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Católica de Chile, Chile

dSchool of Government, Pontificia Universidad Católica de Chile, Chile
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Abstract

The infectiousness and presymptomatic transmission of SARS-CoV-2 hinder pandemic con-
trol efforts worldwide. Therefore, the frequency of testing, accessibility, and immediate results
are critical for reopening societies until an effective vaccine becomes available for a substantial
proportion of the population. The loss of sense of smell is among the earliest, most discriminant,
and prevalent symptoms of COVID-19, with 75-98% prevalence when clinical olfactory tests
are used. Frequent screening for olfactory dysfunction could substantially reduce viral spread.
However, olfactory dysfunction is generally self-reported, which is problematic as partial ol-
factory impairment is broadly unrecognized. To address this limitation, we developed a rapid
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psychophysical olfactory test (KOR) deployed on a web platform for automated reporting and
traceability based on a low-cost (about USD 0.50/test), six-odor olfactory identification kit.
Based on test results, we defined an anosmia score –a classifier for olfactory impairment–, and
a Bayesian Network (BN) model that incorporates other symptoms for detecting COVID-19.
We trained and validated the BN model on two samples: suspected COVID-19 cases in five
healthcare centers (n = 926; 32% COVID-19 prevalence) and healthy (asymptomatic) mining
workers (n = 1, 365; 1.1% COVID-19 prevalence). All participants had COVID-19 assessment
by RT-PCR assay. Using the BN model, we predicted COVID-19 status with 76% accuracy
(AUC=0.79 [0.75−0.82]) in the healthcare sample and 84% accuracy (AUC=0.71 [0.63−0.79])
among miners. The KOR test and BN model enabled the detection of COVID-19 cases that
otherwise appeared asymptomatic. Our results confirmed that olfactory dysfunction is the
most discriminant symptom to predict COVID-19 status when based on olfactory function
measurements. Overall, this work highlights the potential for low-cost, frequent, accessible,
routine testing for COVID-19 surveillance to aid society’s reopening.

Keywords: screening, COVID-19 symptoms, anosmia, asymptomatic, Bayesian network model

The COVID-19 pandemic has imposed an enormous toll, with more than 85 million cases and 1.9
million deaths globally as of January 2021 [1]. Despite recent effective COVID-19 vaccine approvals
[2, 3, 4], epidemic containment will critically depend on non-pharmaceutical interventions (e.g.,
lockdowns, gathering restrictions) until a substantial proportion of the population is vaccinated
[5, 6, 7]. These society-wide non-pharmaceutical strategies are socially and economically costly
[8, 9]. As countries reopen and lift restrictions, there is a high risk of a resurgence of the epidemic
[10, 11, 12]. More focused interventions are becoming essential to control viral transmission while
reducing social and economic impact [13, 14, 15]. Controlling these transmission hotspots and
effectively breaking the chain of viral transmission requires complementing non-pharmaceutical
interventions with robust surveillance [16, 17].

Two characteristics of SARS-CoV-2, the virus that causes COVID-19, makes frequent screening,
rapid diagnosis, and early isolation of infected individuals critical. First, the virus spreads efficiently,
with an average number of secondary cases caused by an infected individual of about 2.5 [18, 19].
Second, a substantial proportion of onward transmission occurs before symptoms are apparent
[20, 21, 22]. The viral load is the major spreading factor. It remains low during incubation time and
reaches a peak slightly before symptoms onset [20]. This peak in infectiousness is followed by a rapid
decline within about a week [20]. These two characteristics hinder epidemic control efforts because
detection and isolation of infectious individuals are challenging. So far, COVID-19 surveillance has
been mainly based on reverse transcription-polymerase chain reaction (RT-PCR) assays, considered
the gold standard for diagnosis [23, 24]. Yet, RT-PCR assays are expensive and turnaround time,
about 24 − 48 hours or longer, make them impractical as a surveillance tool to curb community
transmission. Modeling studies have shown that effective COVID-19 surveillance should prioritize
the frequency of testing, accessibility, and immediate results [16, 25, 26]. Infectious individuals
might then be able to isolate and stop onward transmission promptly.This could be achieved, for
example, using antigen tests which can have a turnaround time as low as 15 minutes and may
cost about USD5-50 per test, or using mass screening for specific high-prevalence symptoms of
SARS-CoV-2 infection, such as olfactory dysfunction [27].

