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Abstract

The coronavirus outbreak in the United States continues to pose a serious threat to human lives. Public
health measures to slow down the spread of the virus involve using a face mask, social-distancing, and frequent
hand washing. Since the beginning of the pandemic, there has been a global campaign on the use of non-
pharmaceutical interventions (NPIs) to curtail the spread of the virus. However, the number of cases, mortality,
and hospitalization continue to rise globally, including in the United States. We developed a mathematical model
to assess the impact of a public health education program on the coronavirus outbreak in the US. Our simulation
showed the prospect of an effective public health education program in reducing both the cumulative and daily
mortality of the novel coronavirus. Finally, our result suggests the need to obey public health measures as loss
of willingness would increase the cumulative and daily mortality in the US.
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1 Introduction

The novel coronavirus (COVID-19) pandemic caused by SARS-CoV-2 was first reported in Wuhan, China in
December 2019 and later declared a pandemic by the World Health Organization (WHO) on March 11, 2020 [1–3].
The emergence of the virus continues to cause devastating public health, and social-economic impact around the
globe, including the United States (US) [4, 5]. COVID-19 is primarily transmitted from person-to-person through
respiratory droplets released when an infected person sneezes, coughs, or talks [6]. The symptoms for COVID-19,
which are similar to the common cold, though potentially more severe, include fever, cough, shortness of breath,
fatigue, loss of taste or smell, sore throat, running nose, nausea, and diarrhea [6]. As of December 12, 2020, there
are over 71 million confirmed COVID-19 cases globally, resulting in over 1.6 million deaths [7]. Within the United
States, there have been over 16 million confirmed cases of coronavirus, with over 297,501 deaths [4].

The Centers for Disease Control and Prevention (CDC) on April 2, 2020, recommended the use of non-
pharmaceutical interventions (NPIs) such as face masks in public (see Fig.1) and to practice social-distancing
to curtail the spread of the virus [3, 5, 8–11]. Non-pharmaceutical interventions have had a long history of pre-
venting many infectious diseases such as the pandemic Influenza, Measles, and the Ebola Virus Disease (EVD)
[12–16]. Actions taken in the early stage of the coronavirus outbreak by the various state governments in the US
include declaring a state of emergency and issuing a state-wide shelter in place. The use of a face mask by the
general public in the US has been controversial as some state governors issued executive orders that voided face
mask mandates within their jurisdiction [17].
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Numerous mathematical models have been used to provide insights into public health measures for mitigating
the spread of the novel coronavirus pandemic. Ferguson et al. [18] proposed an agent-based model to assess the
impact of NPIs on COVID-19 mortality. In the absence of public health interventions, their model projected high
mortality in the United States and the United Kingdom. Eikenberry et al. [3] developed a mathematical model
to assess the impact of mask use by the general public on the transmission dynamics of the COVID-19 pandemic.
Their results showed that broad adoption of even relatively ineffective face masks might reduce community trans-
mission of COVID-19 and decrease peak hospitalizations and deaths. Recently, Ngonghala et al. [8] developed
a mathematical model to assess the impact of NPIs on curtailing the public health burden of COVID-19 in the
United States. Their study showed the effect of early implementation of face masks, lockdown, and lifting of
social-distancing. Extending the duration of lockdown could reduce the daily cases, daily mortality in the US.
Mizumoto and Chowell [19] used a mathematical model to assess the potential for a coronavirus outbreak aboard
the Diamond Princess cruise, which experienced a major COVID-19 outbreak during the months of January and
February of 2020. Their study showed that the basic reproduction number of the model decreases with increasing
the effectiveness of the quarantine and isolation measures implemented on the ship.

Despite public health campaigns regarding the use of a face masks and social-distancing in the United States,
the local transmission of COVID-19 throughout different parts of the country continues to rise. While many people
follow public health recommendations to the use of face mask and practice social-distance in public to limit the
spread of the virus, others passionately fight against them. It is important to understand how educating the pop-
ulation on the importance of using a face mask and social-distancing could reduce the spread of the virus. The
objective of this study is to use a mathematical model to assess the impact of public health education campaigns on
the coronavirus outbreak in the United States.

(a) (b)

Figure 1: The science of mask against COVID-19 [20].

