explanations, and compare models using different follow-up times and age groups.

studies report accuracy comparable to or exceeding trained physicians and pathologists. Prognostic research

examples include cardiovascular risk prediction using routine clinical data [4] and hospital readmission risk

prediction [5]. Despite this progress, the primary limitation of complex ML for healthcare applications is

that they are viewed as a “black box”, which refers to the lack of explainability (i.e., we do not know why the

model makes a certain prediction). In many cases, the patterns a model discovers are even more important

than its predictive accuracy. This is especially true in prognostic research, which aims to identify important

variables in order to make interventions, or to detect new risk factors to investigate further. The goal of

applying ML to healthcare problems if often not only to achieve high accuracy, but to explain the prediction.

Identifying features associated with mortality is an important prognostic issue in public health and crucial

for clinical decision making. Epidemiological studies that explore the relationship between measurements –
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obtained by questionnaires, physical assessments and biological samples – and mortality identify risk factors

provide new hypotheses about health determinants. Most of prior studies focus on the association of one risk

factor with mortality at a time [6–8], using linear models; only a few papers have investigated multiple risk

factors with linear models concurrently [9, 10]. Even though linear models are transparent, advanced ML

models can achieve higher predictive accuracy compared to linear models because they capture interactions

among variables. However, the few studies that use non-linear models for mortality prediction [11] focus only

on their predictive power, and fail to explain the “black box” model to make new discoveries, essential for

drawing epidemiological conclusions.

In this paper, we present the Interpretable Machine learning Prediction of All-Cause morTality (IMPACT;

Figure 1) framework, which uses a complex, high-performance tree-based ML model and state-of-the-art

explanation method to predict all-cause mortality. We adopt the tree-based models because: (1) Tree-based

models outperform both linear models and neural networks across all mortality prediction tasks and age

categories we consider. (2) Unlike linear models, tree-based approaches do not use a fixed parametric form

and can capture non-linear relationships and feature interactions, which are crucial for epidemiological studies.

(3) Recent advances have provided methods to rigorously explain tree-based models. TreeExplainer [12],

a local explanation (i.e., feature attribution) method for trees, explains not only global decisions, but the

impact of each variable for an individual prediction. It can identify important variables, explain model

decisions and reveal non-linear relationships and feature interactions. Several medical studies have used

TreeExplainer to extract valuable discoveries from “black box”, tree-based models [13, 14] to generate new

hypotheses. Importantly, in addition to providing accurate prediction scores, interpretable tree-based models

can support clinical decision making by revealing individualized risk factors of mortality.

We applied IMPACT to the National Health and Nutrition Examination Survey (NHANES) (1999-2014)

dataset. To our knowledge, this is the first study that uses interpretable complex ML models to do a

systematic and integrated study of the associations between a large number of variables (133 variables) and

all-cause mortality. We trained the model using different follow-up times (1-year mortality, 3-year mortality

and 5-year mortality) and different age groups (<40 years, 40-65, 65-80 and ≥80). We discuss the advantages

of tree-based models compared to linear models and neural networks (Section 3.1), analyze the discoveries

obtained by 5-year mortality prediction models (Section 3.2), and compare the models for different follow-up

times and age groups (Section 3.3) to identify the changes of importance and effect of variables on mortality.

Our contribution is summarized as follows:

• To our knowledge, IMPACT is the first attempt to combine complex ML models and state-of-the-art

feature attribution method to explain all-cause mortality.
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Figure 2: (A)-(D) Histograms of age, gender, race, and body mass index in the NHANES dataset. (E) The sample
size and number of living and deceased samples for different follow-up times and different age groups. For different
age groups, the follow-up time is set to 5 years.

• We train highly accurate IMPACT models using a large number of variables, and do a systematic study

of mortality.

• We illustrate the advantages of tree-based models using findings from IMPACT: (1) improving prediction

power, (2) making no distribution assumptions, (3) capturing non-linear relationships and important

thresholds (e.g., uric acid), (4) measuring feature interaction effects (e.g. red cell distribution width v.s.

age), and (5) detecting different relationships among models (e.g., serum sodium).

• We identify new discoveries from IMPACT models including little-studied risk factors (e.g., platelet

count), interaction effects (e.g., serum chloride v.s. age and gender) and reference intervals (e.g.,blood

lead).
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2 Methods

2.1 Data collection and processing

The National Health and Nutrition Examination Survey (NHANES) from the National Center for Health

Statistics (NCHS) 1 conducts interviews and physical examinations to assess the health and nutrition data for

all ages in the United States. The interviews include demographic, socioeconomic, dietary, and health-related

questions. The examinations include medical, dental, physiological measurements, and laboratory tests

administered by highly trained medical personnel. Since 1999, data were collected and released at 2-year

intervals. Each year NHANES examines a nationally representative sample of roughly 5,000 individuals

across the Unites States. In this study, we include NHANES data sampled between 1999 and 2014. All-cause

mortality is ascertained by a linked NHANES mortality file that provides follow-up mortality data from the

date of survey participation through December 31, 2015.

Our study includes samples with known mortality status who participated in NHANES 1999-2014

(n = 47, 261). We include all demographic, laboratory, examination, and questionnaire features that could

be automatically matched across different NHANES cycles. We exclude variables that are missing for more

than 50% of the participants and highly correlated features with correlations greater than 0.98; after filtering,

133 features remain. We impute missing data using MissForest [15], a nonparametric random forest-based

multiple imputation method for mixed-type data, with seven iterations. Figure 2A-D show distributions of a

few basic features. We predict all-cause mortality for two broad categories: (1) follow-up times of 1-year,

3-year, and 5-year and (2) age groups of <40, 40-65, 65-80, and ≥80 years old. For different follow-up times,

we remove samples with unconfirmed mortality status. For different age groups, we predict 5-year mortality.

The sample size and number of living and deceased samples are shown in Figure 2E.

