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Abstract 

Background 

Quantitative image analytics (“radiomics”) is a powerful tool for predicting and prognosing 

cancer patient outcomes in response to therapy. We hypothesize that radiomic features would be 

useful as inclusion/exclusion criteria for patient enrichment in clinical trials and aimed to 

develop the appropriate framework for this analysis. 

 

Methods 

This was tested among soft-tissue sarcoma (STS) patients accrued into a randomized clinical trial 

(SARC021) that evaluated the efficacy of evofosfamide (Evo), a hypoxia activated prodrug, in 

combination with doxorubicin (Dox). Notably, SARC021 failed to meet its survival objective. 

We tested whether a radiomic biomarker-driven inclusion/exclusion criterion could have been 

used to result in a significant treatment benefit of the Evo+Dox combination compared to the 

standard Dox monotherapy. A total of 166 radiomics features were extracted from 303 patients 

from the SARC021trial with lung metastases, divided into a training and test set. Univariable and 

multivariable models were utilized to discriminate OS in the two treatment groups.  

 

Findings 

A single radiomics feature, Short Run Emphasis, was the most informative. When combined 

with histological classification and smoking history, an enriched subset (42%) of patients had 

longer OS in Evo+Dox vs. Dox groups [p=0.01, Hazard Ratio (HR) =0.57 (0.36-0.90)]. 

Application of the same model and threshold value in an independent test set confirmed the 

significant survival difference (p=0.002, HR=0.29 (0.13-0.63)). This process also identifies 

patients most likely to benefit from doxorubicin alone. 

 

Interpretation 
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The study presents a first of its kind radiomic approach for patient enrichment in clinical trials. 

In particular, we have shown that had the radiomic model been used for selective patient 

inclusion into the SARC021 trial, it would have met its primary survival objective for patients 

with metastatic STS.  

 

 

Introduction 

In the last decade, there has been an explosion in the use of advanced image analysis with 

machine learning, known as “Radiomics” (1,2). Radiomic analyses of cancer can be used to 

stage, prognose patient outcome, predict response to specific therapies and, most recently, to 

inform therapeutic choices (3) with increasing connectivity between image features and tumor 

biology (4). We hypothesized that radiomic approaches can be used in clinical trials for patient 

enrichment. We tested this hypothesis in a retrospective analysis of data from the SARC021 

phase 3 clinical trial in metastatic soft tissue sarcoma that compared overall survival (OS) in 

cohorts treated with doxorubicin (Dox) to those treated with Dox + Evofosfamide (Evo), a 

hypoxia activated pro-drug (NCT01440088). Although Dox+Evo had shown promise for 

sarcoma control in a phase II study (5), the phase 3 trial failed to meet its threshold of increased 

survival in the Dox+Evo cohort (6).  

Soft tissue sarcomas are a heterogeneous group of malignancies originating in mesenchymal 

tissue that most often metastasize to the lungs (7). The a historical median OS of 12 months for 

metastatic soft tissue sarcoma patients has steadily improved to 20.4 months on trials may be 

attributed to better patient selection along with additional options in second line and beyond 

therapies (8-10). The shifting survival with Dox monotherapy complicated this particular study 

(11).  Biomarkers that can enrich and accrue a patient cohort that is unlikely to benefit from 

standard therapy will be useful to identify active agents in first line therapy. In this first of its 

kind study, we present a novel quantitative imaging framework that can identify patients most 

and least likely to benefit from trial enrollment. Such radiomics-based biomarkers could be used 

as companion diagnostics for treatment decision support of approved agents.  

Methods 

 

Patient populations 

This study was approved by the University of South Florida Institutional Review Board. The 

analysis includes patients who participated in the TH CR-406/SARC021 multicenter clinical trial 

of Doxorubicin plus Evofosfamide (Dox+Evo) versus Doxorubicin alone (Dox) in locally 

advanced, unresectable or metastatic soft-tissue sarcoma. Full trial protocol and results were 

published by Tap et al. (6). A total of 640 patients were enrolled. The primary endpoint of the 

trial was OS. CT images obtained prior to treatment were available for analysis in 588 patients.  

 

Patient data and CT images 

Patient covariates and CT image were obtained from the Sarcoma Alliance for Research through 

Collaboration (SARC). Patient data and CT images, obtained prior to treatment, was available 

for 588 patients.   The CT images were uploaded into HealthMyne Quantitative Imaging 

Decision Support (QIDS) software (https://www.healthmyne.com, Madison, WI), where a 

radiologist with 10 years (S.F.) identified and segmented all visible lesions. 346 patients were 

found to have at least one lesion in the lung, the most common metastatic site in the considered 

cohort (followed by liver lesions, identified in 106 patients), as anticipated (7). Only lung 
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patients were included in the study to enable comparison of image features between individuals, 

and hence the use of radiomics. Of these patients, 303 had contrast enhanced CT scans of the 

lung which could be analyzed, and these were used for quantification. This total cohort of 303 

patients used in this study was randomly divided 70:30 into training and test sets using the 

sample function in R version 4.0.2. 

 

Radiomic feature extraction 

The images were pre-processed as described in the Supplementary Methods. For each patient, a 

total of 166 features were calculated for each patient using standardized algorithms from the 

Image Biomarker Standardization Initiative (IBSI) v5 (12). The radiomic features included 

statistical, histogram, shape & size, Grey Level Cooccurrence Matrix (GLCM), Grey Level Run 

Length Matrix (GLRLM), Grey Level Size Zone Matrix (GLSZM) and Neighboring Grey Tone 

Difference Matrix (NGTDM) features, as well as 16 peritumoral features as described before 

(13). Laws and Wavelet features were not extracted due to their poor reproducibility (14). As 

standard in radiomic studies (15), to ensure the radiomic signatures provide additional 

information compared with tumor volume, the features strongly correlated to volume (Pearson 

|r|>0.8) were excluded from further analysis, while volume itself was included. Spatial stability 

of the features was assessed, and unstable features excluded. 100 features remained following the 

exclusion, as detailed in Supplementary Table 1.  