2 Materials and Methods

2.1 Model Formulation

The coronavirus model to be developed uses the natural history of the infection. The total human population
at time t, denoted by N(t), is sub-divided into mutually exclusive compartments of unwilling susceptible (Su(t)),
willing susceptible (Se(t)), unwilling exposed (Eu(t)), willing exposed (Ee(t)), unwilling asymptomatic-infectious
(Au(t)), willing asymptomatic-infectious (Ae(t)), unwilling infectious with symptoms (Ius(t)), willing infectious
with symptoms (Ies(t)), unwilling hospitalized or isolated at a health care facility (Hu(t)), willing hospitalized or
isolated at a health care facility (He(t)), in intensive care units (Icu(t)), and recovered (R(t)) individuals. Thus,
the total population size N is given as

N(t) = Su(t) + Se(t) + Eu(t) + Ee(t) + Ius(t) + Ies(t) +Au(t) +Ae(t) +Hu(t) +He(t) + Icu(t) +R(t).
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The flow diagram of the model (2.1) is depicted in Figure 2 (the state variables and parameters of the model are
described in Tables 1 and 2, respectively).

The model is given by the following deterministic system of nonlinear differential equations (where a dot
represents differentiation with respect to time t):

Ṡu = −(λu + λe)Su − ψSu + νSe,

Ṡe = −(1− ω)(λu + λe)Se + ψSu − νSe,
Ėu = (λu + λe)Su − (σu + ψ)Eu + νEe,

Ėe = (1− ω)(λu + λe)Se + ψEu − (σe + ν)Ee,

İus = rσuEu + νIes − (αus + γus + ψ + δus)Ius,

İes = gσeEe + ψIus − (αes + γes + ν + δes)Ies,

Ȧu = (1− r)σuEu + νAe − (γua + ψ)Au,

Ȧe = (1− g)σeEe + ψAu − (γea + ν)Ae,

Ḣu = αusIus − (γhu + φhu + δhu)Hu,

Ḣe = αesIes − (γhe + φhe + δhe)He,

İcu = φhuHu + φheHe − (γcu + δcu)Icu,

Ṙ = γuaAu + γeaAe + γusIus + γesIes + γhuHu + γheHe + γcuIcu,

(2.1)

where the forces of infection are given by

λu = β

(
Ius + ηAuAu + ηHuHu

N

)
, λe = β

(
Ies + ηAeAe + ηHeHe

N

)
. (2.2)

In model 2.1, β is the effective infection rate for unwilling and willing individuals, while ηj , (j ∈ {Ak, Hk}, k ∈
{u, e}), is the modification parameters (where 0 < ηj < 1) that accounts for a reduction in infectiousness of unwill-
ing(willing) asymptomatic and hospitalized individuals compared to unwilling(willing) symptomatic individuals.
Further, ψ represent the public health education rate for unwilling susceptible (Su), exposed (Eu), and symptomatic
individuals (Ius), and asymptomatic (Au) respectively. It is assumed that public health education program towards
the use of NPIs in preventing COVID-19 infection is imperfect (i.e., allowing willing susceptible individuals be-
come infected with COVID-19), with an efficacy ω (where 0 < ω ≤ 1). Furthermore, the parameters σj , j = u, e
represents the progression rates of unwilling (willing) exposed individuals. A proportion, 0 < r, g ≤ 1, of unwill-
ing (willing) exposed individuals show clinical symptoms of COVID-19 and move to the class Ijs, j = u, e, at the
end of the incubation period. The remaining proportion, (1−r) and (1−g), show no clinical symptoms and move to
the Aj , j = u, e, class. Further, ν represent the loss of willingness to wear a face mask, practice social-distancing
in public, and frequently washing hands. The parameters αjs, j = u, e, is the hospitalization (or self-isolation)
rates of unwilling(willing) individuals with clinical symptoms of COVID-19. Similarly, the parameters φhu, φhe
is the ICU admission rates. The parameters γja, γjs, γhj , γcu, j = u, e, represents the recovery rates for unwill-
ing (willing) individuals in the Aj , Ijs, Hj , Icu, j = u, e classes. Finally, the parameter δjs, δhj , δcu, j = u, e
represents the COVID-induced mortality rate for individuals in the Ijs, Hj , Icu, j = u, e classes. To formulate
the model, we made the following assumptions:

(i) due to public health education, willing individuals wear face mask to prevent transmission, practise social-
distancing and wash their hands while unwilling individuals do not.

(ii) public health education program is targeted at individuals who are unwilling to use a face mask or practice
social-distance in public at rate (ψ).