2.2 Predictive modeling

To model mortality, we use gradient boosted trees (GBTs) which achieve state-of-art performance on many

tabular datasets [16, 17]. GBTs are nonparametric methods composed of iteratively trained decision trees. The

final ensemble of trees captures non-linearity and interactions between predictors. We use the implementation

XGBoost [18] with a learning rate set to 0.002 and 10,000 trees of max depth 3. For comparison, we also train

logistic regression models and deep neural networks. For logistic regression, we use L2 regularization. For

neural networks, we use a single layer with 1,000 nodes, and max iteration set to 1,000. The hyperparameters

for logistic regression and neural networks are chosen by GridSearch and cross validation. The dataset is

randomly divided into training (80%) and testing (20%) sets. Models’ performance is measured with the area
1http://www.cdc.gov/nchs/nhanes.htm
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under the receiver operator characteristic curve (AUROC). We bootstrap the test set to assess the statistical

significance of the difference in AUROC for pairs of models. Specifically, we resample with replacement from

the test set 1,000 times and compare the models’ performance on resampled test sets. We report a p-value

which is the percentage of time that logistic regression or the neural network’s performance is better than or

equal to gradient boosted trees, divided by the number of resampled test sets. All models are built using the

Scikit-learn package in Python 3.7.

2.3 Model interpretation

To explain the GBT models, we utilize TreeExplainer [12], which provides a local explanation of the impact

of input features on individual predictions. Specifically, TreeExplainer calculates exact SHAP [19] (SHapley

Additive exPlanations) values, which guarantee a set of desirable theoretical properties. First, SHAP values

are additive. They sum to the model’s output, i.e., the log-odds for GBTs. Second, they are consistent,

which means features that are unambiguously more important are guaranteed to have a higher SHAP value.

Therefore, SHAP values are consistent and accurate calculations of each feature’s contribution to the model’s

prediction. In our study, higher SHAP values imply higher mortality risk. TreeExplainer also extends local

explanations to directly capture feature interactions and explains global model structure based on many local

explanations. By showing the impact of each variable and the impact of interactions between variables for

sample-specific explanations, we can obtain a comprehensive understanding about why the model made a

specific prediction.

3 Results

3.1 Advantages of tree-based models

3.1.1 Tree-based models make more accurate predictions than linear models and neural net-

works

Linear models are commonly used because their coefficients provide a global explanation, which indicate

each feature’s contribution to the model’s prediction [20]. However, for many datasets, more expressive

models, such as tree-based models and neural networks, can achieve higher predictive accuracy by learning

non-linear relationships between independent and dependent variables. The advantages of computational

efficiency and high accuracy have made tree-based models the most popular non-linear model class, especially

for tabular-style datasets where features are individually meaningful (as opposed to images/text/time series

data which are often dominated by neural networks) [21]. Tree-based models — such as random forests and
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Figure 3: Advantages of tree-based models for mortality prediction. (A) The area under the ROC curve
(AUROC) of gradient boosted tree models outperforms both linear models and neural networks for six of our prediction
models. (Section 3.1.1) .(∗ ∗ ∗) represents a P-value < 0.001, (∗∗) represents a P-value < 0.01, and (∗) represents a
P-value < 0.05. P values are computed using bootstrap resampling over the tested time points while measuring the
difference in area between the curves. (B,C) Tree-based models can capture non-linear relationships and important
thresholds (Section 3.1.3). (B) The main effect of uric acid on 5-year mortality. Higher SHAP value leads to higher
mortality risk (C) The main effect of urine albumin on 5-year mortality. (D–I) Tree-based models can measure feature
interaction effects (Section 3.1.4). (D) SHAP value for blood lead level in the 5-year mortality model. Each dot
corresponds to an individual. (E) We can use SHAP interaction values to remove the interaction effect of age from the
model and obtain the main effect of blood lead on 5-year mortality. (F) Plotting just the interaction effect of blood
lead with age shows how the effect of blood lead on mortality risk varies with age. (G) The SHAP interaction value
of age vs. gender in the 5-year mortality model. (H) The SHAP interaction value of blood lead vs. cancer in the
5-year mortality model. (I) The SHAP interaction value of blood lead vs. gender in 5-year mortality model. (J,K)
Tree-based models can highlight different non-linear relationship between models. (Section 3.1.5) (J) The SHAP value
of serum sodium in the 1-year mortality model. (K) The SHAP value of serum sodium in the 5-year mortality model.

gradient boosted trees — achieve state-of-the-art performance in many domains [22–25]. We observe the

same trend when predicting mortality using our NHANES data set: tree-based models outperform both linear

models and neural networks across all mortality prediction tasks and age categories we consider (Figure

3A). The superior prediction performance of tree models indicates that we can capture signals relevant to

mortality, which alternative approaches could not.
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3.1.2 Tree-based models make minimal assumptions about the data distribution

Several principle assumptions are associated with linear models: linearity, independence, normality, ho-

moscedasticity, and little or no multicollinearity. Of particular note, the linearity assumption states that the

relationship between independent and dependent variables is linear. To satisfy this assumption, scientists often

manually transform non-linear variables prior to fitting a model (e.g., log-transformation, discretization of

continuous variables, etc.). Other assumptions also restrict the features linear models can use. In comparison,

nonparametric methods like tree-based models make minimal assumptions about the data distribution and

need no data transformations.

For instance, Figure 3D–E show the SHAP values and main effects of blood lead for a 5-year mortality

prediction model. SHAP values indicate the contribution of each feature to model prediction where higher

SHAP values indicate higher model prediction and vice versa. The main effect is the impact of a single

feature, computed by subtracting the impact of all other features from the SHAP value (e.g., interaction

effect). The figure shows a positive relationship between blood lead and 5-year mortality risk, which matches

the conclusion of previous studies that used linear models [26–28]. In these papers, researchers first discretized

blood lead using different thresholds and observed that individuals with blood lead levels higher than the

threshold had increased all-cause mortality risk compared to those with lower blood lead levels. In stark

contrast, tree-based models can capture non-linear relationships, which eliminates the need to manually

transform the variables. Furthermore, using local explanations, we can identify the importance of blood

lead for any continuous value, rather than for discrete blood level categories, which makes it possible to get

personalized explanations that are explicit to the values of a particular sample’s continuous variables and

help clinicians implementing precision medicine with individualized risk factors of mortality.