Another critical aspect of a robust surveillance is having a clear characterization of the clinical
presentation of COVID-19. Clinical signs and symptoms related to COVID-19 are mostly nonspe-
cific and include cough, fever, shortness of breath, dyspnea, myalgia, and fatigue [28, 29, 30, 31].
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Initially overlooked, the sudden loss of smell has emerged as one of the earliest and most prevalent
symptoms of COVID-19 [32, 33, 34, 35, 36, 37, 38, 39]. The mechanisms that explain the loss of
smell probably relate to an inflammatory response of support and vascular cells that could affect
odor conduction by obstructing the olfactory clefts [40] or modifying olfactory sensory or olfactory
bulb neurons’ function [41]. The function of olfactory sensory or olfactory bulb neurons could also
be altered by damage to support cells[42] or vascular damage [43]. Recent studies have identified
molecular factors involved in the sudden loss of smell [44]. SARS-CoV-2 uses the angiotensin-
converting enzyme 2 (ACE2) and protease TMPRSS2 receptors to invade host cells [41]. Both
proteins are expressed in various cell types and are particularly abundant in the nose, throat, upper
bronchial airways, and alveolar epithelial type II cells. Protein expression in the nose has only
been determined in supporting cells and stem cells in the olfactory epithelium, but not in olfactory
neuronal receptors directly responsible for smell [40, 45]. These results suggest inflammation of cells
in the olfactory epithelium leads to early loss and disturbance of the sense of smell in COVID-19
patients. Long-term symptoms could also be related to more extensive neural injury or virus per-
sistence in the olfactory bulb [46, 47, 48]. However, olfactory dysfunction is seldom self-recognized
and reported except by patients with the most severe smell disorders [49, 50, 51]. Therefore, self-
reported partial (hyposmia) and total (anosmia) olfactory impairment associated with COVID-19
infection may be unreliable and shows substantial variation [38, 52, 53, 54, 55, 56]. In contrast,
the prevalence of olfactory impairment in COVID-19 patients is high (75-98%) based on clinical
psychophysical tests [57, 58, 59, 60, 61].

We have developed a model-based COVID-19 screening framework using a Bayes network symp-
tom model and a low-cost olfactory function test (KOR, Kit Olfativo Rápido) for frequent and
immediate prediction of COVID-19 status. To support mass testing, we have deployed a secure
web platform to store and track participants’ health state with automated reports. We present vali-
dation results of the Bayesian network model incorporating KOR test measurements on a sample of
suspect COVID-19 patients (n = 926, 32% prevalence of SARS-CoV-2 infection) and asymptomatic
healthy mining workers (n = 1365, 1.1% prevalence of infection). All participants had SARS-CoV-2
infection confirmation by RT-PCR assays. The KOR test and the results gathered in the platform
can provide critical support for routine mass screening of COVID-19 symptoms for a safer and
gradual reopening of society.

Results

KOR test and data

The KOR test is a standardized six-odor, forced multiple-choice identification test. Briefly, each
participant is presented with six familiar odors, such as orange or vanilla, in a random sequence,
one at a time. After the recognition of an odor, the individual is asked to select the term that best
describes it from four options in a tablet or mobile phone (Figure 1A). Details of the KOR test
design as well as the application protocol can be found in the corresponding Methods sections. After
each identification, the selected choice is stored and used for model training using RT-PCR results
as indicators of COVID-19 status. Figure 1B shows the proportion of individuals who recognized
aromas, by RT-PCR status. 79−93% of participants with a negative RT-PCR recognized all aromas
and 56− 74% of participants with a positive RT-PCR recognized all aromas.

We used two samples for the analysis. First, we gathered data from 926 patients with suspected
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Figure 1: Implementation of the KOR test. (A) The KOR test consists of presenting individuals
with six familiar odors, such as orange or vanilla, in a disposable piece of paper. Odors are presented
in a random sequence. For each trial, we asked individuals to select in a tablet or mobile phone the
term that best describes the odor from four options presented. If the individual does not recognize
the odor, he/she selects ”I do not recognize the odor”. The test implementation takes less than three
minutes per participant. (B) Proportion of individuals from the UC-Christus Sample (n = 936)
with a positive or negative result from the RT-PCR assay who perceived each aroma: Banana,
Caramel, Mint, Orange, Pineapple and Vanilla.