 

Feature Selection 

The goal of this analysis was to identify the radiomic features and patient covariates 

differentially associated with OS in the two treatment groups, which was the primary endpoint in 

the original trial (6). First, univariable Cox proportional hazards regression analysis was used to 

assess the degree and direction of statistical association of each feature and covariate with post-

treatment OS, separately in Dox and Dox+Evo arms. For each arm, features and covariates were 

considered promising in either of the two scenarios: (i) They showed association (p<0.05) with 

survival in one group AND no association (p>0.20) in the other group, or (ii) they showed 

significant association (p<0.05) with survival in both groups in opposite directions (HR >1 in 

one group and <1 in the other). Multiple comparison correction was not used, as the statistical 

significance assessment was carried out in the next step.  

Correlation between the remaining features was calculated (Pearson’s correlation coefficient for 

continuous and Chi Square independence test statistics for categorical variables). For 

significantly correlated (p<0.05) feature groups, feature with lowest univariable Cox regression p 

value in the corresponding treatment group was retained as a representative of the group, and 

others excluded to avoid redundant information. Of the remaining features and covariates, the 

one with lowest p-value ratio in the two treatment groups (low divided by high) was used in 

model training.  

 

Final model construction 

The two final sets of features and covariates predicted to be most informative of the differential 

response to Dox or Dox+Evo were used to build the corresponding separate multivariable Cox 

proportional hazards regression models. Risk scores that are log-transformed relative risks of 

death were calculated using the predict.coxph function in R for all patients in the model training 

cohort and used to determine threshold for patient virtual inclusion and exclusion from the trial. 

The process of determining the optimum risk score threshold is described in the results section. 
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Risk score values were predicted for all patients in the test cohort from the final multivariable 

Cox models constructed as above. The threshold values found to result in best separation of the 

treatment arms as found in the training set were applied to enrich the test cohort, and survival 

was compared between the treatment arms in the included subset of the test cohort using log-

rank test.  

For the Dox model, where patients with high risk score values were expected to perform poorly 

under Dox, and thus be more likely to favor Dox+Evo treatment, a search for the optimal 

threshold was performed iteratively including sub-cohorts of patients with risk score above 1st, 

2nd,3rd etc to 97th percentile of the total training cohort, evaluating survival difference between 

the treatment arms in terms of Cox regression p-value and hazard ratio each time. Thus, the 

entire range of possible thresholds was interrogated, to check if such selection can lead to 

significant treatment arm separation and identify an optimal threshold value. 
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Results 

Patients 

Clinical covariates included in the analysis are listed in Table 1. Description of the clinical 

features is included in Supplementary Table 2. Presence of lung metastasis was associated with 

significantly poorer overall survival in the entire cohort of 588 patients (p=0.048, HR=1.24 

(1.00-1.54)). This was not the case for patients with liver metastases, which was the second most 

common metastatic site (p=0.41). Among patients with lung metastases, no significant survival 

difference was observed between treatment groups (p=0.8), similarly to the entire cohort 

(p=0.45).  

No significant difference in OS was observed between the full training and test cohorts (p=0.40, 

median OS: 17.4 (15.2-20.6) vs. 20.4 (14.0-26.9) training vs test). No significant differences 

were also seen between Dox and Dox+Evo treatment groups in the training (p=0.67, HR=1.07 

(0.78-1.49) median OS: 18.3 (12.6-21.2) vs. 17.2 (15.2-22.1) months Dox vs. Dox+Evo) or test 

cohorts (p=0.30, HR=1.31 (0.46-1.23) median OS: 23.3 (16.5-31.8) vs. 14.9 (11.1-27.2) months 

Dox+Evo vs. Dox). 

 

Feature selection 

Results of univariable Cox proportional hazards regression, performed separately in the Dox and 

Dox+Evo treatment groups to identify those radiomic features and clinical covariates differently 

associated with OS, are shown in Table 2. Among clinical covariates, the histological 

classification of the primary tumor, tumor grade and prior radiotherapy were significantly 

associated with survival in the Dox and not in the Dox+Evo groups. Following elimination of 

correlated features, histology and prior radiotherapy remained, and histology was chosen to be 

included in the model due to lower p value ratio (0.015 vs. 0.029). There were no clinical 

features significantly related to survival in the Dox+Evo group. A history of smoking was 

significantly associated with shortened survival (p=0.04, HR=1.62 (1.01-2.61)) in the Dox group 

yet was insignificantly associated with longer survival in the Dox+Evo group (p=0.17, HR=0.73 

(0.46-1.15).  

No features were found to be significant in the Dox+Evo and not in the Dox group. Seven 

uncorrelated radiomic features were found significantly associated with survival in the Dox and 

not in the Dox+Evo group: Volume Density, Number of Connected 3D Components, Inverse 

Variance, Correlation, Short Run Emphasis, and Small Zone Emphasis. Of these features, Short 

Run Emphasis, a measure of heterogeneity, showed the lowest ratio of p value in the Dox to the 

p value in Dox+Evo groups, and was chosen for training a prediction model of post-treatment 

survival.  