3.1.3 Tree-based models capture non-linear relationships and important thresholds

Discovering non-linear relationships is important but challenging for epidemiological research using traditional

linear models. J-shaped and U-shaped associations are two common and meaningful non-linear relationships

[29]. However, as mentioned previously, linear models must use manually transformed features to capture

non-linear relationships. Three common statistical approaches to modeling non-linear relationships using

linear models are: polynomial/exponential modeling, categorical reparameterization, and splines [29]. For

polynomial/exponential modeling and splines, non-linear relationships are identified and appropriately

transformed. For categorical reparameterization, the continuous variable is divided into mutually exclusive

categories, with each category represented by a binary variable. As an example, Suliman et al. used a linear

model to capture the non-linear relationship between uric acid and mortality risk [30]. The authors divided
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uric acid level into three categories and calculated the hazard ratio for each. Based on these categories, they

showed a J-shaped mortality relationship for uric acid levels in patients with CKD stage 5 who were starting

renal replacement therapy.

Unlike linear models, tree-based approaches can capture non-linear relationships without manually

transforming or discretizing variables. For instance, we observe a U-shaped relationship between uric acid

level and all-cause 5-year mortality predictions in Figure 3B. This relationship differs from the J-shaped one

in from previous work, possibly because of categorization which loses important information about values

within the categories. In summary, modeling non-linear relationships using linear models with categorical

reparameterization has a few key disadvantages: (1) loss of information, (2) sensitivity to the choice of

subgroups, and (3) loss of predictive power.

Additionally, discovering thresholds (i.e., inflection points beyond which changing a feature’s value has

diminishing returns) is significant in epidemiological analysis. However, it is hard to discover important

thresholds using linear models, since linear models are not able to capture non-linear relationships. Figure 3C

illustrates the main effect of urine albumin for the 5-year mortality model. The plot shows that 250 µg/mL is

an important threshold: according to our model, increasing urine albumin generally increases 5-year mortality

risk; however, urine albumin higher than this threshold has almost the same impact on mortality risk.

3.1.4 Tree-based models measure feature interaction effects

In contrast to linear models, tree-based models can naturally capture interaction effects by splitting on

different features in the same tree. TreeExplainer extends local explanations to capture these interactions. In

particular, SHAP dependence plots show how a feature’s value (x-axis) impacts the prediction (y-axis) of

each sample (Figure 3D); the color corresponds to the value of a second feature that may have an interaction

effect with the feature we are plotting. Figure 3D highlights a specific interaction: the relationship of blood

lead level to mortality presents differently for young and old individuals. Specifically, for those with blood

lead higher than 0.1 µmol/L, younger individuals have a higher 5-year mortality risk than older individuals;

the opposite is true for individuals with blood lead level lower than 0.1 µmol/L. This finding highlights how

the non-linear interaction effects detected by our model open opportunities for further research.

SHAP dependence plots can be decomposed into main effects and interaction effects for each sample

(Figure 3D-F). The plot of the SHAP interaction effect between age and gender (Figure 3G) shows a change

in mortality risk between men and women for different age categories. From age 70 and older, men have a

greater 5-year mortality risk than women. Although some previous work noted gender differences in mortality

risk [31–33], it is difficult to illustrate the interaction effect of age and sex to mortality using traditional

approaches. As another example, Figure 3H shows the SHAP interaction effects of cancer and gender with
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blood lead level. For samples with blood lead levels higher than 0.11 µmol/L, individuals diagnosed with

cancer have a higher 5-year mortality risk than individuals without cancer. Similarly, females have a higher

5-year mortality risk than males with blood lead levels higher than 0.24 µmol/L. The interaction effects of

age and gender with blood lead level cannot be clearly captured without SHAP interaction values because

being male or older generally increases mortality risk relative to being female or younger. In summary, the

tree-based model captures interaction effects undetected by other approaches.

3.1.5 Tree-based models highlight different non-linear relationships between models

The relationship between each feature and mortality may change for models that predict different mortality

outcomes or utilize different subsamples of the general population. For instance, comparing important features

between a 1-year mortality prediction model and a 5-year mortality prediction model can reveal features

that are only predictive of short-term mortality, not longer-term mortality (and vice versa). Likewise, we

can compare models trained on distinct subpopulations, e.g., individuals younger than 40 years old and

individuals older than 80. The differences between these models can help researchers identify risk factors

relevant to each subpopulation. Comparing models in this way can provide epidemiological insights that may

guide policy for specific at-risk populations.

Figure 3J–K shows that low serum sodium is protective for shorter term mortality (1 year) but harmful

for longer term mortality (5 years) in our models. Hyponatremia is a low serum sodium concentration in

the blood (<135 mmol/L). For the 1-year model, there is a positive relationship between serum sodium and

mortality when serum sodium exceeds 135 mmol/L, which indicates higher serum sodium levels, especially

higher than 139 mmol/L are associated with 1-year mortality. For 1-year mortality, only high serum sodium

concentration increases mortality risk. Hyponatremia with negative SHAP values decreased mortality risk.

However, the relationship differs completely in the 5-year mortality prediction model. Samples with low serum

sodium have higher mortality risk, which means hyponatremia is associated with higher 5-year mortality risk.

This type of insight, especially regarding the differences of non-linear trends, is not apparent using linear

model.

