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Abstract11

The recent emergence of accurate artificial intelligence (AI) models for disease diagnosis raises the possibility that12

AI-based clinical decision support could substantially lower the workload of healthcare providers. However, for this to13

occur, the input data to an AI predictive model, i.e., the patient’s features, must themselves be low-cost, that is, efficient,14

inexpensive, or low-effort to acquire. When time or financial resources for gathering data are limited, as in emergency15

or critical care medicine, modern high-accuracy AI models that use thousands of patient features are likely impractical.16

To address this problem, we developed the CoAI (Cost-aware AI) framework to enable any kind of AI predictive model17

(e.g., deep neural networks, tree ensemble models, etc.) to make accurate predictions given a small number of low-cost18

features. We show that CoAI dramatically reduces the cost of predicting prehospital acute traumatic coagulopathy,19

intensive care mortality, and outpatient mortality relative to existing risk scores, while improving prediction accuracy.20

It also outperforms existing state-of-the-art cost-sensitive prediction approaches in terms of predictive performance,21

model cost, and training time. Extrapolating these results to all trauma patients in the United States shows that,22

at a fixed false positive rate, CoAI could alert providers of tens of thousands more dangerous events than other risk23

scores while reducing providers’ data-gathering time by about 90 percent, leading to a savings of 200,000 cumulative24

hours per year across all providers. We extrapolate similar increases in clinical utility for CoAI in intensive care. These25

benefits stem from several unique strengths: First, CoAI uses axiomatic feature attribution methods that enable precise26

estimation of feature importance. Second, CoAI is model-agnostic, allowing users to choose the predictive model that27

performs the best for the prediction task and data at hand. Finally, unlike many existing methods, CoAI finds high-28

performance models within a given budget without any tuning of the cost-vs-performance tradeoff. We believe CoAI29

will dramatically improve patient care in the domains of medicine in which predictions need to be made with limited30

time and resources.31

1 Main32

Clinical risk prediction scores have a long history in medicine, and the number of such scores is rapidly increasing. The33

risk score database MDCalc.com hosted 80 clinical risk calculators in 2013 and over 500 in 2019, predicting adverse34

outcomes in conditions ranging from sore throat to heart failure [1]. In recent years, there has been an explosion35

of interest in using techniques from artificial intelligence (AI), including those developed in the subfield of machine36

learning (ML), to make clinical predictions. AI models use images of skin and eyes to classify cancer [2] and diabetic37

retinopathy [3], use waveform data such as electrocardiograms to classify heart arrhythmias [4], and use comprehensive38

medical record data to predict patient diagnoses and surgical emergencies [5, 6]. These models promise to make clinical39
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outcome prediction easier and faster for healthcare providers; this possibility is especially important in areas such as40

emergency medicine and critical care, where providers’ time and attention are at a premium.41

However, both existing and AI-based clinical risk scores suffer from a common drawback; they generally assume42

that all of the features (i.e., clinical variables) in the training set are known at prediction time, though acquiring all43

of these features in order to diagnose an individual patient may be impractical. Even sparse models, which select and44

use only a small number of features, do not account for the time or effort required to acquire those features. In time-45

or resource-constrained fields such as emergency and critical care medicine, important features are often missing due46

to time and attention limitations. For example, from 1995 to 2009, Emergency Medical Service (EMS) providers in47

Washington State spent a median of just 16 minutes on the scene of trauma incidents [7]. The median time from EMS48

dispatch to arrival at the hospital was 48 minutes, just under the initial “golden hour” within which treatment affords49

the best chance of preventing death. These and other time-limited, resource-intensive healthcare situations leave little50

time for deploying feature-rich AI predictions. A useful alternative AI approach would be to account for real-world51

limitations by jointly optimizing for data gathering cost – e.g., time, effort, or money – as well as accuracy. Such a52

model could learn on massive datasets with many features and select the optimal subset for prediction within any time,53

effort, or monetary budget. Most importantly, it would preserve the high accuracy of AI models while turning the54

heuristic process of feature selection into a principled optimization problem that the model can automatically solve.55

To train prediction models with a principled joint optimization, we present a new AI framework, named CoAI (Cost-56

aware Artificial Intelligence; Figure 1). CoAI calculates each feature’s predictive power (Figure 1a) and uses expert57

annotations of feature cost (Figure 1b) to choose the optimal set of features for any cost budget (Figure 1c). Given58

a new patient and a feature budget for prediction, CoAI can recommend which features to gather and make accurate59

predictions of patient risk given those features. Its main benefits include the abilities: (1) to quantitatively optimize60

the tradeoff between prediction performance and feature cost, yielding accurate and low-cost predictions; (2) to make61

any predictive model (e.g., deep neural networks, gradient boosted trees, etc.) cost-sensitive, dramatically increasing62

user choice; and (3) to train the model significantly more efficiently and with less hyperparameter tuning than existing63

cost-sensitive prediction approaches. We have released CoAI as open-source software compatible with the popular64

Scikit-Learn API for training AI models [8] 1. We compare CoAI against existing clinical risk scores and recent AI65

methods for cost-sensitive prediction, including cost efficient gradient boosting (CEGB) and a reinforcement-learning66

(RL) based method called “classification with costly features” (CWCF) [9, 10, 11] on three clinical tasks (Figure 2;67

Method 1).68

Our first cost-sensitive prediction task involves acute traumatic coagulopathy (ATC) in our “trauma dataset” –69

14,000 emergency room visits and 45 features from the trauma registry of Harborview Medical Center, an urban Level-70

I trauma center (Figure 2a). ATC is an increased bleeding tendency involving anticoagulation and clot breakdown71

affecting up to 30% of severely-injured trauma patients [12]. ATC is associated with acute kidney and lung injury,72

increased transfusion needs, multiple organ failure and an 8-fold increased risk of early death [13, 14]. Trauma patients73

with ATC require complex care and rapid mobilization of hospital resources including massive blood transfusion proto-74

cols and surgical teams [15]. ATC diagnosis is currently based on coagulation testing in the hospital, which delays this75

time-critical diagnosis and complex healthcare response [16]. Therefore, our goal is to identify trauma patients at high76

risk of ATC as early as possible before arrival at the hospital to enable faster hospital-based life-saving interventions.77

Triage is only one of many tasks EMS providers must perform in trauma responses, so we aim to minimize the time78

required to gather input features. We selected prehospital features from the Harborview trauma registry, identified the79

data-gathering cost in minutes for each feature by surveying local experienced EMS providers (Figure 3d; Method 2;80

Supplementary Figure 1; and Supplement Sections 2-3), trained a CoAI ATC prediction model, and compared its cost81

and predictive performance with existing tools that predict ATC from prehospital data [17, 18]. One such model, the82

Prediction of Acute Coagulopathy in Trauma (PACT) score, required up to an estimated tenfold more data-gathering83

time than EMS providers reported being willing to spend during trauma responses, indicating the need for cost-aware84

modeling [17].85

We also examine the problem of in-hospital mortality prediction in critical care patients in our “ICU dataset” –86