COVID-19 infection or close contact with a laboratory-confirmed case in five medical centers in
Santiago, Chile (UC-Christus). Our second sample consisted of 1, 365 healthy asymptomatic par-
ticipants from a large mining operation in Chile, all of which underwent an exhaustive epidemio-
logical and clinical screening before the KOR test. Participants in this sample were excluded from
the study if they had any COVID-19 related symptom (cough, fever, shortness of breath, dyspnea,
myalgia, and fatigue) or had been in contact with a lab-confirmed COVID-19 case in the past week.
All participants in the “UC-Christus” and “miners” sample underwent an RT-PCR test following
the KOR test. We considered all RT-PCR positive results as lab-confirmed COVID-19 [23, 24].
Descriptive statistics of the training sample, COVID-19 symptoms prevalence and RT-PCR status
can be found in Supplementary Table S1.

Anosmia score and classifier training

We developed an anosmia score based on the odors each participant was able to identify (see
Methods). A higher score means a better sense of smell. Figure 2 compares anosmia score by
RT-PCR status (Fig. 2A) and by self-reported anosmia (Fig. 2B), for all participants in the UC-
Christus sample. Healthy individuals (RT-PCR negative) had a higher anosmia score than COVID-
19 cases (Fig. 2A), and also showed higher anosmia scores than participants who reported normal
sense of smell (Fig. 2B). The latter result suggests that some anosmic participants were not aware
of their olfactory dysfunction, consistent with previous studies [56]. Participants with COVID-19
(RT-PCR positive) also showed a higher anosmia score than self-reported anosmic participants,
suggesting there are normosmic participants among COVID-19 cases as reported elsewhere [39, 38].
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Figure 2: Anosmia score among participants. (A) Anosmia score distribution by RT-PCR status,
and (B) by self-reported anosmia. Results include all UC-Christus participants (n = 926). (C) Re-
sults from applying a Gaussian mixture classifier to identify individuals with olfactory dysfunction.

Based on the anosmia scores we developed a Gaussian mixture classifier to identify individuals
with olfactory impairment. This classifier is composed of two Gaussian distributions: one describes
the anosmia scores of individuals with olfactory impairment, and the other represents the anosmia
scores of individuals with a normal sense of smell.

A large proportion of COVID-19 cases develop some olfactory dysfunction [57, 58, 59, 62, 60, 61].
We estimated the distribution of the anosmia scores for the truly anosmic participants based on
the scores obtained from self-reported anosmic participants (mean = −1.81; std = 2.1). Similarly,
we estimated the distribution of the anosmia scores for the non-anosmic participants based on the
score of the participants with negative RT-PCR ignoring outliers from the left tail (mean = 1.22;
std = 0.97). We used these two distributions to build a Gaussian mixture classifier to identify
individuals with olfactory dysfunction (refer to Methods). The results from the anosmia classifier
are summarized in Figure 2C.

Olfactory function measurement improves COVID-19 prediction by Bayesian
network model in symptomatic population

We constructed a Bayesian network model (Figure 3A illustrates the model structure) to esti-
mate whether a participant had COVID-19 (P). The model included self-reported cold (F) as a
confounder, seven COVID-19 symptoms (cough, fever, muscular pain, breathing difficulty, self-
reported anosmia, ageusia, and anosmia score), five indicator variables (sI1 recognized more than
four odors; sI4 reported more than one symptom among cough, fever, breathing difficulty and
muscular pain and sI1; sDays had 2-3 days with symptoms; sI7 had headache, diarrhea, or chest
pain and recognized four or less odors; sI8 had ageusia, stomach pain, or fatigue, and sI1), and
gender. The contribution of each variable to the probability of having COVID-19 can be found in
Supplementary Figs. S1-S2. For more details about the construction of the Bayesian network, the
reader is referred to the corresponding subsection in Methods.

We evaluated the performance of our model based on the UC-Christus dataset (n = 926, 32%
positive RT-PCR). A 10-fold cross-validation was performed in order to have a robust estimator of
the errors in the identification of positive and negative COVID-19 individuals. Figure 3B displays
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Figure 3: Training of the Bayesian network model for COVID-19 prediction. (A) Structure of the
model. P represents the result of the RT-PCR assay, and F represents self-reported cold. The
six different odors are represented with the variables: oB (Banana), oC (Caramel), oM (Mint),
oO (Orange), oPi (Pineapple), oV (Vanilla). The six different symptoms are represented by: sCo
(cough) , sFe (fever), sMusPain (muscular pain), sBreDif (breathing difficulty), sAn (self-reported
anosmia) and sAg (self-reported ageusia). Five indicator variables are represented by: sI1, sI4,
sI7, sI8, sDays. dGender represents the gender of the individual. All variables are dichotomous.
(B) Average Receiver Operating Characteristic (ROC) curve, as estimated through cross-validation
(K=10), for predicting a COVID-19 case using the full model (black line), only the KOR test (red
line), and single self-reported symptoms. (C) Mean and 95% confidence intervals for the AUC of the
ROC curves shown in (B). These analysis were performed using the UC-Christus sample (N=926)