 

Multivariable model 

The three features identified above (histology, non-smoking history, and radiomic Short Run 

Emphasis) were combined in a multivariable Cox model trained on the Dox cohort of the 

training data set, producing a highly significant signature (p=0.0001) of survival. Details of the 

model are shown in Supplementary Table 3. No corresponding model was developed in the 

Dox+Evo group, as no clinical or radiomic features specific to this treatment arm were identified. 

The Dox model was used to predict risk scores for the entire training set cohort, including the 

Dox+Evo group, providing a predicted measure of risk of death if the Dox treatment was applied 

to all patients. Because patients with highest risk scores for Dox monotherapy are expected to 

benefit the most from the alternative (Dox+Evo) treatment, they should be included in the trial. 
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On the other hand, patients with a low risk score should be excluded and undergo Dox 

monotherapy instead. Such patient enrichment strategy for the trial should result in an improved 

treatment benefit of Dox+Evo in the included patients. To assess this, we performed the log-rank 

test for difference in survival between Dox vs. Dox+Evo as a function of the risk score threshold 

for the remaining patients whose score was above that threshold. The schematic of the process is 

shown in Figure 1. As described in Methods, the threshold separating high- from low-risk 

groups was incrementally increased to identify an optimum that reached a significant difference 

in OS, while including the largest fraction of patients.  The results of this analysis are shown in 

Figure 2, demonstrating that increasingly different OS can be observed for the two treatment 

groups when patients with low-risk scores are excluded from the analysis (Figure 2A).The 

smaller p-values encountered with increasing thresholds were consistent with decreasing HR <1 

(Figure 2B), showing increasingly significant treatment benefit of Dox+Evo vs. Dox with more 

stringent inclusion criteria. A threshold of 1.00 allowed inclusion of 42% of the initial training 

cohort in the trial and showed a significant advantage of Dox+Evo over Dox [p=0.017, HR=0.57 

(0.36-0.90)]. This result was visualized in divergent Kaplan Meier curves for the treatment 

groups in the included patients and longer survival in the Dox+Evo group (Figure 2C, median 

survival 15.8 (14.2-21.4) vs 9.1 (7.6-13.7) months Dox+Evo vs Dox) and a reverse trend for the 

excluded patients (Figure 2D, median survival 20.9 (14.7-27.2) vs 27.0 (20.1-Not 

estimable(N.E)) Dox+Evo vs Dox, p=0.036), with Dox treated group showing significantly 

longer survival, compared to no difference in the whole training cohort (Figure 2E). These 

figures make apparent that the most significant difference (p<10-5) between included and 

excluded groups is their response to Dox monotherapy. Indeed, the difference in survival 

between included and excluded groups in the Dox+Evo trial arms was insignificant (p=0.48).  

A model using only clinical features as input was also trained and its performance evaluated as 

above, showing significant (p=0.0007) advantage in survival of the Dox+Evo vs. Dox, at and 

above a risk score threshold of 1.23 corresponding to a lower inclusion rate of 32% of initial 

training cohort (Supplementary Figure 1). Although the Short Run Emphasis feature by itself 

did not significantly discriminate (minimum p-value 0.097 including only patients with 

SRE<0.84, Supplementary Figure 2), it added to the significance of clinical features and thus 

increased the number of potential patients on trial from 32% to 42%.  

 

Model testing 

The multivariable Cox model trained in the above section was used to predict risk scores for all 

patients in the test cohort. Similar to the training cohort, an increase in minimum risk score 

threshold for inclusion lead to a monotonic decrease in p value (Figure 3A) and HR (Figure 3B) 

for the overall survival comparison between treatment groups. Applying the threshold of 1.00 

determined a priori in the training set as the optimum threshold for inclusion showed a 

significantly better survival in the Dox+Evo vs the Dox treated group [p=0.002, HR=0.29 (0.13-

0.63) Figure 3C].  As in the training cohort, this was associated with an increased median 

survival of 22.8 (12.3-N.E) for Dox+Evo vs. 6.3 (3.1-13.7) for Dox. As shown in Figure 3D the 

differences in the two treatment arms for the remaining excluded patients was insignificant for 

both OS (p=0.72) and median survival 26.0 (18.4-N.E) vs. 27.2 (18.6-N.E), similarly to the 

starting whole test cohort (Figure 3E). The threshold corresponded to inclusion of 38% of the 

initial test cohort. As in the training set (Figure 2C,D), the selection by risk score threshold 

separated patients who did and did not respond to Dox (p<10-4) , whereas it did not discriminate 

(p=0.54) responses of the Dox+Evo group. The plot of p value vs inclusion threshold (Figure 
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3A) shows a matching profile of improving treatment benefit of the Dox+Evo treatment (because 

of decreasing effectiveness of Dox) with increasing risk score, further supporting the model and 

the use of radiomics in patient selection.  

 

Radiomic model interpretation 

Given the complexity of the question, directly interpreting the imaging information in the model 

may be challenging. The analysis of p value vs. feature value threshold (as shown in Figures 3 

and 4 for risk scores) for the Short Run Emphasis (SRE) feature, shows that the treatment benefit 

of Dox+Evo is maximized if only patients with tumors of low SRE are included (minimum p= 

0.097, HR=0.62 (0.35-1.09) at SRE<0.845, Supplementary Figure 2). Taking the entire dataset 

into account, the p value at this threshold reaches p=0.01 signifying the relevance of this 

radiomic feature in patient selection. The multivariable model developed above also favors low 

SRE values, as shown in Figure 4A for both training and test cohorts. Comparing representative 

tumors with extreme SRE values reveals visual differences. In line with the model, a patient 

censored after over 2.5 years showed low SRE in the lung lesion (Figure 4B) at baseline; 

visually associated with regularity and homogeneity of the mass. Conversely, another patient 

deceased on Dox therapy less than 5 months after enrollment presented a lung lesion with high 

SRE and highly heterogeneous appearance (Figure 4C). While these show extremes, the value 

of using a quantitative SRE threshold is to identify those patients whose scans may be more 

equivocal.  