3.2 Discoveries from 5-year mortality prediction

3.2.1 IMPACT identifies the magnitude, prevalence, and direction of each feature on mortal-

ity risk

Figure 4A shows a SHAP summary plot that displays the magnitude, prevalence, and direction of a feature’s

effect for many samples. We plot the top 20 most impactful features for the 5-year mortality prediction
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Figure 4: Combining 5-year mortality prediction gradient boosted trees models and local explanations
to achieve significant discoveries about the entire model and individual features. (A) SHAP summary
plot for the gradient boosted trees trained on the 5-year mortality prediction task (Section 3.2.1). The plot shows the
most impactful features on prediction (ranked from most to least important) and the distribution of the impacts of
each feature on the model output, which includes a set of plots where each dot corresponds to an individual. The
colors represent feature values for numeric features: red for larger values, and blue for smaller. The thickness of the
line that is comprised of individual dots is determined by the number of examples at a given value. A negative SHAP
value (extending to the left) indicates reduced mortality risk, while a positive one (extending to the right) indicates
increased mortality risk. (B,C) IMPACT can verify well-studied features associated with mortality (Section 3.2.2).
(B) The main effect of red cell distribution width on 5-year mortality. (C) The main effect of serum albumin on 5-year
mortality. (D-H) IMPACT can identify less well-studied features associated with mortality (Section 3.2.3). (D) SHAP
value for arm circumference in 5-year mortality model. (E) The main effect of platelet count on 5-year mortality. (F)
The main effect of serum chloride on 5-year mortality. (G) The SHAP interaction value of serum chloride vs. age
in the 5-year mortality model. (H) The SHAP interaction value of serum chloride vs. gender in 5-year mortality
model. (I-J) IMPACT can verify laboratory reference intervals (Section 3.2.4). (I) The main effect of gamma glutamyl
transferase on 5-year mortality. (J) The main effect of blood lead on 5-year mortality.
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model. The long tails mean that the features are extremely predictive for some individuals but not others

(e.g., urine albumin level). This summary plot provides an integrated explanation of the 5-year mortality

model that indicates not only the overall ranking of the top 20 features but the specific effect of each feature

on mortality risk.

3.2.2 IMPACT verifies well-studied features associated with mortality

Figure 4A shows the top 20 most important features for 5-year mortality prediction. Several features have

previously been shown to be associated with mortality in epidemiological studies. Our results examine

and support these studies’ conclusions as well as surface additional discoveries, including novel features,

thresholds, and non-linear relationships. As an example, red cell distribution width (RDW), which is

the second most important feature of IMPACT’s 5-year mortality model, has been shown to be strongly

associated with mortality by many studies where higher RDW associated with increased mortality risks

under several conditions [34–37]. In Figure 4B, we observe the positive relationship between RDW and risk

of mortality; moreover, 12.7% is an important threshold over which RDW manifests a positive effect to

mortality. Furthermore, serum albumin level’s relation to mortality is also well-studied. It is the 17th most

important feature in our 5-year model. Previous studies show that serum albumin is negatively associated

with mortality risk [38–40]. The main effect shown in Figure 4C matches this trend. Furthermore, Corti et al.

show that hypoalbuminemia (serum albumin level<35 g/L) was associated with a significantly increased risk

of mortality compared to serum albumin levels greater than 43 g/L [38]. From the main effect plot in Figure

4C, we observe that 35 g/L and 43 g/L are indeed key inflection points: serum albumin levels lower that 43

g/L have a positive relationship with mortality prediction, while those around 35 g/L are associated with a

dramatically increased mortality risk.

3.2.3 IMPACT identifies less well-studied features associated with mortality

Most of the top 20 most important features for 5-year mortality prediction models have been previously

identified; however, some are less well-studied in existing epidemiological research. Three of these are arm

circumference, platelet count and serum chloride level. The SHAP value of arm circumference in Figure 4D

shows a negative relationship between arm circumference and 5-year mortality risk, especially for older people.

IMPACT ranks arm circumference as the fourth most important feature for 5-year mortality prediction, with

an importance ranking that significantly exceeds that of BMI (the 56th). This suggests that smaller arm

circumference is more predictive than BMI for modeling mortality, as in [41]. More experiment results about

this discovery can be found in Appendix A.

Next, Figure 4E shows the main effect of platelet count, the 13th most important feature for 5-year
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mortality prediction. We see a negative relationship between platelet count and 5-year mortality. Moreover,

175 × 1, 000 cells/µL is an important threshold; platelet count lower than that level is associated with

dramatically increased mortality risk. Serum chloride is also inversely related to 5-year mortality, as shown

in Figure 4F. The normal adult value for chloride is 98-106 mmol/L. From the figure, we observe serum

chloride lower than 98 mmol/L can sharply increase mortality risk. In Figure 4G–H, we plot the interaction

effect of age and sex with serum chloride level. The figures reveal that younger people and females with low

serum chloride have higher mortality risk than older people and males. These trends differ from the main

effect of age and sex: the interaction effect of age and serum chloride shows that early rather than late onset

hypochloremia (low chloride) is more concerning to the model.

3.2.4 IMPACT verifies laboratory reference intervals

A laboratory test result is of little value and hard to interpret unless it is compared with the reference interval

(RI) which is the range of values that is deemed normal for a physiologic measurement in healthy persons [42].

Reference intervals are the most common decision support tool to interpret patient laboratory test results

and enable differentiation of healthy and unhealthy individuals [43, 44]. Hence, the quality of the RIs is as

important as the quality of the result itself. RIs in use today are most commonly defined as the central 95%

of laboratory test results in a reference population. Unfortunately, this definition doesn’t take mortality or

disease risk into consideration which may lead to misdiagnosis of laboratory results since reference intervals

are used to differentiate unhealthy individuals. The SHAP values in IMPACT reflect the effects of different

laboratory test results to mortality risk, which are able to verify the reference intervals.

From the main effect plot in Figure 4I, we observe that gamma glutamyl transferase (GGT) greater than

30 U/L has positive SHAP values that imply high values of GGT increases 5-year mortality risk. We also

find that GGT levels in the range of 0 to 30 U/L are normal in adults1. IMPACT helps verify that the

reference interval of GGT is appropriate and reasonable. The reference interval for blood lead is less than

0.48 µmol/L2. However, the main effect of blood lead in Figure 4J reveals that blood lead higher than 0.1

µmol/L increases 5-year mortality risk. The SHAP value of 0.48 µmol/L is very high and thus associated

with increased mortality risk. Hence, IMPACT identifies that the upper bound of the blood lead reference

interval might be too high.
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Indiv idual i zed analysi s

Figure 5: Combining 5-year mortality prediction gradient boosted trees models and local explanations
to achieve explanation for individual samples. Tree-based mortality models can analyze individualized mortality
predictions (Section 3.2.5). (A) The individualized explanation for an individual who is alive after 5 years. The output
value is the prediction for that individual. The base value is the mean prediction (the value that would be predicted if
we did not know any features for the current output). The features in red increase mortality risk, and those in blue
decrease it. (B) The individualized explanation for a sample who is deceased after 5 years.