the average receiver operating characteristic (ROC) curve of the full model in black. To assess the
contribution to the model of the objective measurements of olfactory impairment, we estimated
the model with all variables except the ones that include information from the KOR test. Figure
3B shows the ROC curve of this model in red. The complete model displayed an area under the
curve (AUC) of 0.785 with 95% confidence interval [0.754;0.816] and 76% accuracy, whereas the
partially complete model yielded an AUC of 0.733 with 95% confidence interval [0.696;0.768] and
72% accuracy. The difference in the AUC is significant at an 87% level.

We further looked at the subset of individuals from the UC-Christus sample with no reported
symptoms (n = 288) to assess model performance based solely on the anosmia score and measure-
ments obtained from the KOR test. From this subset, 39 individuals had an RT-PCR positive, of
which 9 had a predicted probability above 0.5 for being infected. All recognized three or less odors
among a total of six, except for one that recognized four odors. The two odors not recognized were
mint and orange. The remaining 30 individuals with a positive RT-PCR recognized at least four
odors, and were not captured by the model at the infection probability threshold of 0.5. From the
249 individuals with a negative RT-PCR, 13 obtained a probability of being infected above 0.5, 11
of them recognized three or fewer odors and 2 recognized four, with mint among the non-recognized.
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Figure 4: Anosmia prevalence in the healthy workers cohort. (A) Anosmia score density in the
asymptomatic sample from the mining company (black line). The red and green lines correspond
to the distribution for anosmic and non-anosmic individuals, respectively, as estimated in the UC-
Christus data. (B) Comparison of self-reported anosmia and measured anosmia in the asymptomatic
miners cohort. An individual was predicted to have olfactory dysfunction (anosmia) if the infection
probability given its anosmia score was greater than 0.5.

Anosmia score predicts COVID-19 status with higher fidelity than self-
report in asymptomatic cases

We further applied the KOR test to 1, 365 workers from a mining company that had not been
previously infected and did not present any symptoms, such as fever, cough, and muscular pain.
These workers were also tested with RT-PCR. Among all the workers, only 15 had a positive RT-
PCR, of which the BN model identified 6. These six individuals identified less than four odors
from the KOR test. The remaining nine individuals identified five out of the six odors (n = 4) or
identified the six odors (n = 5). Overall, the model had 84% accuracy and an AUC of 0.712 with
a 95% confidence interval [0.6302;0.7942].

As the main predictor of COVID-19 status in asymptomatic individuals is their olfactory func-
tion, we compared the anosmia score of this sample and the probability of having olfactory dys-
function using the anosmia classifier trained with the UC-Christus dataset. The latter showed
great agreement between the anosmia negative individuals and the miners cohort as observed by
the overlapping between both densities (Figure 4A), confirming its suitability for describing the
olfactory function of the general population. Finally, we compared the anosmia classifier results
against the anosmia self-report of a sub-sample from the miners cohort (n = 825). There are 52
individuals likely of having olfactory dysfunction as determined by their anosmia score and the
corresponding infection probability (> 0.5). This corresponds to 6.3% of the total sample. Of
those, only 8 (approx. 1%) individuals self-reported an olfactory dysfunction. Roughly, 85% of
individuals with olfactory impairment were not aware of their loss of the sense of smell (Figure
4B). This result confirms that olfactory impairment is typically underestimated or not perceived
by healthy individuals [56], rendering the self-report of a “healthy olfactory function” unreliable.
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Discussion

We report a novel model for predicting the COVID-19 status of individuals based on self-reported
symptoms (subjective measures) and the degree of olfactory dysfunction (anosmia score) as deter-
mined from psychophysical odor recognition trials from a rapid smelling test (Fig. 1). This anosmia
score overcomes the known limitations of olfactory dysfunction self-report, i.e., usually underesti-
mation of olfactory dysfunction severity (Fig. 2B), and furthermore, it substantially increases the
predictive power of the model (Fig. 3B-C). We found that the full model incorporating this index
yielded COVID-19 status predictions with high fidelity (AUC 0.785), which worsened when this
index was left out (AUC 0.733). In the case of asymptomatic individuals (miners data), where
the only measurement is obtained from the KOR test, the model was able to identify 100% of the
individuals with olfactory impairment. Among the 15 individuals that were RT-PCR positive, six
of them recognized less than four odors, the remaining 9 recognized at least five out of the six
different odors. We obtained a similar performance on the asymptomatic participants from the
UC-Christus sample. The model recognized all individuals with RT-PCR positive who identified
less than four odors and one individual who identified four odors. For the model to recognize an
individual infected that identified four odors, mint has to be among the unrecognized odors.