140,000 patient stays and 43 features from intensive care units (ICUs) across the United States (Figure 2b). ICU87

mortality is an important prediction target because it is (1) prevalent, with mortality rates in United States ICUs as88

high as 19 percent (2) costly, with ICU expenditures constituting 14 percent of hospital costs, and (3) highly variable89

1https://github.com/suinleelab/coai
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Figure 1: Overview of CoAI framework. Clinical features are annotated based on two different sources. (a) The importance
of each feature is calculated by training an AI predictive model on the full data including all features and applying additive
feature attribution methods to that model. The result is a single number summarizing the predictive power of each feature.
(b) By surveying clinical domain experts, the cost of gathering each feature is estimated. Costs considered in this paper
include time cost (minutes) and financial cost (dollars), although it could be any numeric quantity. (c) (top) The CoAI
algorithm takes as input all features, costs, and importance values and selects appropriate feature subsets for any cost
budget. It trains a new AI model for each feature subset and cost budget that is desired. (bottom) Training CoAI
models with multiple such budgets results in a cost-performance tradeoff curve, as larger budgets allow for gathering more
features, which leads to higher-accuracy predictions.
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across patients and hospitals even after adjusting for baseline patient characteristics [19]. For this task, we define90

cost simply as the number of features in the model. This is motivated by the fact that the mortality risk scores with91

the highest accuracy, such as the Acute Physiology and Chronic Health Evaluation (APACHE) model, are considered92

impractical for clinical use because they require a large number of features [20]. Models designed to be more efficient93

for clinical use, such as the Sequential Organ Failure Assessment (SOFA) and quick SOFA (qSOFA) scores, use as few94

as 3 features but suffer reduced performance as a result [21]. Our goal is to provide a single method that optimally95

trades off cost with performance and can provide accurate predictions using any number of features deemed clinically96

feasible.97

Finally, we examine 10-year mortality prediction in an “outpatient dataset” from the long-running National Health98

and Nutrition Examination Survey (NHANES) – 13,000 outpatients and 35 features in outpatients across the United99

States (Figure 2c) [22]. Here, the goal is to minimize the financial cost in dollars of the data used by the model as100

estimated using Medicare fee-for-service data (Method 3; Supplementary Figure 2) while preserving prediction accuracy.101

This task uses a unique patient sample representative of the United States population. We choose such a dataset because102

(1) mortality prediction is a ubiquitous clinical task; a national survey found that internal medicine physicians were103

asked to predict patient lifespan roughly once per month but felt ill-prepared to do so [23], and (2) a model that is104

applicable to all 480 million annual primary care visits in the United States [24] is an important case in which to lower105

the financial cost of risk scores. While long-term mortality scores have been developed for many specific diseases and106

patient subpopulations [25, 26, 27], we are not aware of a commonly-used outpatient mortality risk score applicable to107

the general primary-care population. We hypothesize this is due in part to the prohibitive expense of gathering data108

for routine mortality prediction, and hope to show that accurate, low-cost predictions can be made in this setting.109

Across all three tasks, CoAI consistently improved predictive performance and lowered cost relative to both existing110

clinical risk scores and existing AI-based methods. CoAI bridges the gap between AI-based predictive models and111

the real-world constraints of clinical practice by ensuring that predictive models do not impose undue burden on their112

users. We believe this work will improve the accuracy of clinical risk predictions while ensuring that such predictions113

are made efficiently enough to have a real-world impact on patient care.114

2 Results115

2.1 CoAI Framework116

Because of the wide array of prediction tasks and modeling strategies used in developing clinical risk scores, we developed117

the CoAI (Cost-aware AI) framework, which can be applied to any predictive model (called the base model) to make118

it cost-aware (Figure 1; Method 4). CoAI takes as input a training data set, consisting of patient features X and119

prediction labels y across patients, costs ci for measuring each feature i, and a budget k representing total acceptable120

cost for a predictive model. The goal of CoAI is to select a specific feature set S, with total cost no greater than k,121

that yields the best predictive performance given the budget.122

This task is computationally challenging because, in general, the exact predictive value of a feature set is unknown123

without trying to train the model with that specific set of features. Previous approaches which are based on reinforce-124

ment learning (RL) attempt to directly search the exponentially large space of all possible feature sets, while others,125

such as decision tree-based approaches, simplify the problem via greedy search [9, 10]. The idea of CoAI is to find a126

feasible solution without enumerating all possible feature subsets and with a more optimal selection of features than127

greedy search approaches. This is enabled by calculating a single quantitative measure of predictive power for each128

feature, φi and defining the predictive power of a feature set S as
∑
i∈S φi. We then select the feature set S that129

maximizes
∑
i∈S φi subject to

∑
i∈S ci ≤ k, which is a knapsack problem that can be efficiently solved.130

Our approach is motivated by the use of Shapley values for the feature importance measure φi, which guarantee131

a set of desirable theoretical properties [28]. First, Shapley values are additive – that is, they sum to the model’s132

output – making
∑
i∈S φi a natural way to calculate the importance of a group of features. Second, they are consistent,133

which means features that are unambiguously more important are guaranteed to have a higher φi. Finally, and most134

importantly, Shapley values can be calculated for any model, making CoAI a model-agnostic method and increasing135

user flexibility. However, Shapley values also have fast implementations for many popular model types, including deep136

models as well as the tree and linear models we use in this paper [28, 29, 30, 31]. We calculate φi by training an137
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Figure 2: Histograms providing statistics for the (a) trauma, (b) ICU, and (c) outpatient datasets. The trauma and ICU
datasets were used for benchmarking CoAI against existing clinical risk scores, while the trauma and outpatient datasets
were used for benchmarking CoAI against existing AI methods for cost-sensitive prediction. The first three rows for
each dataset show the distribution of age, sex, and outcome of interest for each dataset, respectively. The bottom three
rows show the distribution of the next three most important features in each dataset, as measured by feature importance
(Method 5). Notably, the trauma dataset and ICU dataset have clear age bias (younger patients are more likely to have
traumatic injuries and older ones are more likely to end up in the ICU), while the outpatient dataset has a more uniform
distribution as it was designed to be representative of American adults.
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instance of the base model on all features in X and setting φi equal to the mean absolute feature importance across138

all samples.139

Once importance φi based on Shapley values has been calculated for each feature, we use existing specialized140

knapsack solvers to select the optimal feature set [32]. We then train a new, final base model on this feature set. We141

demonstrated that knapsack solvers performed better than alternative approaches, such as greedy and recursive feature142

elimination approaches, to find the best feature set given φi and ci (Method 6; Supplementary Figure 3).143