 

Discussion 

Herein, we identified a novel radiomic model, based on the combination of pre-treatment CT 

data and clinical information, that can be used as patient enrichment strategy for a clinical trial. 

This method predicts patients that would have relatively long OS with Dox monotherapy and 

thus can be excluded from trials with novel agents. In the SACRC021 trial this would have 

improved the relative effect evofosfamide. These results were successfully validated in the test 

set and, if applied, the phase 3 trial would have been successful.  

Patient selection for drug trials remains a challenge in clinical trial design. In this study radiomic 

methods (15) in combination with novel statistical analysis was used to provide and validate a 

patient inclusion framework based on widely available standard of care imaging data in a 

retrospective cohort. While radiomics methods have been used to predict patient survival 

following different treatments (16-19), and correlate to tumor hypoxia(20), this is the first study 

to derive the prognostic radiomic features and multivariable models required to discriminate 

between two therapeutic arms and determine the optimal population to most benefit from the 

novel Evo intervention. 

Notably, while there were a number of prognostic features associated with positive outcomes in 

both groups, there were no features were associated with survival in the Dox+Evo cohort 

independent of the Dox group. This suggests that the biological factors that govern Evo response 

may not be related sufficiently strongly to the information available from clinical and imaging 

data. Conversely, the strong predictive model of Dox response shows significant promise for 

potentially both clinical care and more optimal patient selection in future trials. The sarcoma 

community has long sought additional efficacious agents in metastatic soft tissue sarcomas with 

large trials dedicated to alkylators such as ifosfamide (21), and derivatives like palifosfamide 

(22) that have shown increased response rates but not overall survival benefit. Excluding patients 
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who are likely to have survival benefit to Dox monotherapy may increase the effect size and 

hence power of such trials. 

Notably, the failure of the SARC21 trial is at least in part due to a shifting OS for doxorubicin 

only that is likely multifactorial inclusive of better patient selection, understanding of histologies 

and patients most likely to benefit from systemic therapy and additionally available subsequent 

therapies (6,21,22). 

An observational trial in soft tissue sarcoma patients bearing lung metastases is planned at our 

institution to validate the model and understand its biological underpinnings (4), prospectively 

comparing the model-calculated risk score to overall survival. The prospective data can be used 

to support this radiomic biomarker as a companion diagnostic or integrated biomarker for patient 

selection.  

There exist some limitations to the presented study. As radiomic patterns and relationships with 

outcome are known to vary significantly between disease sites, the image quantification in this 

study was confined to the metastatic lesions in the lung. Lung metastases are both the most 

common site and leading cause of death in sarcoma (7). The advantage of this analysis is that 

there was not special radiologic protocol needed for image acquisition and indeed no planning 

for this radiomic analysis was considered in the trial design. The dataset was collected as part of 

the trial and the hypothesis and methods applied to this dataset. While the original lack of 

survival benefit of the novel treatment was conserved in this sub-cohort, in the future the 

analytical approach proposed should be extended to include other metastatic sites.  

In summary, in this work we demonstrate for the first time that machine learning can be used to 

predict differential survival to distinct treatment regimens. We show that radiomic analysis of CT 

imaging data can be used in combination with clinical information to develop a first of its kind 

model capable of identifying soft tissue sarcoma patients likely to benefit from novel 

combination of Doxorubicin+Evofosfamide vs. standard Doxorubicin. Application of the 

proposed model shows that should patient selection be performed a significant survival benefit 

could have been observed in an otherwise negative Phase 3 trial. Used prospectively, this 

approach may in the future improve the chance of determining efficacy of novel therapeutic 

regimens through better patient selection and guide therapeutic decisions for all metastatic STS 

through actionable, personalized, image-based, survival prediction. 
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Figure 1 Patient inclusion model. Patient selection into the trial based on Dox group survival 

was executed according to the following method: firstly (1) radiomic and clinical features 

associated in training cohort with survival in Dox but not Dox+Evo treatment group were 

included in a multivariable Cox regression model (2), trained on Dox treated patients. The risk 

score assigned by the model to each training set patient was then used as a biomarker for 

inclusion into analysis, iteratively calculating the p value and hazard ratio for survival 

comparison between treatment arms depending on minimum risk score threshold (3). If 

available, threshold corresponding to significant (p value<0.05) treatment benefit of Dox+Evo at 

highest percentage of patients included was chosen (4), and subsequently tested in the test cohort 

(5), with risk scores assigned by the multivariable Cox model developed in step (2). A 

corresponding model can also be developed based on Dox+Evo group survival, using a 

maximum risk score threshold. 
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Figure 2 Multivariable Cox model enables selection of patients who benefit from 

Evofosfamide+Doxorubicin in training cohort. Quantification of the p value of overall 

survival difference in the training cohort between the Evofosfamide+Doxorubicin (Dox+Evo) vs. 

Doxorubicin alone (Dox) treatment arms depending on the minimum risk score for patient 

inclusion, as predicted by the model (A), shows a risk score threshold of 1.00 at which 

Doxorubicin +Evofosfamide (Dox+Evo) group shows significantly longer OS (p<0.05). 