3.2.5 IMPACT analyzes individualized mortality predictions

TreeExplainer can help researchers analyze the prediction for each individual and illustrate each features’

contribution to mortality risk. Figure 5 shows individualized explanations for two samples. The first sample

(Figure 5A) was alive after 5 years. IMPACT predicted that the sample’s 5-year mortality probability was

0.02. From the figure, we observe the mortality risk (i.e., the log-odds) is −2.89, lower than the average

predicted risk (i.e., base value). There are features with positive attributions (i.e., the feature increases

mortality risk prediction), such as low urine albumin concentration and normal mean cell volume, and

negative attributions (i.e., the feature decreases mortality risk prediction), such as high age and high red

cell distribution width. For this sample, the features that drive down mortality risk outweigh those that

increase it. The second sample (Figure 5B) was deceased after 5 years, and the model’s predicted mortality

probability is 0.80. The individualized explanation shows a high mortality risk of 2.09, much higher than

the average predicted risk. The top five features that increase this sample’s risks are high age, high urine

albumin concentration, red cell distribution width, diagnosis of cancer, and low lymphocyte percentage. For

this sample, features that increase risk prediction dominate the others. These individualized explanations can

help doctors give personalized treatment and implement precision medicines.
1https://www.webmd.com/hepatitis/ggt-test
2https://www.ucsfhealth.org/medical-tests/003360
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Figure 6: Identifying important discoveries for mortality prediction from tree-based models using
different follow-up times (Section 3.3.1). (A) Relative importance of input features in 1-, 3-, and 5-year
mortality models. For each model, the figure shows the 20 most important features on prediction (ordered by the
importance). The purple line indicates that the feature is in the top 20 features of two models. Blue and red lines
indicate the feature is in the top 20 features of one model, but not in the top 20 features of the other. (B) The SHAP
value of serum potassium in the 1-year mortality model. (C) The SHAP value of serum potassium in the 3-year
mortality model. (D) The SHAP value of serum potassium in the 5-year mortality model.

3.3 Discoveries for mortality prediction using different follow-up times and age

groups

3.3.1 IMPACT identifies trends for 1-year, 3-year and 5-year mortality prediction models

Figure 6A shows the top 20 most important features and relative importance of input features in IMPACT’s

1-year, 3-year and 5-year mortality prediction models. Feature importance rankings change significantly

between three models. Some features are important for all three (e.g., age, gender, red cell distribution width

and urine albumin level). For longer-term mortality prediction, some features become more important over

time (e.g., platelet count whose importance ranking is 75 for the 1-year model and 13 for the 5-year model).

Other features become less important over time (e.g., serum potassium whose importance ranking is 17 for

the 1-year model and the 57 for 5-year model). This figure reveals the change of each feature’s importance to

shorter or longer term mortality prediction. These results can give the epidemiologists a more comprehensive

understanding of all-cause mortality and help them investigate risk factors and make interventions further.

IMPACT across the 1, 3, 5-year mortality prediction models shows that high potassium is more harmful
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Figure 7: Identifying important discoveries for mortality prediction in different age groups (Section
3.3.2). (A) Relative importance of input features in <40, 40-65, 65-80 and ≥80 age groups. For each model, the
figure shows the 20 most impactful features on prediction (ranked from most to least important). The purple line
indicates that the feature is in the top 20 features of two models. Blue and red lines indicate the feature is in the top
20 features of one model, but not in the top 20 features of the other. (B) The main effect of serum uric acid on 5-year
mortality in the <40 age group. (C) The SHAP value of serum uric acid in the <40 age group 5-year mortality model.
(D) The main effect of serum uric acid on 5-year mortality in the 40-65 age group. (E) The main effect of alanine
aminotransferase on 5-year mortality in the ≥80 age group.

for shorter term mortality where as low potassium is more harmful for longer term mortality. Figure 6B-D

shows the SHAP value for serum potassium in IMPACT’s 1-year, 3-year and 5-year mortality prediction

models. We can see that serum potassium in the range of 3.5 mmol/L to 4.0 mmol/L has the lowest SHAP

values which indicate lowest contribution to mortality risk. Serum potassium lower than 3.5 mmol/L and

higher than 4.0 mmol/L are associated with increased mortality risk, a finding independently discussed in

existing studies [45–47]. However, the trend differs across those models. For the 1-year and the 3-year model,

hyperkalemia (high potassium) has a higher mortality risk than hypokalemia (low potassium). For the 5-year

model, hypokalemia has the same or higher mortality risk than hyperkalemia.

3.3.2 IMPACT identifies important features for mortality prediction in different age groups

Figure 7A shows the top 20 most important features and relative importance of input features in 5-year

mortality prediction models using different age groups (<40, 40-65, 65-80 and ≥80). We observe that the

20 most important features differ significantly across these models. Some features become more important

for older subpopulations, such as alanine aminotransferase (ALT), the fifth most important feature in the
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model using samples over 80 years. Figure 7E shows the main effect of ALT for age≥80, which shows the

negative relationship between ALT and 5-year mortality. Some existing studies have found that alanine

aminotransferase (ALT) is associated with all-cause mortality and some cause-specific mortality, such as

cardiovascular disease, cancer, diabetes mellitus and liver disease [48, 49].