(iii) to account for public health education saturation, we assume a willingness fatigue (i.e., loss of willingness to
wear face mask, practise social-distancing, and frequent washing of hands),

The model (2.1) is also an extension of the COVID-19 models in [3, 5, 8–10] by including compartments for
individuals based on their willingness/unwillingness regarding the adherence to non-pharmaceutical interventions
such as face mask, social-distancing, and hand washing to curtail the COVID-19 outbreak. Models of this type
have been formulated for Influenza [12].
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Figure 2: Flow diagram of the model (2.1) showing transitions from various compartments based on public health
education.

3 Results

3.1 Asymptotic Stability of Disease-free Equilibria

The expression for the reproduction number (Rc) for model with public health education program is given in
Appendix B.

Theorem 3.1. The disease-free equilibrium (DFE) of the model (2.1) is locally-asymptotically stable ifRc < 1. If
Rc > 1, the epidemic grows rapidly, reaches a peak, and eventually declines to zero.

The quantityRc is the reproduction number of the model (2.1). It measures the average number of new COVID-19
cases generated by a typical infectious individual introduced into a population where a certain fraction is protected.

3.2 Data Fitting and Parameter Estimation

Estimates for some of the parameters of the model (2.1) were obtained from the literature (as indicated in Table
3). Other parameters, such as the effective infection rate parameters β, education rate ψ, education efficacy ω, and
fatigue rate ν are obtained by fitting the model to the observed cumulative mortality data for the US [21, 22]. In
particular, the US Cumulative mortality data from January 22, 2020 (first index case) to December 8, 2020 were
obtained from the John Hopkins’ Center for Systems Science and Engineering COVID-19 Dashboard [23]. We
fitted the model for three different time periods of the pandemic, with the first period from January 22, 2020 to
July 5, 2020, second period from July 6, 2020 to September 30, 2020 and the third period from October 1, 2020
to December 8, 2020. This was done in order to correctly capture the trends observed in the daily mortality data
(i.e., the COVID-19 waves observed). Hence, we obtained three set of values for the parameters to be estimated
based on the different periods. Our choice of fitting the model to the mortality data is due to the fact that there
is evidence of under-reporting and under-testing of COVID-19 cases in countries such as France, Italy, United
States, Iran, and Spain. Hence, mortality data may provide a better indicator for COVID-19 case spread [8, 24].
The data-fitting process involves implementing the standard nonlinear least squares approach using the fmincon
Optimization Toolbox embedded in MATLAB. The estimated values of the unknown parameters are tabulated in
Table 4. Figure 3(a)-3(c) depicts the fitting of the observed and predicted cumulative mortality for the US. Further,
Figure 3(d)-3(e) compares the simulations of the model using the fitted and fixed parameter in Tables 3 and 4. The
results depicted in Fig. 3, show that the model also captures the observed daily mortality data for each of the period
considered. Thus, the parameter estimation of model (2.1) shows that cumulative mortality data provides a very
reliable calibration for coronavirus transmission dynamics.
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Figure 3: (a)-(c): Data fitting of the model (2.1) using the cumulative mortality data for the US from January 22,
2020 to December 8, 2020. (d)-(f): Simulations of the model (2.1) using the fixed and the fitted parameters from
the cumulative mortality data for the US in Tables 3 and 4.

3.3 Sensitivity Analysis

The model (2.1) contains 26 parameters, and uncertainty in their estimates are expected to arise. The effect of
such uncertainties is assessed using uncertainty and sensitivity analysis [25–27]. In particular Latin Hypercube
Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC) is used to identify model parameters that have
the most influence on the model with the reproduction number (Rc) as the response function. The purpose of this
analysis is to determine effects of parameters on model outcomes [25–27]. A highly sensitive parameter should be
more carefully estimated, since a small change in that parameter can cause a large quantitative changes in the result
[25–27]. On the other hand, a parameter that is not sensitive does not require as much attempt to estimate, since
a small change in that parameter will not cause a large variation to the quantity of interest [26]. Parameters with
large PRCC greater than +0.50 are said to be highly positively correlated with the response function, while those
less than −0.50 are said to be highly negatively correlated with the response function [25–27]. The parameters
considered in the PRCCs analysis are the effective infection rate for unwilling(willing) individuals (β), education
rates for unwilling(willing) individuals (ψ), education efficacy (ω), and fatigue rate (ν). We performed a PRCC
analysis for the three different periods; however, the parameters have the same effect on the response function for
the three periods. We chose to report one plot as displayed in Figure 4. The results show that the parameters
that mostly impact the response function (Rc) are the effective infection rate (β), education rate (ψ), fatigue rate
(ν), and education efficacy (ω). Based on the PRCC values, the transmission rate for unwilling individuals and
the fatigue rate has a positive impact on Rc, as an increase(decrease) in the transmission and fatigue parameter
will increase(decrease) Rc. In contrast, the education rate and efficacy have a negative impact on the Rc, and an
increase in these parameters will decrease theRc.
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Figure 4: Partial rank correlation coefficients (PRCCs) showing the impact of model parameters on the reproduc-
tion number (Rc) of the model. Parameter values used are as given in Tables 3 and 4.