Exclusion of patients with high risk scores leads to monotonic decrease in the hazard ratio (B), 

and the 1.00 risk score threshold corresponds to inclusion of 42% of patients in the trial 

(indicated by red dotted line). The Kaplan-Meier plots by treatment arms show significantly 

better OS in the included (C) and significantly worse OS in the (D) excluded patients for the 

Dox+Evo treatment compared to Dox only. In all training set patients (E) no difference between 

the arms was observed. 
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Figure 3. Results in the test cohort confirm the validity of the model. Risk scores predictions 

in the test cohort based on a multivariable Cox model trained on Dox treated training cohort 

patients can be used to identify patients who would benefit from Dox+Evo treatment. Graph in 

(A) shows that increasing the minimum risk score of patients included in the analysis leads to a 

stronger difference in survival between the treatment groups, as described by the p value of the 

comparison. For the risk score threshold of 1.00, a highly significant difference is observed (red 

point and dotted line), which corresponds to a decreased hazard ratio of the combination vs 

standard therapy (B). These differences are apparent from the Kaplan-Meier curve in the 

included patients (C) showing significantly longer survival in the Dox+Evo group, while the 

excluded patients (D), or all test set patients (E) show no difference in survival between 

treatment groups. 
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Figure 4. Differences in radiomic features can be apparent visually. The model for selection 

of patients likely to benefit from Evofosfamide treatment favored low Short Run Emphasis 

(SRE) radiomic feature for proposed inclusion into the trial. As shown in the violin plot (A), 

significantly lower SRE is observed in the included vs. excluded patient groups both in training 

and test cohorts. Qualitatively, a representative tumor with low Short Run Emphasis (SRE, B) 

appears more regular and homogeneous in a contrast enhanced CT scan than a corresponding 

tumor with similar volume (15.0 vs 16.5ml respectively), and relatively high SRE (C), which 

shows higher intratumor heterogeneity. In the violin plot a solid line indicates median while 

dotted lines indicate 25th and 75th percentile. **** p<0.0001 
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Tables 

  Training cohort Test cohort 

  Dox+Evo 

(n=109) 

Dox 

(n=103) 

p value Dox+Evo 

(n=48) 
Dox (n=43) 

p value 

 Age (years) 60 (47–73) 55 (33–78) 0.06 60 (44-75) 57 (38-76) 0.82 

 Sex 1.00   1.00 
  Female 62 (57%) 59 (57%)  26 (54%) 24 (56%)  
  Male 47 (43%) 44 (43%)  22 (46%) 19 (44%)  

 Smoking history 0.82   0.40 
  Never smoker 62 (57%) 56 (54%)  26 (54%) 28 (65%)  

  Ever smoker  47 (43%) 47 (46%)  22 (46%) 15 (35%)  

 
Primary Tumor 

Site 
  

0.82   0.21 

  Extremity 35 (32%) 40 (39%)  17 (35%) 20 (47%)  

  Head/Neck 7 (6%) 5 (5%)  0 3 (7%)  

  Retroperitoneum 17 (16%) 19 (18%)  9 (19%) 4 (9%)  

  Visceral 21 (19%) 12 (12%)  9 (19%) 7 (16%)  

  Other 29 (27%) 27 (26%)  13 (27%) 9 (21%)  

 
Metastatic sites 

number 
2 (1–3) 2 (1–3) 0.46 2 (2–3) 2 (1–3.5) 0.66 

 Stage   0.22   0.43 

  0 4 (4%) 0  1 (2%) 0  

  Stage I 3 (3%) 6 (6%)  2 (4%) 2 (5%)  

   Stage II 26 (24%) 21 (20%)  10 (21%) 16 (37%)  

  Stage III 45 (41%) 41 (40%)  16 (33%) 12 (28%)  

  Stage IV 31 (28%) 35 (34%)  19 (40%) 13 (30%)  

 Histology   0.78   0.44 

  Epitheloid 1 (1%) 3 (3%)  0 0  

  Leiomyosarcoma 47 (43%) 41 (40%)  26 (54%) 17 (40%)  

  Liposarcoma 7 (6%) 6 (6%)  0 1 (2%)  

` 

 Malignant 

peripheral nerve 

sheath tumor 

4 (4%) 4 (4%) 

 

1 (2%) 4 (9%) 

 

  Myxofibrosarcoma 3 (3%) 4 (4%)  2 (4%) 3 (7%)  

 
 Pleomorphic 

rhabdomyosarcoma 
0 2 (2%) 

 
0 1 (2%) 

 

 

 Pleomorphic 

sarcoma/Malignant 

fibrous histicytoma 

17 (16%) 13 (13%) 

 

9 (19%) 7 (16%) 

 

  Other 30 (28%) 30 (29%)  10 (21%) 10 (23%)  
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  Training cohort Test cohort 

  Dox+Evo 

(n=109) 

Dox 

(n=103) 

p value Dox+Evo 

(n=48) 
Dox (n=43) 

p value 

 Histology Grade   0.40   0.44 

  Low 3 (3%) 3 (3%)  2 (4%) 2 (5%)  

  Intermediate 33 (30%) 32 (31%)  20 (42%) 15 (35%)  

  Intermediate/High 1 (1%) 2 (2%)  1 (2%) 3 (7%)  

  High 69 (63%) 61 (59%)  22 (46%) 20 (47%)  

  Unknown 3 (3%) 5 (5%)  3 (6%) 3 (7%)  

 ECOG score   0.50   0.83 

  0 61 (56%) 61 (59%)  30 (63%) 25 (58%)  

  1 48 (44%) 41 (40%)  18 (38%) 18 (42%)  

  2 0 1 (1%)  0 0  

 Prior radiotherapy   0.64   0.05 

  Yes 50 (46%) 43 (42%)  15 (31%) 23 (53%)  

  No 59 (54%) 60 (58%)  33 (69%) 20 (47%)  