Moreover, some features are less important for older subpopulations than younger ones. One example

is uric acid level, the sixth most important feature in the age<40 model and the 59th most important in

age≥80 model. Figure 7B,C plot the main effect and SHAP value of uric acid in the age<40 model, showing

that low uric acid levels increase mortality risk prediction. However, in the age 40-65 model, higher uric acid

is associated with higher mortality risk (Figure 7D). Cho et al. concluded that both low and high uric acid

levels were predictors of increased mortality [50]. Other work also shows that low uric acid in blood serum

can injure the endothelium and induce oxidative stress-related disease, such as hypertension, diabetes mellitus

and kidney disease [51, 52], and that hyperuricemia (high uric acid) is associated with various adverse health

outcomes, including hypertension, metabolic syndrome, kidney disease, stroke, cardiovascular disease and

cancer [53–56]. The numerous downstream effects of high uric acid and low uric acid might explain the

different relationship between uric acid and mortality in different age groups. Moreover, the reference range

of uric acid differs for males and females. The reference range is 2.4-6.0 mg/dL for females and 3.4-7.0 mg/dL

for males. This difference is shown in Figure 7C, where women have lower uric acid, which can increase

mortality risk.

4 Discussion

Here, we present IMPACT framework, an explainable tree-based model for mortality prediction using a

wide array of demographic, laboratory, examination and questionnaire variables from 47,261 NHANES

(1999-2014) participants. To interpret the “black box” model, we use TreeExplainer to calculate SHAP

values. To our knowledge, IMPACT is the first study that combines complex ML models and state-of-the-art

local explanation methods to predict mortality in epidemiological studies. We illustrate the advantages of

tree-based complex ML models for epidemiological studies.

Using the most overlapping features in NHANES 1999-2014, we build tree-based mortality prediction

models and explore the effect of those features on mortality for different follow-up times and age groups.

Importantly, we demonstrate the value and significance of explaining complex ML prognostic models. In

epidemiological studies, high prediction performance is not enough; instead, interpretation of the model is

essential for drawing epidemiological conclusions [4, 11]. IMPACT combines high-accuracy complex ML model

with interpretable explanations, which allows us to capture the effect of variables on mortality and include
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non-linear effects as well as interactions between variables that are difficult to identify using linear models.

Local explanations from TreeExplainer show the contribution of each feature as well as their interactions.

These explanations allow us to verify well-studied findings as well as identify new ones.

Limitations: First, the relationships and interactions detected by our model cannot be claimed to be

causal. The purpose of this study is not to address causality, but rather to understand complex interrelations

between mortality and individual’s features. Further analysis using causal epidemiological methods must

be undertaken before claiming causality. Second, our study is performed on NHANES 1999-2014, which is

designed to assess the health status of participants in the United States. The conclusions and discoveries can

generalize to other populations only when the distribution of variables and mortality rates are similar to

those in the U.S. as a whole. Further external validation of our mortality models on datasets from non-U.S.

populations should be undertaken to increase the generalizability of these findings.

Future implications: To improve our model, a mortality prediction tool that calculates a mortality risk

score and provides individual explanations can be developed. Such a tool could help individuals improve

self-awareness of their health status and help clinicians identify patients with high mortality risk to target

with specific interventions.

Prognosis research using complex ML models will likely increase over the coming years as ML techniques

continue to rapidly develop. However, “black box” ML models that predict without explaining, are difficult

for clinicians to trust and use to extract important information. Therefore, the combination of complex ML

models and ‘explainable artificial intelligence’ (XAI) is necessary and urgent. IMPACT takes a significant step

towards XAI for mortality prediction. The improvement in predictive accuracy and explanation of complex

ML models shown in this study should be further explored for predicting other epidemiological outcomes.

5 Conclusion

This study demonstrates the advantages of interpretable complex machine learning for all-cause mortality

prediction within an epidemiological study design. It illustrates how the combination of complex machine

learning model and interpretable methods can improve prognostic research, verify well-studied findings and

explore new discoveries.

18

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.20.21250135doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.20.21250135


References

1. Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic

retinopathy in retinal fundus photographs. Jama 316, 2402–2410 (2016).

2. Coudray, N. et al. Classification and mutation prediction from non–small cell lung cancer histopathology

images using deep learning. Nature medicine 24, 1559–1567 (2018).

3. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542,

115–118 (2017).

4. Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M. & Qureshi, N. Can machine-learning improve cardiovascular

risk prediction using routine clinical data? PloS one 12, e0174944 (2017).

5. Wang, H. et al. Predicting hospital readmission via cost-sensitive deep learning. IEEE/ACM transactions

on computational biology and bioinformatics 15, 1968–1978 (2018).

6. Chau, J. Y. et al. Daily sitting time and all-cause mortality: a meta-analysis. PloS one 8, e80000 (2013).

7. Kuk, J. L. et al. Visceral fat is an independent predictor of all-cause mortality in men. Obesity 14,

336–341 (2006).

8. Marshall, N. S. et al. Sleep apnea as an independent risk factor for all-cause mortality: the Busselton

Health Study. Sleep 31, 1079–1085 (2008).

9. Walter, S. et al. Genetic, physiological, and lifestyle predictors of mortality in the general population.

American journal of public health 102, e3–e10 (2012).

10. Ganna, A. & Ingelsson, E. 5 year mortality predictors in 498 103 UK Biobank participants: A prospective

population-based study. The Lancet 386, 533–540. issn: 1474547X. http://dx.doi.org/10.1016/

S0140-6736(15)60175-1 (2015).

11. Weng, S. F., Vaz, L., Qureshi, N. & Kai, J. Prediction of premature all-cause mortality: A prospective

general population cohort study comparing machine-learning and standard epidemiological approaches.

PloS one 14, e0214365 (2019).

12. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees.

Nature machine intelligence 2, 2522–5839 (2020).

13. Hilton, C. B. et al. Personalized predictions of patient outcomes during and after hospitalization using

artificial intelligence. NPJ Digital Medicine 3, 1–8 (2020).

14. Vaid, A. et al. Machine Learning to Predict Mortality and Critical Events in COVID-19 Positive New

York City Patients. medRxiv (2020).

19

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.20.21250135doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.20.21250135


15. Stekhoven, D. J. & Bühlmann, P. MissForest—non-parametric missing value imputation for mixed-type

data. Bioinformatics 28, 112–118 (2012).