3.4 Numerical Simulation Results

To capture the trends observed in the daily mortality data obtained for the US from January 22, 2020, to December
8, 2020, we considered three different periods of the pandemic with the first period from January 22, 2020, to July
5, 2020, second period from July 6, 2020 to September 30, 2020, and the third period from October 1, 2020 to
December 8, 2020. First, we generated a contour plot of the reproduction number (Rc) of the model (2.1), as a
function of education rate (ψ) and education efficacy (ω) (Fig. 5). Figure 5(a) shows that for the period January
22, 2020 to July 5, 2020, a very high education rate (ψ) is necessary to curtail the outbreak effectively (i.e., bring
Rc to a value less than one). A similar trend is observed for the period July 6, 2020, to September 30, 2020, of
the outbreak (Fig. 5(b)). However, Fig. 5(c) shows that for the period October 1, 2020, to December 8, 2020, as
more people are being educated with high efficacy, the value ofRc decreases. It is worth mentioning that the value
of Rc depends on the initial conditions, more precisely on the location of the specific DFE within the hyperplane
of disease-free equilibria. Assuming that no individuals are educated at the beginning of the simulation, then
the education efficacy (ω) will be irrelevant (sensitivity index close to zero) since there are no individuals being
educated. As soon as a significant number of individuals is educated, the effect of the education efficacy on Rc

will increase dramatically. Moreover, since Rc depends on the values of the initial conditions (S∗
u and S∗

e ), it is
expected thatRc decreases as more individuals are being educated over time.

Figure 6 depicts a contour plot of the reproduction number (Rc) of the model (2.1), as a function of the propor-
tion of educated individuals among all susceptible

(
S∗
e

S∗
u+S∗

e

)
and education efficacy (ω) for a fixed education rate

(ψ). Figure 6(a) shows that for the period January 22, 2020 to July 5, 2020, with the baseline education efficacy,Rc

can be brought to a value less than one if 90% among all susceptible individuals are educated. This result suggests
that an incredibly high education rate (ψ) is necessary to curtail the outbreak effectively for the period January 22,
2020, to July 5, 2020. However, for the period July 6, 2020, to September 30, 2020, of the outbreak, with the
baseline education efficacy,Rc can be brought to a value less than one if 76% among all susceptible individuals are
educated (Fig. 6(b)). Figure 6(c) shows that for the period October 1, 2020, to December 8, 2020, with the baseline
education efficacy, Rc can be brought to a value less than one if 51% among all susceptible individuals are edu-
cated. This result further supports the need to educate more people if we are to effectively curtail the coronavirus
outbreak, which is consistent with the results obtained in Fig. 5.
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Furthermore, we ran simulations of model (2.1) using the parameter values in Tables 3 and 4, to assess the
population-level impact of public health education program on the COVID-19 outbreak. The simulation result
for the baseline scenario shows a projected 132,000 cumulative deaths by July 5, 2020, 205,600 by September
30, 2020, and 285,100 by December 8, 2020 (Fig. 7(a)). Similarly, the projected peak daily mortality was 1,829
attained on April 28, 2020, 1,505 attained on August 3, 2020, and 2,808 attained by December 8, 2020 (Fig.
7(b)). Further, with a 10% increase in education rate from the baseline value, Fig. 7(a) shows a projected 44,400
cumulative mortality by July 5, 2020, 105,300 by September 30, 2020, and 178,000 by December 8, 2020. This
result is approximately a 66.4% reduction in cumulative mortality by July 5, 2020, a 48.8% reduction in cumulative
mortality by September 30, 2020, a 37.6% reduction in cumulative mortality by December 8, 2020, when compared
to the baseline scenario. Figure 7(b) with a 10% increase in education rate from the baseline value, shows projected
617 peak mortality by April 20, 2020, 1,103 by July 31, 2020, and 2,359 by December 8, 2020. This result is
approximately a 66.3% reduction in peak daily mortality by April, 20, 2020, a 26.7% reduction in peak daily
mortality by July 31, 2020, a 16% reduction in peak daily mortality by December 8, 2020 when compared to the
baseline scenario. However, with a 40% increase in education rate from the baseline value, Fig. 7(a) shows a
projected 3,835 cumulative mortality by July 5, 2020, 44,410 by September 30, 2020, and 102,200 by December 8,
2020. This result is approximately a 97.1% reduction in cumulative mortality by July 5, 2020, a 78.4% reduction
in cumulative mortality by September 30, 2020, a 64.2% reduction in cumulative mortality by December 8, 2020,
when compared to the baseline scenario. Figure 7(b) with a 40% increase in education rate from the baseline value,
shows projected 58 peak mortality by April 7, 2020, 836 by July 24, 2020, and 1,268 by December 8, 2020. This
result is approximately a 96.8% reduction in peak daily mortality by April, 7, 2020, a 44.5% reduction in peak daily
mortality by July 24, 2020, a 54.8% reduction in peak daily mortality by December 8, 2020, when compared to the
baseline scenario. The result in Fig. 7 shows the need for an aggressive public health education program towards
the use of NPIs to curtail the spread of the virus. A summary of the impact of various increase in education rate on
cumulative mortality and peak daily mortality is tabulated in Table 5.