 
Prior systemic 

therapy 
  

0.78   0.39 

  Yes 7 (6%) 11 (11%)  4 (8%) 2 (5%)  

  No 102 (94%) 92 (89%)  44 (92%) 41 (95%)  

 

Table 1. Breakdown of patient characteristics. Numbers are presented for each treatment 

group in training and test cohort. Data are median (IQR) or n (%). P value by Wilcoxon test (for 

age) or Chi squared test (all other variables) 
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Table 2. Association with survival in radiomic features and clinical covariates by treatment 

arm. Univariable Cox regression model was applied separately in the Doxorubicin + 

Evofosfamide (Dox+Evo) and Doxorubicin only (Dox) treatment arms to calculate the p value 

(‘p Evo’ and ‘p Dox’ respectively) and hazard ratio (‘HR Evo’ and ‘HR Dox’) for the 

relationship of each feature and covariate with overall survival. P values below 0.05 are 

highlighted in red, while these above 0.20 are highlighted in green. Table also available as .xls. 

  

Clinical covariate name p Evo HR Evo HR Evo 95% CI p Dox HR Dox HR Dox 95% CI Radiomic feature name p Evo HR Evo HR Evo 95% CI p Dox HR Dox HR Dox 95% CI

Age 0.416 0.993 (0.976-1.01) 0.822 0.998 (0.983-1.014) F73.Area_density_minimum_volume_enclosing_ellipsoid 0.801 1.430 (0.0868-23.7) 0.431 2.270 (0.296-17.4)

Sex 0.349 1.237 (0.793-1.929) 0.314 1.276 (0.794-2.049) F74.Volume_density_convex_hull 0.988 0.980 (0.0661-14.5) 0.041 0.148 (0.0238-0.928)

Histology 0.380 0.006 F75.Area_density_convex_hull 0.757 1.940 (0.029-130) 0.077 5.530 (0.831-36.8)

  Leiomyosarcoma 0.192 (0.025-1.46) 0.822 (0.192-3.511) F76.Number_of_connected_3D_components 0.336 0.557 (0.169-1.84) 0.031 1.210 (1.02-1.44)

  Liposarcoma 0.179 (0.02-1.587) 0.840 (0.14-5.038) F77.Asymmetry 0.610 0.488 (0.031-7.69) 0.537 0.426 (0.0286-6.37)

  Malignant peripheral nerve sheath tumor 0.258 (0.028-2.397) 7.058 (1.273-39.141) F78.Eccentricity 0.535 0.589 (0.111-3.13) 0.497 0.573 (0.115-2.86)

  Myxofibrosarcoma 0.055 (0.003-0.917) 0.762 (0.106-5.494) F79.Orientation 0.855 1.020 (0.81-1.29) 0.297 1.150 (0.882-1.51)

  Pleomorphic rhabdomyosarcoma 0.992 (0.09-10.958) F80.CoM_x_.pxl. 0.719 1.000 (0.999-1) 0.365 1.000 (0.999-1)

  Pleomorphic sarcoma/Malignant fibrous histocytoma 0.125 (0.015-1.017) 2.315 (0.511-10.489) F81.CoM_y_.pxl. 0.304 0.999 (0.997-1) 0.741 1.000 (0.998-1)

  Other 0.205 (0.027-1.579) 1.491 (0.351-6.33) F82.CoM_z_.pxl. 0.246 1.000 (1-1) 0.349 1.000 (1-1)

Smoking History 0.172 0.729 (0.464-1.148) 1.625 (1.011-2.612) F84.CoM_y_.mm. 0.304 0.999 (0.997-1) 0.741 1.000 (0.998-1)

Primary Tum Site 0.573 0.569 F85.CoM_z_.mm. 0.246 1.000 (1-1) 0.349 1.000 (1-1)

  Head/neck 1.172 (0.484-2.837) 1.300 (0.456-3.705) F86.Weighted_CoM_x_.mm. 0.698 1.000 (0.998-1) 0.403 1.000 (0.999-1)

  Retroperitoneum 0.777 (0.387-1.56) 0.505 (0.195-1.302) F87.Weighted_CoM_y_.mm. 0.335 0.999 (0.997-1) 0.889 1.000 (0.998-1)

  Visceral 0.905 (0.497-1.649) 0.856 (0.445-1.646) F88.Weighted_CoM_z_.mm. 0.245 1.000 (1-1) 0.355 1.000 (1-1)

  Other 0.636 (0.349-1.161) 0.771 (0.425-1.399) F92.avgCoocurrence_Joint_MAX 0.032 11.200 (1.24-102) 0.011 22.400 (2.03-248)

Tumor Grade 0.443 0.026 F95.avgCoocurrence_Joint_entropy 0.370 0.933 (0.801-1.09) 0.037 0.822 (0.684-0.988)

  Intermediate Grade 0.992 (0.607-1.622) 0.554 (0.312-0.982) F96.avgCoocurrence_Difference_average 0.071 0.886 (0.776-1.01) 0.005 0.767 (0.638-0.922)

  Intermediate/High 4.368 (0.585-32.594) 3.840 (0.914-16.125) F98.avgCoocurrence_Difference_entropy 0.288 0.850 (0.63-1.15) 0.001 0.539 (0.37-0.786)

  Low Grade 1.549 (0.479-5.002) 1.268 (0.392-4.1) F102.avgCoocurrence_Angular_second_moment 0.157 29.100 (0.272-3120) 0.017 409.000 (2.89-57900)

  Unknown 1.994 (0.615-6.464) 2.039 (0.728-5.709) F104.avgCoocurrence_Dissimilarity 0.071 0.886 (0.776-1.01) 0.005 0.767 (0.638-0.922)