As opposed to conventional olfactory function tests, the KOR test does not place the same
weight on all the odors for the determination of the olfactory function state. A clear example
is mint. Mint has two features that are especially attractive in a smell test. First, mint has a
very distinctive smell and is rarely confused with other odors. Second, mint is a familiar smell to
most people. In the KOR test, mint was correctly recognized by a majority of participants with
a negative RT-PCR (93%). Hence, mint has a larger contribution to the model. If mint is not
recognized there is a higher probability that the participant is infected (Fig. 1B). It is possible that
some of the proposed odors may not be readily recognized across different sociocultural settings,
despite being used and validated in international medical studies [63]. Cross-cultural validity would
be, nevertheless, straightforward to address by piloting the test and by choosing odors which satisfy
the two features mentioned above before implementation.

The fact that the KOR test is rapid, painless, low-cost (about USD 0.50/test), and simple enables
mass screening of COVID-19 in the population. There is substantial evidence that a great portion of
infected individuals are asymptomatic [29, 64]. For example, the notorious Diamond Princess cruise
ship had an asymptomatic COVID-19 infection prevalence of 30.8% in an adult population, and
The American Academy of Pediatrics currently reports that about 4% of children are asymptomatic
and 51% have only mild symptoms [65]. Rational allocation of scarce diagnostic resources to
test asymptomatic individuals is crucial, particularly in low- and middle-income countries. It can
substantially mitigate disease transmission as patients with no apparent symptoms are less likely
to follow public health guidelines than symptomatic patients [65]. Several studies have stressed
the importance of frequent, mass testing, with a short sample-to-answer reporting time to limit
viral transmission in this epidemic [16, 17, 25, 26]. Furthermore, modeling suggests that frequent
screening for olfactory dysfunction could substantially reduce viral spread at a comparatively low
cost [27]. However, despite the expectation that an olfactory test would be cost-effective [27],
some settings with limited resources may not necessarily afford it financially. Until a substantial
proportion of the population is vaccinated, frequent, accessible, routine screening for COVID-19 is
critical to isolate infectious individuals and effectively break the chain of viral transmission. The
KOR test, or any other psychophysical test to assess olfactory dysfunction would allow developing
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better sampling strategies that maximize the identification of high-probability COVID-19 cases
with more sensitive tests (e.g., RT-PCR), among individuals with no apparent symptoms.

Our analyses are based on a sample of individuals from medical centers with probable COVID-19
and a sample of asymptomatic workers in a large mining operation. Neither sample is representative
of the broader population. Nevertheless, the over-representation of positive cases in the UC-Christus
data enabled us to estimate the relationship between symptoms and disease using a moderate sample
size. The under-representation of positive cases in the miners data, challenged the model to capture
infected individuals with just KOR test measurements. The Bayesian network model has moderate
accuracy and relatively low sensitivity. Diagnosis for symptomatic patients in a clinical setting
usually requires high accuracy and sensitivity, as it defines a patient’s treatment. In contrast, given
the transmission dynamics of SARS-CoV-2, rapid results and frequency of testing are much more
critical for effective surveillance with the potential of controlling viral transmission [16, 17, 25, 26].
However, it is possible that false positives would be put under quarantine unnecessarily, at least
until they can access a more sensitive test such as an RT-PCR. From an epidemiological standpoint,
this outcome is preferable to having community transmission, especially for a gradual reopening
of society. Perhaps more worryingly, using a psychophysical smell test for mass screening would
probably result in several false negatives and result in the onward transmission of SARS-CoV-2.
However, in a counterfactual scenario without mass screening, those individuals would not be tested
and still transmit the virus. The test may potentially lead to higher spreading if individuals without
olfactory dysfunction but active infection felt falsely reassured. Therefore, the potential use of this
test requires adequate risk communication and is not intended to replace other non-pharmaceutical
strategies for the control and prevention of viral transmission, such as social distancing, frequent
hand-washing, and wearing face masks. Last, it is also possible that our test would fail to recognize
some patients with olfactory dysfunction. While they do not serve the same purpose, we also
compared our test with standard RT-PCR results. Despite limited evidence, several studies have
raised concerns about possible false-negative RT-PCR tests in patients with COVID-19 [66, 67, 68].
The evidence suggests that negative results, even with a relatively low probability of exposure,
cannot rule out SARS-COV-2 infection [69]. Some of the cases we classified as false-positives due
to negative RT-PCR results could have been true COVID-19 cases. This also underscores the
importance of frequent testing for COVID-19 [16, 17, 27].