2.2 CoAI improves cost and performance of clinical predictions.144

We evaluated CoAI against existing clinical models (Figure 3) by training it on the (a) trauma and (b) ICU datasets –145

those for which there are existing clinical risk scores for comparison – with gradient boosting machines (GBMs) as the146

base model (Method 7). We plotted its predictive performance (area under the ROC curve, AU-ROC; higher is better)147

across a range of measurement budgets, resulting in a cost-performance tradeoff curve. Existing clinical risk scores are148

shown on the same plots as points with a fixed model cost and performance. CoAI exhibits the strongest performance149

at any cost budget in both datasets.150

To determine how CoAI could improve prediction of ATC, we compared it to the Prediction of Acute Coagulopathy151

of Trauma (PACT) score (Figure 3a; Method 8; Method 9) [17]. PACT is a multivariable logistic regression devel-152

oped for prehospital ATC prediction. It uses the following prehospital features: patient age, presence of prehospital153

CPR, presence of prehospital intubation, injury mechanism, Glasgow Coma Score, and shock index (first prehospital154

pulse/systolic blood pressure). In our survey of EMS providers, total time cost incurred to obtain all PACT features155

was 8 minutes (Figure 3d).156

We compared ROC plots of PACT to those of CoAI at several clinically important points along the cost-performance157

tradeoff curve (Figure 3c). For the same time cost as the PACT score (8 minutes), CoAI performs as well as a cost-158

unconstrained model (0.84 AU-ROC) and exceeds PACT score performance (0.81 AU-ROC). We also determined a159

realistic time budget using our survey of EMS providers (Figure 3d), who reported being willing to spend 50 seconds160

using a predictive risk tool on average. This tightly constrained budget is about tenfold less time than the PACT161

score requires, but the performance of CoAI within this budget (0.82 AU-ROC) still exceeded PACT’s performance.162

Importantly, CoAI’s prehospital prediction performance compares favorably to existing post-hospital admission ATC163

models; a previous study of AI models for ATC achieved AU-ROCs from 0.83 to 0.86 using vital signs, blood gas164

measurements, and lab values gathered after patients entered the hospital [33]. CoAI attains similar performance using165

only tightly time-constrained prehospital data.166

We also used these results to estimate the impact of deploying CoAI risk scores nationwide (Method 11, Supple-167

mentary Figure 4). We expected that CoAI would both increase sensitivity to ATC and reduce the time cost required168

to make predictions. By extrapolating from total EMS trauma calls in the National Emergency Medical Services Infor-169

mation System database and ATC base rates in our data, we estimate that 120,000 EMS trauma patients in the United170

States have ATC per year [14, 34, 35]. Assuming that providers are willing to tolerate 4 false positive alerts for every171

true positive [36, 37], deploying CoAI at the PACT budget would provide early warning of 36,355 more ATC cases than172

PACT. Deploying CoAI at the EMS-preferred time budget of 50 seconds would provide warning of 14,602 more cases173

than PACT and save 200,000 total hours of data-gathering time across all providers (Method 11 and Supplementary174

Figure 4).175

For the ICU dataset (Figure 3b), the APACHE IVa score is known for its high accuracy, however, is difficult for176

clinicians to use at the bedside because it requires 27 features to be gathered (Method 8; Method 9). Conversely, the177

qSOFA score uses only 3 features but is much less accurate. CoAI outperforms qSOFA using only a single feature178

(admission diagnosis, AU-ROC 0.75) and outperforms APACHE IVa using only 3 features (AU-ROC 0.81). CoAI also179

outperforms the related APACHE III and APS scores at much lower model cost (5 features). Nationwide, we estimate180

that 450,000 US ICU admissions end in death per year [19]. At a 3.5-to-1 ratio of false to true positives, qSOFA could181

use 3 features to provide warning of 182,653 deaths, while CoAI with 3 features correctly predicts 389,809 deaths – an182

increase of 207,156 (Method 11 and Supplementary Figure 4).183
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2.3 CoAI builds more flexible models that outperform existing cost-sensitive AI184

methods.185

We used the trauma and outpatient datasets to demonstrate how CoAI improves cost and performance over other AI186

methods. We focus on these two datasets because they have non-uniform feature costs, which provides a more rigorous187

methodological evaluation. Figure 4 shows cost-versus-performance plots on the (a) trauma and (b) outpatient datasets,188

with models retrained 100 times on different train/test splits of the data. In these experiments, we train CoAI with both189

GBMs and logistic regression models as the base predictors to take advantage of its flexibility and model-agnosticism190

(Method 7). We compare CoAI to: (1) cost-efficient gradient boosting (CEGB), a popular and effective method for191

making cost-sensitive predictions with decision trees [9], which applies a fixed per-feature penalty whenever the tree192

model splits on a given feature for the first time, and (2) a reinforcement learning method called classification with193

costly features (CWCF) [10, 11], which penalizes an agent for selecting costly features and rewards it for producing194

correct classifications (Method 10-Method 13). Overall, CoAI consistently outperforms other AI methods. The best195

CoAI model in each plot has a significantly higher mean AUC, averaged across all possible budgets, than all other196

models, with p < 10−5 and t > 5.75 by paired-samples t-test for all comparisons (Method 14).197

For both datasets, cost-effective models reduce costs significantly without sacrificing performance, with CoAI and198

CEGB both plateauing in performance about halfway through the range of possible budgets. This implies that cost-199

aware learning can enable both trauma coagulopathy prediction in shorter periods of time (Figure 4a) and outpatient200

mortality prediction at lower cost (Figure 4b).201

CWCF’s reinforcement learning (RL) approach also consistently underperforms other methods. Although RL has202

exhibited strong performance in binary classification [10, 11], it suffers in risk-stratification settings that use ROC and203

similar metrics because it produces hard classifications rather than a continuous ranking of patients by risk. We adapted204

CWCF to produce continuous outputs and ran fewer replicates to accommodate its slower runtime, but performance205

was still very low (Method 13).206

The results in Figure 4 show several specific benefits of CoAI’s design relative to other cost-sensitive learning207

methods. First, CoAI is model-agnostic, i.e, it can be used with any predictive model. For the trauma dataset, CoAI208

with a GBM as the base model achieves the highest performance, likely because of nonlinear relationships in the data209

(Figure 4a). However, for the outpatient dataset, CoAI with a linear base model achieves the highest performance; in210

this case there is insufficient complexity in the data to warrant the additional overfitting that is possible with a GBM211

(Figure 4b). CoAI’s model-agnostic nature improves performance because it can use linear models when they are most212

appropriate and GBMs, or other complex models, when they are most appropriate.213

Second, CoAI can easily use features that come in groups that each have a single acquisition cost. This situation is214

extremely common in AI tasks where features are redundantly encoded – such as nonlinear transformations of features215

or one-hot encoding – as well as in clinical medicine where many features (e.g., urine tests for blood and pH) can216

be acquired with a single lab test (urinalysis). CoAI naturally handles these situations because feature importance217

measures φ’s are additive and can be easily summed to yield group importances (Method 15). In the outpatient218

data, 27 exam findings and lab tests (groups) gave rise to 35 features, which expanded to 118 features after one-hot219

encoding. While each model could access all features, only CoAI could correctly place costs at a group level during220

training. While we adjusted the results of CEGB and CWCF at test time to account for grouped costs and calculated221

a generous upper bound for CWCF’s performance in this setting, CoAI still outperformed both methods, as shown on222

the cost-performance plot (Figure 4b, Method 13 and Method 14).223
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2.4 CoAI achieves orders-of-magnitude greater efficiency than other cost-sensitive224