Stage 0.024 0.003 F105.avgCoocurrence_Inverse_difference 0.116 2.970 (0.765-11.5) 0.001 15.600 (2.99-81.2)

  Stage I 0.544 (0.09-3.272) F106.avgCoocurrence_Inverse_difference_normalized 0.046 1130.000 (1.14-1120000) 0.007 2.53E+04 (16.1-39700000)

  Stage II 0.651 (0.189-2.238) 0.592 (0.21-1.666) F107.avgCoocurrence_Inverse_difference_moment 0.131 2.450 (0.765-7.84) 0.001 10.700 (2.61-43.9)

  Stage III 0.616 (0.187-2.031) 0.486 (0.183-1.288) F109.avgCoocurrence_Inverse_variance 0.396 3.230 (0.216-48.2) 0.004 165.000 (4.9-5580)

  Stage IV 1.408 (0.426-4.651) 1.331 (0.512-3.461) F110.avgCoocurrence_Correlation 0.328 2.110 (0.473-9.42) 0.048 4.970 (1.02-24.4)

Metastatic Sites # 0.0600 1.135 (0.996-1.294) 0.020 1.154 (0.964-1.38) F115.avgCoocurrence_First_measure_of_information_correlation 0.589 1.790 (0.217-14.7) 0.364 2.900 (0.291-28.9)

ECOG score 0.004 1.919911 (1.234-2.987) 0.003 2.003 (1.262-3.178) F116.avgCoocurrence_Second_measure_of_information_correlation 0.790 0.717 (0.0619-8.31) 0.140 0.124 (0.00772-1.98)

Prior radiotherapy 0.820 1.052591 (0.676-1.639) 0.024 0.565 (0.345-0.927) F117.avg_3D_SRE_.Short_runs_emphasis. 0.324 0.372 (0.0519-2.66) 0.001 0.015 (0.00125-0.167)

Prior systemic therapy 0.527 0.722203 (0.263-1.98) 0.815 1.092 (0.521-2.288) F118.avg_3D_LRE_.Long_runs_emphasis. 0.220 1.050 (0.972-1.13) 0.047 1.090 (1-1.18)

Radiomic feature name p Evo HR Evo HR Evo 95% CI p Dox HR Dox HR Dox 95% CI F123.avg_3D_LRLGE_.Long_run_low_grey_level_emphasis. 0.172 0.096 (0.0033-2.77) 0.121 13.200 (0.508-341)

F1.Statistical_Mean 0.290 1.000 (0.999-1) 0.178 1.000 (1-1) F124.avg_3D_LRHGE_.Long_run_high_grey_level_emphasis. 0.003 1.000 (1-1) 0.175 1.000 (1-1)

F4.Statistical_SKEW 0.011 0.668 (0.489-0.913) 0.032 0.698 (0.503-0.969) F126.avg_3D_GLN_normalize_.Grey_level_non_uniformity_normalised. 0.867 1.430 (0.0214-96.1) 0.007 536.000 (5.64-50900)

F5.Statistical_Kurtosis 0.033 1.110 (1.01-1.22) 0.009 1.130 (1.03-1.25) F128.avg_3D_RLN_normalize_.Run_length_non_uniformity_normalised. 0.202 0.448 (0.13-1.54) 0.001 0.074 (0.0162-0.339)

F6.Statistical_Median 0.177 1.000 (1-1) 0.180 1.000 (1-1) F129.avg_3D_RP_.Run_percentage. 0.102 0.322 (0.0827-1.25) 0.001 0.075 (0.0158-0.36)

F9.Statistical_90th_percentile 0.853 1.000 (0.998-1) 0.554 1.000 (0.999-1) F131.avg_3D_RLV_.Run_length_variance. 0.100 1.120 (0.979-1.28) 0.105 1.120 (0.977-1.28)

F10.Statistical_Maximum_grey_level 0.557 1.000 (0.999-1) 0.655 1.000 (0.999-1) F133.GLSZM_Small_zone_emphasis 0.601 0.533 (0.0503-5.65) 0.009 0.026 (0.00161-0.409)

F19.Statistical_Root_mean_square 0.211 0.999 (0.997-1) 0.124 0.999 (0.997-1) F134.GLSZM_Large_zone_emphasis 0.380 1.000 (1-1) 0.076 1.000 (1-1)

F22.Intensity_histogram_skewness 0.010 0.659 (0.48-0.905) 0.036 0.701 (0.503-0.976) F135.GLSZM_Low_grey_level_zone_emphasis 0.698 0.426 (0.00571-31.7) 0.085 87.500 (0.539-14200)

F23.Intensity_histogram_kurtosis 0.022 1.130 (1.02-1.25) 0.010 1.140 (1.03-1.25) F139.GLSZM_Large_zone_low_grey_level_emphasis 0.303 1.000 (1-1) 0.135 1.000 (1-1)

F35.Intensity_histogram_coefficient_of_variance 0.053 0.078 (0.00593-1.03) 0.027 0.031 (0.00148-0.669) F140.GLSZM_Large_zone_high_grey_level_emphasis 0.106 1.000 (1-1) 0.303 1.000 (1-1)

F36.Intensity_histogram_quartile_coefficient_of_dispersion 0.017 0.079 (0.00997-0.632) 0.009 0.041 (0.00367-0.452) F141.GLSZM_Grey_level_non_uniformity 0.003 1.000 (1-1) 0.000 1.000 (1-1.01)

F37.Intensity_histogram.entropy 0.327 0.877 (0.676-1.14) 0.013 0.662 (0.477-0.917) F143.GLSZM_Zone_size_non_uniformity 0.002 1.000 (1-1) 0.006 1.000 (1-1)