Research among COVID-19 patients suggests that olfactory dysfunction, self-reported and based
on a psychophysical test, was significantly more prevalent in mild compared to moderate-to-critical
disease [46, 58]. The mechanisms that explain this observed difference are still unclear, but they
could potentially be related to differences in patients’ immunological response by disease severity
[46]. Olfactory loss may appear before other symptoms [70, 59] and seems to be more prevalent in
mild compared to moderate-to-critical disease [47], which reinforces the potential of psychophysical
smell test for early detection of COVID-19. An important extension of our study would be test-
ing whether olfactory dysfunction allows distinguishing SARS-CoV-2 infections in patients with a
negative RT-PCR test, which may be particularly problematic, for example, among healthcare and
other essential workers (e.g., police). This could be addressed using serology, for example, testing
individuals before the olfactory test and three weeks later.

Our model incorporated self-reported cold to capture the fact that several symptoms are shared
between COVID-19 and cold. Nevertheless, several other diseases and conditions share symptoms
with COVID-19, including smoking, allergies, and rhinitis, which we could have been considered
in the model. However, capturing more complexity in the Bayesian network model requires an

9



exponentially larger dataset, which rapidly becomes prohibitively expensive. We limited model
complexity to make parameter estimation reliable. The model assumes that symptoms are in-
dependent given the status of cold and COVID-19 (infected/not infected). This independence
assumption may not be satisfied, but we prioritized a simpler model that can capture the general
tendency, given sample size constraints.

Until an effective vaccine for COVID-19 becomes available for a large proportion of the popu-
lation, strategies to control the epidemic are mostly limited to non-pharmaceutical interventions.
These interventions are socially and economically costly, and therefore, more focused interventions
are increasingly important. Frequent screening, rapid diagnosis, and effective isolation of SARS-
CoV-2 infections are critical. However, costs and time make currently available options impractical
as a surveillance tool, particularly for low- and middle-income countries. We have presented a stan-
dardized, model-based, low-cost olfactory psychophysical test for the rapid screening of COVID-19.
The test is painless and easy to implement and has a web-based secure platform for managing
patient data. To this date, over 190,000 tests have been performed in the platform (refer to KOR
web platform), which highlights the potential for systematic assessment of olfactory impairment in
the general population. In a sample of participants with no apparent symptoms, the model cap-
tures individuals with loss of smell and a positive RT-PCR. Our results highlight the potential of
using olfactory function assessments as a low-cost, frequent, accessible, painless, routine testing for
COVID-19 surveillance for a safer reopening of society, including industry, universities, and other
organizations.

Methods

COVID-19 RT-PCR test

Individuals were tested following the World Health Organization guidelines for real-time reverse-
transcriptase PCR testing using validated diagnostics reported elsewhere [71].

KOR test design

The KOR test is a rapid, six-odor, forced multiple-choice identification test. While previous rapid
tests have shown to be reasonably effective for detecting total loss of olfactory function (i.e., anos-
mia) through the identification of only three odors [72], they are ineffective for the identification of
partial olfactory function loss. As there is good evidence of COVID-19 cases suffering from partial
olfactory impairment [58], we increased the number of odors in the test (6) to improve its sensitivity
for detecting olfactory function loss. The proposed six odors were based on previous odor recogni-
tion reports [72] and clinical olfactory studies for infants in several countries including Chile [63].
To minimize recognition bias, candidate odors were evaluated and validated in a pilot trial. Only
odors with a high recognition level of at least 85% (Supplementary Fig. S3) were selected. The
sample of the pilot study consisted of 79% and 21% healthy men and women, respectively, with ages
between 18 and 65 years of age in a sample of 2289 volunteers. Selected odors showed no significant
differences in their recognition between men and women at 5% significance level (two-sided t-test,
critical p-value = 0.21), displayed a high recognition level in all cases (> 85% one-sided t-test,
minimum critical p-value = 0.41), and showed no significant differences in the average recognition
level for individuals between 18 and 60 years at 5% significance level (ANOVA, critical p-value =
0.10). Details of the pilot study sample can be found in Supplementary Table S2.
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KOR test application protocol