AI models225

Here, we demonstrate that CoAI also achieves better training complexity than other models. All cost-sensitive models226

require a tuning parameter to control the tradeoff between accuracy and cost. For CoAI, this parameter is the budget227

itself. Given a fixed target budget, CoAI always yields the optimal model within that budget in a constant number of228

training rounds. For CEGB, however, the tuning parameter is unitless (representing the ratio between model cost and229

loss in the optimization objective). Given a fixed target budget, this requires blind tuning until a good enough model230

is found that fits within the budget. CWCF supports both budget-based and unitless tuning parameters.231

We tested the training complexity of all three models on a single train-test split of the trauma dataset, where we232

attempted to maximize performance at a single budget (the EMS provider-preferred time cost of 50 seconds) with each233

model (Figure 4c; Method 16). Blind tuning on CEGB with binary search requires training over 5 times more models234

than CoAI to reach a similar level of performance (13 total models). CWCF with unitless tuning takes a large number235

of trainings to yield even a small increase in performance and never reaches the same level of performance as CoAI or236

CEGB (128 total models). CWCF with a cost-based tuning parameter requires only a single model training, but yields237

very low performance. Only CoAI is able to offer high predictive performance with a low training complexity.238

2.5 CoAI reveals high-yield features and dynamics of feature importance over239

time240

We analyzed the order in which CoAI selected features to understand how it differs from other clinical risk scores. Figure241

5 shows how feature rankings differed between CoAI and existing clinical models for the ICU and trauma datasets. For242

CoAI, the top features are listed in the order in which they were first added to the model as the budget was gradually243

increased. For each clinical risk score, the top features are listed in order of importance; for APACHE, importance is244

measured by loss reduction (Method 9) and for PACT, importance is measured by standardized regression coefficient.245

The qSOFA score weights all variables equally.246

For the ICU data, CoAI and existing clinical models rely on different subsets of features (Figures 5a and 5b).247

Although CoAI and APACHE both rely on admission diagnosis and age, CoAI ranks ventilation, FiO2, heart rate,248

and blood urea nitrogen higher than APACHE, while ranking chronic conditions, PaO2 and the eye component of the249

Glasgow Coma Scale lower. The qSOFA model uses a small number of features, most of which are also used by CoAI,250

although CoAI also relies on many features not chosen by qSOFA. Notably, the higher-ranked CoAI features tend to251

be baseline information – age, diagnosis, and ventilation status – rather than specific vital signs. A similar situation252

arises with the PACT score in the trauma dataset; many PACT features are also important in the CoAI model, but253

CoAI prioritizes inexpensive data available at the time of dispatch before relying on the many vital signs used in PACT254

(Figure 5c). In particular, the intubation and CPR procedures are ranked more highly by CoAI than by PACT.255

A unique aspect of CoAI is the opportunity to examine how changing budgets might affect the value of individual256

features. To investigate this, we examined the effects of changing time budgets on feature importance for the trauma257

CoAI models. The heatmap in Figure 5d displays the importance of each feature as a function of model cost as the258

budget k increases. This analysis reveals complicated dynamics of important features over time. For example, when259

very little time is available, dispatch and procedure information dominate the prediction (top row). Dispatch features260

include the patient’s geographical location and level of response e.g., Advanced Life Support or Basic Life Support, and261

procedures include CPR and intubation. This result agrees with recent data suggesting that prehospital procedures262

have high predictive value for predicting the need for hospital interventions such as massive transfusion [38]. However,263

when time budgets increase other features, such as vital signs, gain more significance and the importance of the earlier264

demographic features tends to decline. Occasionally, features like pulse are removed from the model entirely. Further, a265

model that adds features in a fixed order (e.g., greedy and recursive feature elimination methods, see Method 6) cannot266

make these sophisticated time and information tradeoff choices and would lose performance as a result. These results267

show that CoAI’s ability to train models within any budget is valuable not only for flexibility in deployment, but also268

as a way to better understand the predictive value of each patient feature. Further analysis of feature importance, as269

well as importance heatmaps for other datasets, are shown in Supplementary Figures 5-9.270
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Figure 5: Importance of features selected by CoAI and other risk scores, ranked by order added to the model for CoAI
and by regression coefficient or loss reduction for others (see Section 2.5). Orange features are ranked lower in CoAI than
the corresponding clinical risk score, and blue ranked higher. Gray indicates no change. CoAI is compared to (a) qSOFA
(b) and APACHE for the ICU dataset. It is compared to PACT (c) for the trauma dataset. All features are shown
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each feature for a CoAI model trained at a particular budget k in the trauma dataset. Dispatch and procedure features
have zero cost and are grouped into one row. Darker blues indicate more importance. Columns have varying widths since
they are scaled to align with each model’s feature cost on the x-axis (in minutes). The left vertical blue line shows the
EMS provider-preferred time budget; the right pink line shows the PACT time cost.

11



3 Discussion271

As AI and ML models become increasingly prevalent in healthcare, they risk imposing a large data-gathering burden272

on health care providers unless steps are taken to ensure such models can automatically select highly informative, easily273

acquired features. Our study is the first, to our knowledge, to survey clinical experts, build improved cost-aware clinical274

risk scores, and evaluate cost-aware models at operating points chosen by clinical providers.275

Our framework, CoAI, is simple, flexible, and can efficiently adapt any predictive model to make cost-sensitive276

predictions. In the trauma dataset, CoAI’s sophisticated AI models and its automated choice of low-cost, high-277

information features produce predictions more accurate than existing clinical scores at less than one-tenth the data-278

gathering cost. Analogously, for ICU mortality prediction, CoAI outperforms existing risk scores using one-ninth of279

the total number of features. CoAI also makes accurate predictions at low monetary cost in an outpatient mortality280

prediction dataset, outperforming other AI methods for cost-sensitive prediction. Extrapolating these results across all281

trauma and ICU patients in the United States indicates the potential for CoAI-based risk scores to provide advance282

warning of tens of thousands of ATC cases and hundreds of thousands of deaths while providing substantial time savings283

– hundreds of thousands of hours of total provider time in the trauma dataset.284

CoAI has several desirable properties that make it better suited to cost-aware clinical risk scoring than other285