16. Krauss, C., Do, X. A. & Huck, N. Deep neural networks, gradient-boosted trees, random forests:

Statistical arbitrage on the S&P 500. European Journal of Operational Research 259, 689–702 (2017).

17. Ebrahimi, M., Mohammadi-Dehcheshmeh, M., Ebrahimie, E. & Petrovski, K. R. Comprehensive analysis

of machine learning models for prediction of sub-clinical mastitis: Deep Learning and Gradient-Boosted

Trees outperform other models. Computers in biology and medicine 114, 103456 (2019).

18. Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system in Proceedings of the 22nd acm sigkdd

international conference on knowledge discovery and data mining (2016), 785–794.

19. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions in Advances in neural

information processing systems (2017), 4765–4774.

20. Molnar, C. Interpretable machine learning isbn: 0244768528 (Lulu. com, 2019).

21. Yang, Y., Morillo, I. G. & Hospedales, T. M. Deep neural decision trees. arXiv preprint arXiv:1806.06988

(2018).

22. Fan, C., Liu, D., Huang, R., Chen, Z. & Deng, L. PredRSA: a gradient boosted regression trees approach

for predicting protein solvent accessibility in Bmc Bioinformatics 17 (2016), 85–95.

23. Torlay, L., Perrone-Bertolotti, M., Thomas, E. & Baciu, M. Machine learning–XGBoost analysis of

language networks to classify patients with epilepsy. Brain informatics 4, 159–169 (2017).

24. Ren, X., Guo, H., Li, S., Wang, S. & Li, J. A novel image classification method with CNN-XGBoost

model in International Workshop on Digital Watermarking (2017), 378–390.

25. Zhang, D. et al. A data-driven design for fault detection of wind turbines using random forests and

XGboost. IEEE Access 6, 21020–21031 (2018).

26. Lustberg, M. & Silbergeld, E. Blood lead levels and mortality. Archives of internal medicine 162,

2443–2449. issn: 0003-9926 (2002).

27. Menke, A., Muntner, P., Batuman, V., Silbergeld, E. K. & Guallar, E. Blood lead below 0.48 mmol/L

(10 mg/dL) and mortality among US adults. Circulation 114, 1388–1394 (2006).

28. Schober, S. E., Mirel, L. B., Graubard, B. I., Brody, D. J. & Flegal, K. M. Blood lead levels and

death from all causes, cardiovascular disease, and cancer: results from the NHANES III mortality study.

Environmental health perspectives 114, 1538–1541. issn: 0091-6765 (2006).

20

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.20.21250135doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.20.21250135


29. May, S. & Bigelow, C. Modeling nonlinear dose-response relationships in epidemiologic studies: statistical

approaches and practical challenges. Dose-Response 3, dose–response. issn: 1559-3258 (2005).

30. Suliman, M. E. et al. J-shaped mortality relationship for uric acid in CKD. American Journal of Kidney

Diseases 48, 761–771. issn: 0272-6386 (2006).

31. Case, A. & Paxson, C. Sex differences in morbidity and mortality. Demography 42, 189–214. issn:

0070-3370 (2005).

32. Oksuzyan, A., Juel, K., Vaupel, J. W. & Christensen, K. Men: good health and high mortality. Sex

differences in health and aging. Aging clinical and experimental research 20, 91–102. issn: 1594-0667

(2008).

33. Wingard, D. L. The sex differential in mortality rates: demographic and behavioral factors. American

Journal of Epidemiology 115, 205–216. issn: 1476-6256 (1982).

34. Felker, G. M. et al. Red cell distribution width as a novel prognostic marker in heart failure: data from

the CHARM Program and the Duke Databank. Journal of the American College of Cardiology 50,

40–47. issn: 0735-1097 (2007).

35. Patel, K. V., Ferrucci, L., Ershler, W. B., Longo, D. L. & Guralnik, J. M. Red blood cell distribution

width and the risk of death in middle-aged and older adults. Archives of internal medicine 169, 515–523.

issn: 0003-9926 (2009).

36. Patel, K. V. et al. Red cell distribution width and mortality in older adults: a meta-analysis. Journals of

Gerontology Series A: Biomedical Sciences and Medical Sciences 65, 258–265. issn: 1758-535X (2010).

37. Perlstein, T. S., Weuve, J., Pfeffer, M. A. & Beckman, J. A. Red blood cell distribution width and

mortality risk in a community-based prospective cohort. Archives of internal medicine 169, 588–594.

issn: 0003-9926 (2009).

38. Corti, M.-C., Guralnik, J. M., Salive, M. E. & Sorkin, J. D. Serum albumin level and physical disability

as predictors of mortality in older persons. Jama 272, 1036–1042. issn: 0098-7484 (1994).

39. Goldwasser, P. & Feldman, J. Association of serum albumin and mortality risk. Journal of clinical

epidemiology 50, 693–703. issn: 0895-4356 (1997).

40. Phillips, A., Shaper, A. G. & Whincup, P. Association between serum albumin and mortality from

cardiovascular disease, cancer, and other causes. The Lancet 334, 1434–1436. issn: 0140-6736 (1989).

41. Tsai, A. C. & Chang, T.-L. The effectiveness of BMI, calf circumference and mid-arm circumference in

predicting subsequent mortality risk in elderly Taiwanese. British Journal of Nutrition 105, 275–281.

issn: 1475-2662 (2011).

21

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.20.21250135doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.20.21250135


42. Katayev, A., Balciza, C. & Seccombe, D. W. Establishing reference intervals for clinical laboratory test

results: is there a better way? American journal of clinical pathology 133, 180–186 (2010).

43. Ozarda, Y., Higgins, V. & Adeli, K. Verification of reference intervals in routine clinical laboratories:

practical challenges and recommendations. Clinical Chemistry and Laboratory Medicine (CCLM) 57,

30–37 (2018).