The KOR test is a standardized, six-odor, forced multiple-choice identification test, which is man-
aged through an online platform, hosted in www.testkor.com. The test is carried out as follows:
a paper strip is impregnated with a drop (0.03 mL) one of the aromatic solutions, as indicated
by the platform, and presented to the participant to be smelled. The individual must identify the
corresponding odour among 4 options, shown in the platform. Before evaluating the next odour,
the subject is asked to neutralize eventual remaining fragrance in the nasal cavity by smelling his
own body odor (wrist or forearm). All 6 aromas, i.e. banana, caramel, mint, orange, pineap-
ple and vanilla, were evaluated in a random sequence, as determined by the platform, one at
a time, with an inter stimulus interval of 15 seconds. The aromas were supplied by Alfa Group
(https://alfagroup.cl/), a Chilean company specialized in providing food ingredients. The com-
pany´s safety procedures are certified for HACCP and FSSC22000. All raw materials were FEMA /
GRAS. Each aroma is contained in a 30 ml amber, glass dropper. Supplementary Table S3 indicates
the composition and concentration of main odorants of the six solutions. The reader is referred to
the Supplementary Text S1 for more details on the application protocol.

Model training dataset: COVID-19 suspects cohort from healthcare sys-
tem

The first sample of participants was obtained from five medical centers that are part of the UC-
Christus healthcare network in Santiago. The sample consisted of 926 individuals, 48% women
and 52% men, with an average of 37 ± 13 years of age. These individuals had either symptoms
compatible with SARS-CoV-2 infection, and/or were in close contact with confirmed cases. The
individuals undergone both the olfactory KOR test and the SARS-CoV-2 real-time RT-PCR tests.
COVID-19 prevalence was 32% in this sample. Individuals who reported base olfactory dysfunction
as a consequence of previous trauma and/or acute/chronic health issues (e.g., chronic sinusitis,
allergic rhinitis, among others) were not considered in this study. Before the application of the test,
participants declared their COVID-19-related symptoms (fever, cough, muscular pain, breathing
difficulty), demography (age, gender), prevailing diseases (allergy, cold, diabetes, hypertension,
Parkinson, rhinitis and Alzheimer), and whether they were smokers. Other self-reported symptoms
or conditions such as anosmia/hyposmia, ageusia, headache, diarrhea, fatigue, chest pain, and
stomach pain, were also registered (refer to previous subsection).

Model validation dataset: Workers cohort from mining company

For model validation under more realistic conditions, a sample of 1365 individuals was collected
from a mining company in Antofagasta, Chile. Individuals that satisfy criteria i) and ii) (below)
were simultaneously tested for their olfactory function status and SARS-CoV-2 real-time RT-PCR
at a sanitary checkpoint. Inclusion criteria were: i) the person had not have a positive RT-PCR for
COVID-19, and ii) at the moment of the test, the person did not have fever or any other apparent
COVID-19 symptom. Only asymptomatic individuals were included in the sample. The prevalence
of COVID-19 was 1.1% in this sample. Participants (825) also reported at the time of the screening
if they recently suffered from olfactory impairment.
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Bayes network model

To predict an individual’s COVID-19 status, we built a model that considers an RT-PCR positive
result as a COVID-19 case (Y1), and incorporates cold (Y2) as a possible confounder variable, seven
symptoms (cough (X7), fever (X8), muscular pain (X9), breathing difficulty (X10), self-reported
anosmia (X14), ageusia (X15) and the anosmia score), five indicator variables (X11, X12, X13, X16, X17)
and gender (X18). To compute the anosmia score, we tested the identification of six odours: banana
(X1), caramel (X2), mint (X3), orange (X4), pineapple (X5) and vanilla (X6). The five indicator
variables were defined in the following way: X11 measures whether the individual recognized more
than four odours or not (this score yielded the best COVID-19 prediction performance when the
odors have equal weight, see Supplementary Fig. S5); X12 indicates whether the individual suffers
from more than one symptom among cough, fever, muscular pain, breathing difficulty, headache,
diarrhea and fatigue, and satisfies X11 = 1; X13 measures whether the individuals had 2-3 days with
symptoms (this variable represents the days where the RT-PCR is most effective); X16 measures
whether the individuals had X11 = 0 and one or more symptoms among headache, diarrhea and
chest pain; and X17 measures whether the individual satisfies X11 = 1 and one or more symptoms
among ageusia, stomach pain and fatigue. These indicator variables aim to identify group of symp-
toms that by occurring together increase the effect on the model. The structure of the model is
depicted in Figure 3A. Note that the structure of the model assumes that all the X variables are
conditionally independent given Y1 and Y2 and all X variables are colliders. The joint probability
distribution of all variables is given by:

Pr(Y1, Y2, X1, . . . , X18) = Pr(Y1, Y2)

18∏
i=1

Pr(Xi|Y1, Y2) (1)

and we are interested in calculating the probability of positive RT-PCR given the other variables,
i.e.