F38.Intensity_histogram_uniformity 0.243 5.360 (0.319-89.8) 0.007 63.600 (3.05-1330) F144.GLSZM_Zone_size_non_uniformity_normalised 0.457 0.451 (0.0556-3.66) 0.010 0.023 (0.00125-0.405)

F44.Volume_at_intensity_fraction_90 0.860 1.180 (0.194-7.14) 0.540 1.860 (0.255-13.6) F145.GLSZM_Zone_percentage 0.125 0.363 (0.0996-1.32) 0.003 0.086 (0.0169-0.433)

F45.Intensity_at_volume_fraction_10 0.588 0.999 (0.997-1) 0.335 0.999 (0.997-1) F147.GLSZM_Zone_size_variance 0.711 1.000 (1-1) 0.076 1.000 (1-1)

F46.Intensity_at_volume_fraction_90 0.053 1.000 (1-1) 0.084 1.000 (1-1) F148.GLSZM_Zone_size_entropy 0.105 1.420 (0.93-2.16) 0.066 1.440 (0.976-2.13)

F47.Volume_at_intensity_fraction_difference 0.907 1.120 (0.175-7.12) 0.595 0.579 (0.077-4.35) F151.NGTDM_Busyness 0.739 0.999 (0.99-1.01) 0.021 1.020 (1-1.04)

F48.Intensity_at_volume_fraction_difference 0.089 0.999 (0.997-1) 0.032 0.998 (0.996-1) F153.NGTDM_Strength 0.126 0.966 (0.923-1.01) 0.029 0.935 (0.88-0.993)

F50.Volume_.mm.3. 0.150 1.000 (1-1) 0.005 1.000 (1-1) radial.deviation.tumor.mean 0.139 1.010 (0.995-1.03) 0.204 1.010 (0.997-1.02)

F53.Surface_to_volume_ratio_.mm.2. 0.090 0.530 (0.254-1.11) 0.015 0.398 (0.189-0.837) radial.deviation.tumor.SD 0.024 1.010 (0.994-1.04) 0.174 1.020 (1-1.04)

F54.Compactness_1 0.905 18.700 (2.93e-20-1.2e+22) 0.187 0.000 (8.29e-26-78500) radial.gradient.tumor.mean 0.096 0.997 (0.995-1) 0.052 0.998 (0.996-1)

F55.Compactness_2 0.929 0.913 (0.125-6.65) 0.285 0.385 (0.0669-2.22) radial.gradient.tumor.SD 0.894 0.997 (0.992-1) 0.133 1.000 (0.997-1)

F56.Spherical_disproportion 0.564 0.631 (0.132-3.02) 0.080 1.790 (0.933-3.41) radial.deviation.tumor.mean..2D. 0.041 1.010 (0.999-1.02) 0.076 1.010 (1-1.02)

F57.Sphericity 0.837 1.410 (0.0551-35.9) 0.158 0.215 (0.0253-1.82) radial.deviation.tumor.SD..2D. 0.014 1.010 (0.995-1.03) 0.147 1.020 (1-1.04)

F58.Asphericity 0.564 0.631 (0.132-3.02) 0.080 1.790 (0.933-3.41) radial.gradient.tumor.mean..2D. 0.086 0.997 (0.995-1) 0.032 0.998 (0.997-1)

F64.Elongation 0.535 1.700 (0.32-9) 0.497 1.750 (0.35-8.72) radial.gradient.tumor.SD..2D. 0.890 0.997 (0.993-1) 0.101 1.000 (0.997-1)

F65.Flatness 0.251 2.640 (0.503-13.9) 0.219 2.900 (0.531-15.8) radial.deviation.border.mean 0.878 0.996 (0.979-1.01) 0.632 1.000 (0.987-1.02)

F66.Volume_density_axis.aligned_bounding_box 0.778 1.410 (0.127-15.7) 0.941 0.913 (0.0817-10.2) radial.deviation.border.SD 0.391 1.010 (0.984-1.03) 0.492 1.010 (0.988-1.03)

F67.Area_density_axis_aligned_bounding_box 0.939 1.150 (0.0326-40.5) 0.075 7.800 (0.814-74.7) radial.gradient.border.mean 0.609 0.999 (0.996-1) 0.254 0.999 (0.997-1)

F68.Volume_density_oriented_bounding_box 0.754 1.480 (0.126-17.4) 0.986 0.978 (0.0867-11) radial.gradient.border.SD 0.905 0.997 (0.993-1) 0.185 1.000 (0.996-1)

F69.Area_density_oriented_bounding_box 0.891 1.290 (0.0339-49) 0.064 8.320 (0.882-78.5) radial.deviation.border.mean..2D. 0.529 1.000 (0.987-1.02) 0.827 1.000 (0.991-1.02)

F70.Volume_density_approximate_enclosing_ellipsoid 0.203 5.180 (0.411-65.3) 0.550 0.634 (0.142-2.83) radial.deviation.border.SD..2D. 0.363 1.010 (0.992-1.03) 0.221 1.010 (0.99-1.03)

F71.Area_density_approximate_enclosing_ellipsoid 0.468 1.800 (0.37-8.73) 0.083 2.260 (0.898-5.71) radial.gradient.border.mean..2D. 0.578 0.998 (0.996-1) 0.177 0.999 (0.997-1)

F72.Volume_density_minimum_volume_enclosing_ellipsoid 0.917 0.914 (0.166-5.01) 0.185 0.263 (0.0367-1.89) radial.gradient.border.SD..2D. 0.845 0.998 (0.994-1) 0.286 1.000 (0.996-1)
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