Figure 8 depicts the impact of the loss of willingness to public health measures on COVID-19 outbreak. The
result shows that with a 10% increase in fatigue rate from the baseline value, Figure 8(a) projected 144,100 cu-
mulative mortality by July 5, 2020, 228,800 by September 30, 2020, and 325,700 by December 8, 2020. This
result is approximately a 9.2% increase in cumulative deaths by July 5, 2020, a 11.3% increase in cumulative
deaths by September 30, 2020, and a 14.2% increase in cumulative deaths by December 8, 2020, when compared
to the baseline scenario. Figure 8(b) with a 10% increase in fatigue rate from the baseline value, shows projected
1,955 peak mortality by May 1, 2020, 1,657 by August 3, 2020, and 4,451 by December 8, 2020. This result is
approximately a 6.9% increase in peak daily mortality by May 1, 2020, a 10.1% increase in peak daily mortality
by August 3, 2020, a 58.5% increase in peak daily mortality by December 8, 2020, when compared to the baseline
scenario. However, with a 40% increase in fatigue rate from the baseline value, Figure 8(a) shows a projected
184,200 cumulative mortality by July 5, 2020, 313,200 by September 30, 2020, and 478,300 by December 8, 2020.
This result is approximately a 39.5% increase in cumulative deaths by July 5, 2020, a 52.3% increase in cumulative
deaths by September 30, 2020, and a 67.8% increase in cumulative deaths by December 8, 2020 when compared
to the baseline scenario. Figure 8(b) with a 40% increase in fatigue rate from the baseline value, shows projected
2,412 peak mortality by May 3, 2020, 2,513 by August 23, 2020, and 9,935 by December 8, 2020. This result is
approximately a 31.9% increase in peak daily mortality by April, 20, 2020, a 67% increase in peak daily mortality
by July 27, 2020, a 254% increase in peak daily mortality by December 8, 2020, when compared to the baseline
scenario. This result suggests the need to obey public health measures as ”loss of willingness” would positively
impact the outcome of the pandemic in terms of the cumulative and the daily mortality in the US. A summary of
the impact of the various increase in fatigue rate on cumulative mortality and peak daily mortality is tabulated in
Table 6.
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4 Discussion and Conclusions

In this study, we developed a mathematical model for the transmission dynamics and control of COVID-19 in the
US by stratifying the total population into two subgroups of willing and unwilling individuals to the use of face
masks, social-distancing in public, and proper/frequent hand washing. The model allows for the assessment of the
impact of public health education programs on the coronavirus outbreak in the US. The model was parameterized
using cumulative mortality data for the US from January 22, 2020, to December 8, 2020, to assess the population-
level impact of public health education programs on the outbreak. In particular, we showed that the disease-free
equilibrium of the model is locally-asymptotically stable whenever a certain epidemiological threshold, known as
the reproduction number (Rc) is less than one. The epidemiological implication of this result is that whenRc < 1,
a small COVID-infected individuals in the community will not lead to an outbreak.