AI methods. Its model-agnostic nature enables accurate, low-cost predictions in a wide variety of settings by using286

complex models for large or nonlinear datasets and simple models for small datasets or ones where linear relationships287

are expected. Its ability to handle grouped features also makes it a natural fit for data with feature transforms or288

one-hot encoding and for data where properties of the data acquisition process, such as lab tests that return multiple289

measurements, result in naturally grouped features.290

CoAI demonstrates several other benefits relative to existing methods. Most existing tools do not make hard291

guarantees or provide worst-case bounds on feature acquisition cost – decision tree and RL methods may ask for features292

indefinitely so long as it improves prediction accuracy enough. CoAI imposes a hard time cutoff in its optimization293

so that users can be sure it will not recommend excessively costly features. This hard cutoff also serves as the cost-294

versus-performance tuning parameter, helping users to quickly acquire the best possible model for their desired budget295

without blindly tuning tens or hundreds of models as other methods do. While CWCF is also capable of using a hard296

cutoff tuning parameter, it performs hard classification and does not output probabilities of each class by default. This297

makes it difficult to use for risk stratification and significantly reduces performance on clinically important metrics like298

AU-ROC. Finally, CoAI always requests the same features within a given time budget, which increases predictability299

for healthcare providers; methods like RL or decision trees may ask for different features for different patients.300

There are several avenues for future work with CoAI. Like other low-cost AI methods, CoAI assumes the cost of301

a feature set is additive – equal to the sum of individual feature costs. This may be reasonable in ambulances or302

outpatient clinics, where a single provider must perform tasks sequentially, but the additivity assumption may need303

to be relaxed in other settings, like large hospitals, where multiple providers can perform different exams and tests304

simultaneously. CoAI also does not fully account for feature interactions in which including a particular feature changes305

the relative value of other features. While CoAI performed better in our experiments than approaches like CWCF that306

explicitly account for feature interactions, a version of CoAI that accounts for interactions could improve performance307

even further.308

Overall, we believe CoAI has demonstrated the potential to significantly improve clinical risk prediction. Its design309

treats the ease of gathering features just as importantly as the accuracy of predictions made using them. Our software310

is easy-to-use and integrated with existing open-source frameworks. We believe CoAI will make clinical risk scores311

more cost-sensitive, more accurate, and more effective at saving lives.312
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Methods439

Method 1 Datasets440

Trauma data. The trauma data used in this study were gathered over a 10-year period (2007 to 2017) and encompassed441

over 14,463 emergency department admissions for traumatic injury at a Level 1 Trauma Center. We selected 45 variables442

that were available in the pre-hospital setting, including dispatch information (injury date, time, cause, and location),443

demographic information (age, sex), and prehospital vital signs (blood pressure, heart rate, respiratory rate).444

The outcome in this data was acute traumatic coagulopathy (ATC). We followed [17] and defined ATC as a445

binary outcome based on emergency department lab measurements of International Normalized Ratio (INR), where446

measurements greater than 1.5 were defined as coagulopathy.447

ICU data. The ICU data were gathered from the public PhysioNet eICU repository [39]. The data come from448

over 142,139 patient admissions at 208 US hospitals between 2014 and 2015. While many features are available in this449

data, we selected 43 variables that had been preprocessed into a tabular format. Many of these variables are also used450

in the calculation of other risk scores, e.g., APACHE and APS. The outcome in this data was in-hospital mortality.451

Outpatient data. The outpatient data were gathered from the NHANES I study, which is publicly available,452

with a reprocessed version for AI and ML recently released [22, 29]. The study gathered data on 13,442 individuals453

from 1971 to 1974, then followed up in 1992 to record 10-year mortality data. The NHANES data is unique among our454

datasets because: (1) it contains relatively healthy outpatients rather than relatively sick inpatients, (2) each row is an455

individual patient, as opposed to the trauma and outpatient dataset where stays are unique but patients may not be,456

and (3) it is a curated cross-sectional study rather than a convenience sample of patients who presented to the hospital,457

reducing dataset bias. We selected 35 features from this dataset including demographics, physical exam findings, and458

lab values. The outcome in this dataset was 10-year mortality.459

Repeated measurements: In the trauma and ICU datasets, each sample is a patient visit, so a given patient460

who has visited the hospital multiple times could be represented as multiple samples in the dataset. In the outpatient461

dataset, each sample is a unique patient.462

Data Processing. We standardized all variables to have 0 mean and unit variance. We mean-imputed missing463

data for input to all AI models except for CoAI in Section 2.2 because GBMs were the only AI model used in this464

section and could handle unprocessed missing data. Missing data in clinical models is discussed in Method 9. We465

treated categorical variables as categorical in LightGBM [40]. For the trauma and outpatient datasets, we used a466

random 64/16/20 train/validation/test split. For the ICU dataset, patients were grouped into four geographic regions467

of the United States; we split off 1 region as a test set and split patients from the other 3 regions into train/validation468

sets using an 80/20 split. Labels were binary for all datasets, and we included only the patients from each dataset for469

whom label data were available.470

Method 2 Prehospital Time Costs: Survey Methodology471

We gathered time costs for the trauma dataset by surveying professional prehospital care providers from the Pacific472

Northwest. We designed a Qualtrics survey to gather information on previous EMS experience, past experiences with473

and thoughts about computerized risk scores, costs for each feature in terms of objective time and subjective effort, and474

overall impressions of the value of risk scores in prehospital medicine. The full list of survey questions, and summary475

data on responses, is in Supplement Section 2. Free text answers are not included to preserve anonymity. We used476

anonymous links to send the surveys to all employees of 3 major emergency medical services and collected all results477

from September 19 to October 25, 2019 for analysis. Costs for each feature were determined by the mean cost across478

respondents. The survey did not include questions on time or effort cost for variables already present at dispatch, for479

which a cost of 0 was assigned. While we gathered data on how long each procedure in our dataset took to perform, we480

set all procedure feature costs to zero, since entering procedure information in the risk score requires simply knowing481

whether the procedure was done.482
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Method 3 Outpatient Monetary Costs483

We assigned costs to features in the outpatient data by referencing Medicare data on payments for lab tests [41].484

Physical exam and other free measurements were assigned a cost of zero. Unavailable costs were mean-imputed. The485

full list of feature costs is in Supplementary Figure 2.486

Method 4 CoAI Method487

CoAI is a feature importance-based method for cost-sensitive prediction. Given a model f trained on the full dataset488

and a single patient’s features xj , CoAI uses recently developed axiomatic feature importance methods to assign an489

importance φij to each feature i such that the sum of all feature importances equals the risk prediction:
∑
i φij = f(xj)490

[28]. These methods obey axioms guaranteeing heavier weighting of features with greater effects on the model’s output.491

By summing the absolute values of these importances across all data points, we can get a global measure of importance492

corresponding to the amount each feature impacted the model’s output across all predictions: φi =
∑
j |φij |.493

CoAI uses these importance values to form an optimization problem that finds the best subset of features F – the494

one with the greatest sum of feature importances φi – that do not exceed the cost budget. Mathematically, this can495

be written F = arg maxS
∑
i∈S φi s.t.