44. Jones, G. & Barker, A. Reference intervals. The Clinical Biochemist Reviews 29, S93 (2008).

45. Ahmed, A. et al. A propensity-matched study of the association of low serum potassium levels and

mortality in chronic heart failure. European heart journal 28, 1334–1343. issn: 1522-9645 (2007).

46. Goyal, A. et al. Serum potassium levels and mortality in acute myocardial infarction. Jama 307, 157–164.

issn: 0098-7484 (2012).

47. Nakhoul, G. N. et al. Serum potassium, end-stage renal disease and mortality in chronic kidney disease.

American journal of nephrology 41, 456–463. issn: 0250-8095 (2015).

48. Ruhl, C. E. & Everhart, J. E. The association of low serum alanine aminotransferase activity with

mortality in the US population. American journal of epidemiology 178, 1702–1711. issn: 1476-6256

(2013).

49. Vespasiani-Gentilucci, U. et al. Low alanine aminotransferase levels in the elderly population: frailty,

disability, sarcopenia, and reduced survival. The Journals of Gerontology: Series A 73, 925–930. issn:

1079-5006 (2018).

50. Cho, S. K., Chang, Y., Kim, I. & Ryu, S. U-Shaped Association Between Serum Uric Acid Level and

Risk of Mortality: A Cohort Study. Arthritis & Rheumatology 70, 1122–1132. issn: 2326-5191 (2018).

51. Stiburkova, B., Stekrova, J., Nakamura, M. & Ichida, K. Hereditary renal Hypouricemia type 1 and

autosomal dominant polycystic kidney disease. The American journal of the medical sciences 350,

268–271. issn: 0002-9629 (2015).

52. Wakasugi, M. et al. Association between hypouricemia and reduced kidney function: a cross-sectional

population-based study in Japan. American journal of nephrology 41, 138–146. issn: 0250-8095 (2015).

53. Feig, D. I., Kang, D.-H. & Johnson, R. J. Uric acid and cardiovascular risk. New England Journal of

Medicine 359, 1811–1821. issn: 0028-4793 (2008).

54. Ford, E. S., Li, C., Cook, S. & Choi, H. K. Serum concentrations of uric acid and the metabolic syndrome

among US children and adolescents. Circulation 115, 2526–2532. issn: 0009-7322 (2007).

55. Lehto, S., Niskanen, L., Ronnemaa, T. & Laakso, M. Serum uric acid is a strong predictor of stroke in

patients with non–insulin-dependent diabetes mellitus. Stroke 29, 635–639. issn: 0039-2499 (1998).

22

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.20.21250135doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.20.21250135


56. Strasak, A. M. et al. Serum uric acid and risk of cancer mortality in a large prospective male cohort.

Cancer causes & control 18, 1021–1029. issn: 0957-5243 (2007).

57. Coelho, A. K., Rocha, F. L. & Fausto, M. A. Prevalence of undernutrition in elderly patients hospitalized

in a geriatric unit in Belo Horizonte, MG, Brazil. Nutrition 22, 1005–1011 (2006).

58. Kim, Y. H. & So, W.-Y. A low arm and leg muscle mass to total body weight ratio is associated with

an increased prevalence of metabolic syndrome: The Korea National Health and Nutrition Examination

Survey 2010-2011. Technology and Health Care 24, 655–663 (2016).

59. Wijnhoven, H. A. et al. Low mid-upper arm circumference, calf circumference, and body mass index and

mortality in older persons. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences

65, 1107–1114 (2010).

23

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.20.21250135doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.20.21250135


A More analyses of BMI-related features

Featur e Cor r elat i on w i th  BMI

Waist  ci r cum fer ence 0.8915

Ar m  ci r cum fer ence 0.8815

Weight 0.8748

Cur r ent  sel f -r epor ted weight 0.8256

Sel f -r epor ted weight  - 1 year  ago 0.7673

Sel f -r epor ted gr eatest  weight 0.7559

Figure 8: The correlations of six BMI-related features and BMI.

In our experiment results, we found that IMPACT ranks arm circumference as the fourth most important

feature for 5-year mortality prediction, with an importance ranking that significantly exceeds that of BMI

(the 56th). To further analyze this discovery, we do more experiments on BMI-related features. Besides

BMI, we select 6 more features that are highly correlated with BMI, including waist circumference, arm

circumference, weight, current self-reported weight, self-reported weight 1 year ago and self-reported greatest

weight. The correlations between BMI and these features are shown in Figure 8.
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Figure 9: SHAP summary plot of the 5-year mortality prediction GBT model trained on BMI-related features.

Featur e AUROC

Ar m  ci r cum fer ence 0.6010

Weight 0.5476

BMI 0.5369

Cur r ent  sel f -r epor ted weight 0.5344

Waist  ci r cum fer ence 0.5331

Sel f -r epor ted gr eatest  weight 0.5288

Sel f -r epor ted weight  - 1 year  ago 0.5246

Figure 10: The AUROCs of uni-variate 5-year mortality prediction GBT models trained on each BMI-related featurs.

Firstly, we trained a multi-variate GBT model to predict 5-year mortality using these BMI-related features.

From the summary plot in Figure 9, we can see that arm circumference is the most important feature for

5-year mortality prediction in all BMI-related features. What’s more, waist circumference, self-reported

greatest weight and weight are more important than BMI. To further investigate the predictive power of
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BMI-related features on mortality, we train a uni-variate GBT model for each feature. The AUROCs of these

models are shown in Figure 10. The model that uses arm circumference achieves the highest AUROC which

is much higher than the AUROC of model that used BMI. These experiment results demonstrate that the

arm circumference is more predictive than BMI for 5-year mortality prediction.

Arm circumference has been found to be useful for evaluating health and nutritional status of elder people

[57]. Previous papers also mentioned that arm circumference is associated with metabolic syndrome [58] and

mortality [59]. Our results also indicate that the arm circumference is more predictive than BMI for mortality

prediction. As arm circumference is simpler to measure than BMI and for people who have difficulty in

standing erectly, arm circumference is accessible, we can use arm circumference instead of BMI in further

mortality prediction models.
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