We explored the sensitivity of the reproduction number with respect to public health education rate in the US
for three different periods of the outbreak. In particular, we showed that community transmission of COVID-19
could be significantly reduced with a very high education rate. In other words, our study shows that COVID-19
could have been effectively controlled if the public health education campaign has been intensified enough with
high efficacy (and sustained) from the beginning of the pandemic. Furthermore, we also explored the sensitivity
of the reproduction number with respect to willingness fatigue rate in the US for three different periods of the
outbreak. Since the reproduction numberRc depends on the values of the initial conditions (S∗

u and S∗
e ), our result

shows thatRc can be brought to a value less than one (needed to effectively control the disease) as more individuals
are being educated over time.

We also assessed the impact of public health education on the outbreak. Our simulation shows that the possibil-
ity of curtailing the spread of the virus (bringingRc < 1) in the US is dependent on a very high education rate with
high efficacy. The results obtained further showed the prospect of effective public health education programs in
reducing both the cumulative and daily mortality of the novel coronavirus in the US. In particular, a 10% increase
in education rate from the baseline value reduces the peak mortality by 66.3% by April 20, 2020, 26.7% by July
31, 2020, and 16% by December 8, 2020, when compared to the baseline scenario. However, a 40% increase in
education rate from the baseline value reduces the peak daily mortality by 96.8% by April 7, 2020, 44.5% by July
24, 2020, and 54.8% by December 8, 2020. This result is consistent with what was obtained in [3, 5, 8, 18], where
the universal use of face masks greatly curtailed community transmission of COVID-19 and brought the pandemic
under very effective control.

The Centers for Disease Control and Prevention (CDC) at the early stage of the pandemic recommended the
use of a face mask, social-distancing in public, and proper/frequent hand washing to curtail the spread of the novel
coronavirus caused by SARS-CoV-2 [3, 6, 28]. Many state governments issued executive order mandating a face
mask in public and restricting large gatherings of people. However, using a face mask and social-distancing in
public places appears to be politicized in the US [29]. In particular, states like Georgia and Iowa barred Mayors and
City Councils from introducing mask mandates, even as cases continues to rise in various counties in the state [30].
While many people strictly adhere to public health measures, others passionately ignore them. We ran simulations
to show the impact of ”loss of willingness” (fatigue rate) on both the cumulative and peak daily mortality. The result
indicates that non-compliance to public health measures would positively impact the outcome of the pandemic. In
particular, a 10% increase in fatigue rate from the baseline value increases the peak daily mortality by 6.9% by
May 1, 2020, 10.1% by August 3, 2020, and 58.5% by December 8, 2020, when compared to the baseline scenario.
However, a 40% increase in fatigue rate from the baseline value increases the peak daily mortality by 31.9% by
April 20, 2020, 67% by July 27, 2020, and 254% by December 8, 2020, when compared to the baseline scenario.
This result further supports the fact that states with less adherence to public health measures may experience more
coronavirus cases and daily mortality than places where there is strict adherence [3, 5, 8].
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Figure 5: Contour plot of the reproduction number (Rc) of the model (2.1), as a function of education rate (ψ) and
education efficacy (ω). (a) First period from January 22, 2020 to July 5, 2020. (b) Second period from July 6, 2020
to September 30, 2020. (c) Third period from October 1, 2020 to December 8, 2020. Parameter values are as given
in Tables 3 and 4.
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Figure 7: Simulation of the model (2.1), showing (a) cumulative mortality (b) daily deaths, as a function of time
for various public health education rates in the US from January 22, 2020 to December 8, 2020. Parameter values
are as given in Table 3.
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Figure 8: Simulation of the model (2.1), showing (a) cumulative mortality (b) daily deaths, as a function of time
for various fatigue rates in the US from January 22, 2020 to December 8, 2020. Parameter values are as given in
Table 3.
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Appendix A: Tables

A Tables of variable descriptions, parameter descriptions, and parameter values

Table 1: Description of the state variables of the model (2.1)

State variable Description
Su Population of unwilling susceptible individuals
Se Population of willing susceptible individuals
Eu Population of unwilling exposed individuals
Ee Population of willing exposed individuals
Ius Population of unwilling infectious individuals with severe clinical symptoms of COVID-19
Ies Population of willing infectious individuals with severe clinical symptoms of COVID-19
Au Population of unwilling asymptomatic-Infectious individuals
Ae Population of willing asymptomatic-Infectious individuals
Hu Population of unwilling hospitalized individuals
He Population of willing hospitalized individuals
Icu Population of individuals in ICU
R Population of recovered individuals