∑
i∈S ci ≤ k, where ci is the cost of feature i and k is the cost budget. We can496

solve this well-known optimization problem, known as a knapsack problem, with arbitrarily small error in polynomial497

time with respect to the number of features due to a fully polynomial time approximation scheme (we use the Google498

OR-tools solver) [42, 32].499

For any AI/ML model, this approach lets us find the exact optimal set of features that most impact the model’s500

prediction within any cost budget under the assumption that features’ effects are independent. In practice, the method501

works very well even when there are feature interactions. We also use a heuristic that substantially boosted performance502

in both our work and previous studies: after finding the best feature subsets for every budget, we retrain a new model503

using only those features [43]. For consistency, the new model is of the same model class with the same hyperparameters504

as the all-features model used to calculate feature importance. We tested several other methods for using feature505

attributions and costs to select the best feature subset within a cost budget, including a greedy algorithm, recursive506

feature elimination, and knapsack method without retraining. These methods did not match the performance of our507

knapsack method with retraining but may prove useful in specific situations (Supplementary Figure 3 and Method 6)508

Our approach is model-agnostic. Because general-purpose tools like LIME and SHAP can produce feature attri-509

butions for any AI/ML model, CoAI can also produce cost-effective versions of any such model. CoAI works best510

for model types that support fast calculations of axiomatic feature importances, such as linear, deep, and tree-based511

models. For all experiments in this paper, we use gradient boosted tree models (GBMs) or linear models for predictions512

and the SHAP package [29] to provide explanations (Method 5, and Method 7). We developed an implementation of513

CoAI that can build cost-sensitive versions of any model that supports the Scikit-Learn framework [8] and have released514

it as open-source software.515

For interpretability purposes, we add small pseudocosts to zero-cost features (small enough that the sum of all such516

pseudocosts is less than the difference between any two non-zero-cost features). This is not strictly necessary, but does517

allow ranking of zero-cost features if desired.518

Method 5 Feature Attribution Methods519

We needed measures of feature importance as well as feature cost to perform our CoAI analysis. We calculated feature520

importance using the SHAP (Shapley Additive Explanations) framework [28, 29], in which a feature’s importance is521

calculated with respect to a predictive model. The change of the model’s output when the feature is masked is recorded522

across all possible subsets of features, yielding an average change in prediction resulting from the inclusion of a feature523

in the model:524

φi(f, x) =
∑
R∈R

1

M !

[
fx(PRi ∪ i)− fx(PRi )

]
, (1)525

where φi is the importance of feature i in model f for data point x, R is the set of all feature permutations, PRi is the526

set of all features before i in the ordering R, M is the number of input features, and fx is an estimate of the conditional527
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expectation of the model output: fx(S) ≈ E[f(x) | xS ] where xS is the set of observed features.528

SHAP estimates of feature importance can be calculated for any AI/ML model. Because we use GBM and linear529

models, we make use of fast algorithms for calculating SHAP values in decision trees and linear models [28, 29] . This530

improves runtime and reduces variability in importance estimates. It is also worth noting that CoAI is compatible531

with any feature attribution method that assigns a measure of importance φi to each feature – SHAP is not the only532

method of this type, but is model-agnostic, satisfies desirable axioms, and has fast specialized implementations for the533

models we consider here.534

Method 6 Alternate Optimization Methods535

We implemented three additional methods to search for optimal feature sets with respect to feature importance and536

measurement cost:537

1. Greedy selection. In the greedy selection version of the algorithm, features are sorted by their importance538

divided by cost: ωi = φi
ci

. Features are then added to the model one by one, from highest to lowest value of ωi,539

until no more can be added without exceeding the cost budget. This very simple method works reasonably well.540

2. Recursive feature elimination. This is inspired by the recursive feature elimination method often used for541

feature selection in linear models. A model is trained on the full dataset with all features. A measure of feature542

quality is calculated, and the lowest-quality feature is removed. Another model is trained on the resulting dataset,543

and the process iterates until only the desired number of features are left. For cost-sensitive prediction, the quality544

measure is simply importance divided by cost: ωi = φi
ci

, and the iteration stops when model cost is below the545

budget constraint. This method is valuable for its ties to existing feature selection literature. Because the process546

is stepwise and feature importance can be recalculated at each iteration, the algorithm can account for feature547

dependence, where removing one feature changes the importance of other features. Though it performs well it,548

does not outperform our knapsack method.549

3. Knapsack without retraining. This is exactly the same as the method described in Method 4, except that550

after a feature subset is selected, those features are fed into the original model that was trained on all variables.551

Other features are mean-imputed. This greatly increases training speed but decreases performance, a phenomenon552

observed in previous work [43].553

Performance plots of these alternate methods for the trauma dataset are shown in Supplemental Figure 3.554

Method 7 Base Model Training Details555

We used two classes of base models: gradient boosting machines and logistic regression [44, 45]. Hyperparameters556

were selected using the train/validation splits described in Method 1 with all features then fixed for cost-sensitive557

learning. The train and validation sets were combined for training after parameters were fixed. We implemented558

gradient boosting machines using the LightGBM package [40] and used the following parameters:559

• Learning rate: 0.01560

• Maximum Number of Trees: 1000561

• Early Stopping Rounds: 100562

• Max Tree Depth: ∈ {1, 2, 4, 8, 10}563

• Gamma: 1.0564

• Minimum child weight: 10565

• Subsampling: ∈ {0.2, 0.5, 0.8, 1.0}566

We implemented logistic regression models with Scikit-learn [8]and used the following parameters:567

• Regularization type: ∈ {L1,L2}568

• Regularization strength: ∈ {10−5, 10−4...104, 105}569

• Solver: SAGA570

Parameter values not specified above were left at their default values.571
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Method 8 Previous Clinical Risk Scores572

Several scores have been developed for the specific case of ATC in trauma patients. The COAST score – an additive573

point-based score using abdominal/pelvic injury, chest decompression, temperature, systolic blood pressure, and en-574

trapment – was one of the earliest [18]. The subsequent PACT score was a six-feature logistic regression involving shock575

index, age, mechanism of injury, Glasgow Coma Score, and prehospital CPR and intubation [17]. Both models use576

relatively simple prediction methods and a fixed set of features that limit the range of time budgets in which they can577

be used. A recent study developed a linear model to predict whether military trauma patients would receive massive578

transfusion of blood products, with the goal of discovering “concrete and rapidly and easily assessable” predictors.579

This study did not explicitly account for model cost, but noted that some data, including vital signs, may be difficult580

to acquire or unavailable in the prehospital setting and developed multiple models with different numbers of features,581

implying the potential value in this area of models that automatically account for cost [38].582

Many risk scores exist to predict mortality of ICU patients. The most popular include the APACHE, APS, SOFA,583

and qSOFA models [20, 21]. Most of these models take as input a large number of features, while the qSOFA score584

uses only the Glasgow Coma Score, respiratory rate, and blood pressure at the cost of worse predictive performance.585