Table 2: Description of parameters of the model (2.1)

Parameter Description
β Effective contact rates for willing(unwilling) individuals
ω Efficacy of education in preventing COVID-19 infection (0 < ω ≤ 1)

ηAu(ηAe)(ηHu)(ηHe) Modification parameters (0 < ηAu(ηAe)(ηHu)(ηHe) < 1)
ψ Education rate for individuals in Su (Eu) (Ius) (Au)

ν Fatigue rate (loss of willingness to public health measures)
σu(σe) Progression rates from Eu(Ee) to Ius(Ies) or Ae(Ae) class
r(g) Proportion of individuals in Eu(Ee) class who show clinical symptoms of COVID-19

αus(αes) Hospitalization rates for unwilling(willing) infectious individuals
φhu(φhe) ICU admission rate for unwilling(willing) hospitalized individuals

γua(γea)(γus)(γes)(γh)(γcu) Recovery rates for individuals in the A(Is)(H)(Icu) class
δus(δes)(δh)(δcu) Disease-induced death rates for individuals in the Ius(Ies)(H)(Icu) class
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Table 3: Baseline parameter values for the model (2.1) drawn from the literature.

Fixed Parameter (k = u, e) Value Reference
σe, σu 1/2.5/day [31, 32]
r, g 0.35 [33, 34]
ηAk

1.5 Assumed
ηHk

0.25 Assumed
αus, αes 1/6/day [35]
φhu, φhe 0.083/day [36]
γua, γea 1/5/day [35]
γus, γes 1/10/day [18, 37]
γhu, γhe 1/8/day [18]
γcu 1/10/day [18, 37]
δks 0.015/day [3, 5, 18]
δhk 0.015/day [3, 5, 18]
δcu 0.0225/day [3, 5, 18]

Table 4: Estimated parameter values for the model (2.1) using COVID-19 mortality data for the US.

Estimated Parameters 1/22/2020–7/5/2020 7/6/2020–9/30/2020 10/1/2020–12/8/2020
β 0.8084 0.4369 0.2842
ψ 0.0279 0.0781 0.0249
ν 0.0011 0.0210 0.0461
ω 0.8982 0.8599 0.8896

2

Table 5: A summary of various increase in education rate

1/22/2020–7/5/2020 7/6/2020–8/30/2020 10/1/2020–12/8/2020
Education rate cum. mort. daily mort. cum. mort. daily mort. cum. mort. daily mort.

Baseline 132,000 1,829 205,600 1,505 285,100 2,808
10% increase in ψ 44,400 617 105,300 1,103 178,000 2,359
20% increase in ψ 17,210 248 69,160 962 136,200 1,867
30% increase in ψ 7,676 115 53,060 887 115,200 1,526
40% increase in ψ 3,835 58 44,410 836 102,200 1,268

Table 6: A summary of various increase in fatigue rate

1/22/2020–7/5/2020 7/6/2020–8/30/2020 10/1/2020–12/8/2020
Fatigue rate cum. mort. daily mort. cum. mort. daily mort. cum. mort. daily mort.

Baseline 132,000 1,829 205,600 1,505 285,100 2,808
10% increase in ν 144,100 1,955 228,800 1,657 325,700 4,451
20% increase in ν 157,400 2,094 253,200 1,860 370,300 5,953
30% increase in ν 169,100 2,247 280,600 2,139 420,400 7,771
40% increase in ν 184,200 2,412 313,200 2,513 478,300 9,935
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Appendix B: Reproduction Number

The model (2.1) has a disease-free equilibria (DFE) located within the hyperplane of disease free equilibria, given
by

D0 : (S∗
u, S

∗
e , E

∗
u, E

∗
e , I

∗
us, I

∗
es, A

∗
u, A

∗
e, H

∗
u, H

∗
e , I

∗
cu, R

∗) = (N(0)−(S∗
e+R

∗), S∗
e , 0, 0, 0, 0, 0, 0, 0, 0, 0, R

∗),

where N(0) is the initial total population size, S∗
e > 0, R∗ > 0, and 0 ≤ S∗

e + R∗ ≤ N(0) = N∗. The next
generation operator method [38, 39] can be used to analyse the asymptotic stability property of the disease-free
equilibria, D0. In particular, using the notation in [38], it follows that the associated next generation matrices, F
and V , for the new infection terms and the transition terms, are given, respectively, by
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0 0 Qβu
S∗
e