These risk scores all use linear or additive models that aim to either achieve high accuracy with many features, or586

moderate accuracy with few features. Although mortality prediction in critically ill patients is a topic of great interest587

in medicine, only a small number of feature sets have been explored. There is no single published model that can make588

accurate predictions within any feature budget. Finally, although outpatient survival prediction is an important task,589

we are not aware of a standard clinical tool for this purpose.590

Method 9 Implementation of Existing Clinical Models591

We compared to the following clinical models: qSOFA, APS, APACHE IIIa, and APACHE IVa in the ICU dataset,592

and the PACT score in the trauma dataset. APS, APACHE IIIa, and APACHE IVa were pre-calculated for the ICU593

dataset. We re-implemented the qSOFA and PACT scores by referring to their respective publications [21, 17]. Notably,594

the qSOFA score required systolic rather than mean blood pressure as an input variable, so we extracted systolic blood595

pressure data from the eICU dataset and only gave qSOFA access to this variable. We handled missing data in qSOFA596

by assuming the corresponding binary variable was false (i.e., the input ”respiratory rate greater than 22” was always597

false if respiratory rate was missing). We handled missing data in PACT with mean imputation. We also found that598

re-training logistic regression models on the variables in the PACT model substantially improved performance. The599

final plots show results from the re-trained PACT regression.600

In Figure 5, we ranked features in each clinical risk score by their importance. We ranked PACT features by601

standardized regression coefficient. The qSOFA score assigned equal weight to all features, so the ordering was arbitrary.602

The APACHE IVa score did not publish standardized regression coefficients, but did publish the reduction in loss from603

adding each group of features to the model. We used this data to rank features by importance; for each group of604

features other than the APS score, we divided the group’s loss reduction evenly among the group members to obtain605

estimates of each feature’s loss reduction. For the APS score features, we divided the total loss reduction for APS606

features proportional to each feature’s maximum possible univariate contribution to the APS score. Some binary607

features modulate other features’ univariate contributions; for these features, we assign importance proportional to the608

difference between the maximum univariate score with the feature on and maximum univariate score with the feature609

off. Features for which this would result in an importance of 0 are assigned an importance of 1. We divided credit for610

APS components that depended on multiple features, such as GCS and A-a gradient, evenly among the contributing611

features. A-a gradient is unique in that it is calculated from PaO2 and several other features but cannot have a nonzero612

contribution to APS when PaO2 itself has a nonzero univariate contribution; thus, we do not allow it to contribute to613

PaO2’s importance.614

Method 10 Other Cost-sensitive prediction methods615

Cost-sensitive prediction is a topic of growing interest in ML and AI. Established techniques, like the LASSO penalty in616

regression, encourage models to rely on few of their input features but do not generally incorporate the idea that different617
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features may have different costs [46]. More recent methods have attempted to minimize the feature acquisition cost618

for each individual prediction while maximizing its accuracy. Methods involve either perturbing an existing model to619

determine the most important features [47], using decision trees to divide the data into similar groups while penalizing620

splits that use expensive features [48, 49, 9], or applying reinforcement learning (RL) approaches, which use deep621

learning to simulate the process of asking for features one at a time and then making a prediction [10, 50, 51, 52]. In622

this paper, we estimate feature importance using state-of-the art axiomatic methods that guarantee features with a623

greater effect on the output will be ranked more highly. This can be seen as an improvement on perturbation-based624

methods and allows CoAI to accurately choose the most important features within a given cost budget [28, 29].625

Despite the emergence of methods for low-cost AI, scant research has used these methods to produce risk scores626

for real clinical problems. Many approaches are evaluated on toy datasets with random or arbitrary feature costs. We627

know of only one paper that evaluated cost-sensitive methods on a clinical prediction task, which used a Mechanical628

Turk survey to gather costs from laypeople rather than attempting to synthesize expert opinion [52]. While study was629

a valuable attempt to reduce the burden of diagnosis for patients, because costs were measured on a 1-10 subjective630

scale of convenience it is not clear how to add costs together or interpret the resulting total model cost. This results631

in a model with unclear implications for clinical practice. On the contrary, our work uses costs gathered from expert632

clinicians in units of minutes or dollars, where total model cost has clear clinical implications.633

Method 11 Extrapolating Nationwide CoAI Deployment634

We used precision-recall plots (Supplementary Figure 4) to fix a given level of precision (positive predictive value) for635

risk scores and compare the resulting recall for each model. Recall can be interpreted as the proportion of positive cases636

(for trauma, ATC; for ICU, deaths) that are detected by a model. Multiplying recall by the number of positive cases637

nationwide gives the total number of ATC cases or deaths that would be predicted by the deployed model. Precision,638

or positive predictive value, is the probability that a predicted positive is a true positive; sufficiently high precision639

is important to avoid alert fatigue. Selecting a target for precision is difficult and case-dependent, but one study of640

adverse drug event prediction in electronic health records suggested a target that between 10 and 20 percent of alerts641

lead to clinical intervention [37, 36]. Based on this result, we set our precision target to 0.2. Because precision is fixed642

to be equal for all models, a model with a greater recall is clearly better: it can provide advance warning of more cases643

while maintaining the same ratio of true positives to false positives.644

There are roughly 2 million EMS trauma responses in the United States per year [34]; ATC rates vary by region and645

baseline severity but the base rate in our data would mean 120,000 have ATC [14, 35]. Assuming as above that providers646

are willing to tolerate 4 false positive alerts for every true positive, deploying the PACT score on all trauma responses647

would require 30 person-years of data-gathering time and provide early warning of 44,699 ATC cases. Deploying CoAI648

with the same data-gathering budget would correctly warn of 81,054 cases – an additional 36,355. Deploying CoAI with649

the EMS provider-preferred budget would reduce the data-gathering requirement to 3 cumulative years, a reduction of650

27 total years, while catching 59,301 cases, an additional 14,602 over PACT.651

There are over 5 million ICU admissions in the United States per year; the base rate in our data implies roughly652

450,000 of those admissions end in death, similar to rates published in previous research [19]. As mentioned in the653

introduction, the costly APACHE score is not often used in clinical practice, while the relatively inaccurate qSOFA654

score is easier to use. Thus we compare qSOFA, which uses 3 features, against the 3-feature CoAI model. Here we655

consider a 3.5:1 false:true ratio, which lines up with one of the few available operating points for qSOFA. Here, qSOFA656

correctly provides advance warning 182,653 deaths, while CoAI using the same number of features provides advance657

warning of 389,809 – an increase of 207,156 patients.658

Method 12 CEGB Implementation Details659

We implemented Cost-Effective Gradient Boosting using the authors’ code which is integrated into LightGBM [9]. We660

used the cegb penalty feature coupled parameter to pass the per-feature cost vector and cegb tradeoff to control661

the cost-performance tradeoff. The cegb penalty feature coupled parameter charges a global cost the first time a662

feature is used in any tree. While other options exist, such as charging a cost the first time a feature is used for663

each sample (resulting in different features being measured for different samples), the coupled penalty is the most664
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apt comparison to CoAI, since it selects a low-cost set of features to be measured for all patients. We tuned the665

cegb tradeoff parameter on 101 logarithmically spaced points in [10−2, 105].666

Method 13 RL Implementation Details667

We implemented the reinforcement learning approach of [10] using the authors’ published code. We used hyperparameter668

values for most parameters from the largest network included in the example code and set the neural network’s hidden669

layer size to 128 and the “difficulty” (a multiplier on the number of steps for training, early stopping, etc) to 1000.670

We tuned the regularization strength with 8 logarithmically spaced points: {10−7, 10−6...100}. This resulted in fewer671

points on the cost-performance curve than CoAI or CEGB but was necessary due to the method’s slow runtime.672

The reinforcement learning approach was not directly comparable to CoAI because it is allowed to choose different673

features for each patient. Thus, it may attain a lower cost that is unattainable by a model with a single fixed list of674

features. However, we could not easily alter this property so we did not change this behavior. In all figures, we use the675

”average-budget” version of CWCF to provide a generous upper bound on performance, though we note that CWCF676

is capable of using a hard budget like CoAI at the cost of lower predictive power.677

Reinforcement learning suffered in our tests because it makes dichotomous predictions by default, which dramatically678

reduces its performance in a ranking-based metric like AU-ROC. We attempted to account for this by editing the code679

to dump the final Q values for each sample at test time. Because Q-values correspond to expected reward for taking680

an action, we interpret the Q-values for the “classify into a given class” action as a measure of the model’s confidence681

in predicting that class. Using Q-values as pseudo-probabilities improves classification metrics like AU-ROC but still682

underperforms, perhaps in part because Q-values in an RL task do not lead to as well-calibrated probabilities as the683

outputs of a true classification model with a logistic objective. We were also able to run only 17 replicates for the684

trauma data and 25 for the outpatient data due to long runtime and failure to converge on many runs.685

Method 14 Cost-Performance Curve Comparison686

We compared several methods for low-cost AI modeling in Figure 4. We retrained each method on 100 random train-687

test splits of the dataset. Parameters were fixed on an initial random train/validation/test split and preserved across688

all subsequent runs. Because CEGB and CWCF may produce models of different costs on each run, we calculated the689

mean and standard deviation of each model’s cost-performance curves by interpolating them along the same 100 points,690

linearly spaced between the lowest and highest-cost models over the 100 runs. We used previous-value interpolation691

so each point was a conservative estimate of performance (i.e., if no 5-minute model existed for a run, the 4-minute692

model’s performance would be used to interpolate performance at a 5-minute budget).693

To calculate statistical significance, we used a two-sided paired-samples T-test, paired by random train-test split,694

on the mean AU-ROC for each model’s cost-performance curves. The T-test normality assumption is justified by the695

central limit theorem and the fact that each sample in this test is a mean AU-ROC. Because CWCF ran slowly and696

failed to complete for many runs, comparisons between other methods and CWCF used only paired samples for which697

CWCF had a complete run available (17 runs for the trauma dataset and 25 for the outpatient dataset). Tables of the698

resulting p-values are shown in Supplementary Figures 10 and 11.699

In the outpatient data, we had to account for the fact that neither CEGB nor CWCF was able to use the information700

that features came in groups. We post-hoc adjusted CEGB’s model costs by examining the features used by each CEGB701

model and re-assigning costs based on which groups were used. We were not able to post-hoc adjust CWCF’s model702

costs, because the CWCF package is not aware of feature groups and reports only the model’s total cost, not which703

features were used. Thus, we calculated an upper bound for CWCF by setting the performance of all CWCF models on704

a given train-test split to the maximum performance of any CWCF model on that split. This will never underestimate705

performance of CWCF at any budget, and will overestimate performance at all but one point.706

Method 15 Grouped Feature Costs707

We extended CoAI to handle grouped feature costs, as encountered in the outpatient dataset, by performing the same

knapsack optimization but over groups rather than features. Each group g has a single cost cg for acquiring all features
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in that group. It also has an importance equal to the sum of importances for each feature in the group: φg =
∑
i∈g φi.

We solve the knapsack problem:

F ′ = arg max
S

∑
g∈S

φg s.t.
∑
g∈S

cg ≤ k

This gives us a set F ′ of groups g ∈ F ′. To identify the features for model training, we simply take the union of all708

features i in all groups in F ′: F =
⋃
g{i|i ∈ G}. The model cost is the sum of group costs:

∑
g∈F ′ cg.709

Method 16 Binary Search/Tuning Details710

We compared the efficiency of model tuning by trying to build optimal models under a particular cost budget with711

CoAI, CEGB, and reinforcement learning. This was straightforward with CoAI: we entered the desired cost k as a model712

parameter. CoAI trained one full-data model to calculate the φi values, selected maximum-importance features within713

that budget, and then trained the final model. It is a less straightforward process in other frameworks to determine714

how to satisfy a particular cost constraint while guaranteeing that the best possible model within the framework has715

been found.716

In CEGB and reinforcement learning, we had to use blind tuning to achieve the same goal because the relationship717

between their cost-performance tradeoff parameter λ and the actual model cost is unclear and dependent on many718

factors (magnitude of the loss, scale of the costs, etc). All we know is that as λ increases, cost and accuracy should719

monotonically decrease. Thus, we performed binary search by setting upper and lower bounds on λ and a starting720

value λ0. For rounds i from 0 to T , we iteratively train a model with λi and check if the model’s cost is below our721

target k. If so, we set λi+1 = λi−λmin
2

. If not, we set λi+1 = λmax−λi
2

. We then continue the iteration.722

Values used for this search are:723

• λmin = 0724

• λmax = 106
725

• λ0 = 1726

• T = 128727

CEGB converged after 28 iterations and was terminated early. CWCF ran for the full 128 iterations.728

Data Availability729

Two of our three datasets – the ICU and outpatient datasets – are publicly available. The ICU dataset was pub-730

lished in [39] and is available from the MIT eICU Collaborative Research Database (https://eicu-crd.mit.edu/731

gettingstarted/overview/) but requires approval before download. The outpatient dataset is a subset of the NHANES732

I study [22] and was published in its current format in [29]. It is also uploaded to our Github repository along with733

our code (see below). The trauma dataset is not publicly available due to patient privacy concerns.734

Code Availability735

Code implementing CoAI is available at https://github.com/suinleelab/coai. The repository also includes note-736

books reproducing the results that do not rely on the trauma dataset, including performance and feature importance737

for CoAI and existing mortality risk scores on the ICU dataset and comparisons with existing low-cost AI methods on738

the outpatient dataset.739

Institutional review board statement740

The survey data for this study was gathered under an exempt determination from the University of Washington741

Institutional Review Board (Human Subjects Division, STUDY00006890).742
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