N∗ Qβe
S∗
e

N∗ QβuηAu

S∗
e

N∗ QβeηAe

S∗
e

N∗ QβuηHu

S∗
e

N∗ QβeηHe

S∗
e

N∗

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

and,

V =



K1 −ν 0 0 0 0 0 0
−ψ K2 0 0 0 0 0 0
−rσu 0 K3 −ν 0 0 0 0
0 −gσe −ψ K4 0 0

−(1− r)σu 0 0 0 K5 −ν 0 0
0 −(1− g)σe 0 0 −ψ K6 0 0
0 0 −αus 0 0 0 K7 0
0 0 0 −αes 0 0 0 K8


,

where Q = 1 − ω, K1 = σu + ψ, K2 = σe + ν, K3 = αus + γus + ψ + δus, and K4 = αes + γes + ν + δes,
K5 = γua + ψ, K6 = γea + ν, K7 = γhu + φhu + δhu, K8 = γhe + φhe + δhe. The control reproduction number
is given by

Rc = ρ(FV −1) =
(a11 + a22)

2
+

1

2

√
(a11 − a22)2 + 4 a21a12, (B-1)
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where,

a11 =
βS∗

u (gν ψ σe + rK2K4σu)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)
+

βS∗
uψ (gK3σe +K2σur)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)

+
βηAuS

∗
u [(1− g)ν ψ σe + (1− r)K2K6σu]

N∗ (ν ψ −K2K1) (ν ψ −K6K5)
+
βηAeS

∗
uψ [(1− g)σeK5 + (1− r)K2σu]

N∗ (ν ψ −K2K1) (ν ψ −K6K5)

+
βηHuS

∗
uαus (gν ψ σe + rK2K4σu)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)K7
+

βηHeS
∗
uαesψ (gK3σe +K2σur)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)K8

a12 =
βS∗

u (gK1σe + rK4σu) ν

N∗ (ν ψ −K3K4) (ν ψ −K2K1)
+

βS∗
u (gK1σeK3 + ψ rσuν)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)

+
βηAuS

∗
uν [(1− g)K1σe + (1− r)K6σu]

N∗ (ν ψ −K2K1) (ν ψ −K6K5)
+
βηAeS

∗
u [(1− g)K1σeK5 + (1− r)ψνσu]

N∗ (ν ψ −K2K1) (ν ψ −K6K5)

+
βηHuS

∗
uαusν (gK1σe + rK4σu)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)K7
+

βηHeS
∗
uαes (gK1σeK3 + ψ rσuν)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)K8

a21 =
(1− ω)βS∗

e (gν ψ σe + rK2K4σu)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)
+

(1− ω)βS∗
eψ (gK3σe +K2σur)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)

+
(1− ω)βηAuS

∗
e [(1− g)ν ψ σe + (1− r)K2K6σu]

N∗ (ν ψ −K2K1) (ν ψ −K6K5)
+

(1− ω)βηAeS
∗
eψ [(1− g)σeK5 + (1− r)K2σu]

N∗ (ν ψ −K2K1) (ν ψ −K6K5)

+
(1− ω)βηHuS

∗
eαus (gν ψ σe + rK2K4σu)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)K7
+

(1− ω)βηHeS
∗
eαesψ (gK3σe +K2σur)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)K8

a22 =
(1− ω)βS∗

e (gK1σe + rK4σu) ν

N∗ (ν ψ −K3K4) (ν ψ −K2K1)
+

(1− ω)βS∗
e (gK1σeK3 + ψ rσuν)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)

+
(1− ω)βηAuS

∗
eν [(1− g)K1σe + (1− r)K6σu]

N∗ (ν ψ −K2K1) (ν ψ −K6K5)
+

(1− ω)βeηAeS
∗
e [(1− g)K1σeK5 + (1− r)ψνσu]

N∗ (ν ψ −K2K1) (ν ψ −K6K5)

+
(1− ω)βuηHuS

∗
eαusν (gK1σe + rK4σu)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)K7
+

(1− ω)βηHeS
∗
eαes (gK1σeK3 + ψ rσuν)

N∗ (ν ψ −K3K4) (ν ψ −K2K1)K8

(B-2)
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