Pr(Y1 = 1|Y2, X1, . . . , X18) (2)

where all variables are dichotomous Bernoulli distributed. We assume a Binomial distribution for
the joint probability of RT-PCR and self-reported cold.

Pr(Y1, Y2) ∼ Bin(n = 1, θ1, θ2, θ3, θ4) (3)

Pr(Xi|Y1, Y2) ∼ Bern(θi,k) i=1,...,18; k=1,...,4 (4)

Here k denotes the four different outcomes that the joint variables Y1, Y2 can take. Note that
there are a total of 75 parameters that need to be estimated. θk represents the probability of
belonging to group k for the variables Y1, Y2. θi,k represents the probability that an individual
is positive for the condition/disease/variable i given that she/he is in group k for the variables
Y1, Y2. We trained this model using a dataset of 926 individuals. In order to gain some degrees of
freedom, and because we observed a clear tendency between the symptoms and the outcome of the
variables Y1 and Y2 as shown in Supplementary Fig. S2, we set the following linear constrain on
the parameters,

θi,k ∼ αi + βiRik i=1,...,18; k=1,...,4 (5)
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reducing the number of parameters to be estimated to 36. We either plug-in equations (3) and (4),
or (3) and (5) into (1) to obtain via maximum likelihood the estimators of the parameters. The
variables Rik are known and set to fit the tendency of the parameters as shown in Supplementary
Fig. S4.

Finally, for a new individual with variables X1 = x1, . . . , X18 = x18 we compute:

m3 = s3
s0

=
Pr(Y1 = 1, Y2 = 1|X1 = x1, . . . , X18 = x18)

Pr(Y1 = 0, Y2 = 0|X1 = x1, . . . , X18 = x18)

m2 = s2
s0

=
Pr(Y1 = 1, Y2 = 0|X1 = x1, . . . , X18 = x18)

Pr(Y1 = 0, Y2 = 0|X1 = x1, . . . , X18 = x18)

m1 = s1
s0

=
Pr(Y1 = 0, Y2 = 1|X1 = x1, . . . , X18 = x18)

Pr(Y1 = 0, Y2 = 0|X1 = x1, . . . , X18 = x18)

From these three equations we can obtain the probabilities s0, s1, s2, s3. If Y2 = 1 then

Pr(Y1 = 1|Y2 = 1, X1 = x1, . . . , X18 = x18) =
s3

s1 + s3
,

when Y2 = 0 then

Pr(Y1 = 1|Y2 = 0, X1 = x1, . . . , X18 = x18) =
s2

s0 + s2
.

Anosmia score and classifier

For an individual with outcomes from the KOR test given by (x1, x2, x3, x4, x5, x6) where xi can
take the value 1 if the individual identify odour i or 0 if the individual did not identify the odour
i, its anosmia score is calculated in the following way.

• For individuals with the cold:

anosmiaScore =

6∑
i=1

xi log(
θi1
θi3

) + (1− xi) log(
1− θi1
1− θi3

)

• For individuals without the cold:

anosmiaScore =

6∑
i=1

xi log(
θi0
θi2

) + (1− xi) log(
1− θi0
1− θi2

)

The distribution of the anosmia score, say y, is assumed to be a Gaussian mixture of two distribution:

f(y;π, µ1, σ
2
1 , µ2, σ

2
2) = πf(y;µ1, σ

2
1) + (1− π)f(y;µ2, σ

2
2)

where f(y;µ, σ2) denotes a Gaussian distribution with mean µ and variance σ2, the parameters
µ1, σ

2
1 represent the parameters of the distribution for the anosmia score for individuals suffering

from olfactory dysfunction, and the parameters µ2, σ
2
2 represent the parameters of the distribution

for the anosmia score for individuals that do not suffer from olfactory dysfunction. The estimators
for these parameters were obtained from the UC-Christus data: µ̂1 = −1.81, σ̂2

1 = 4.41, µ̂2 = 1.22
and σ̂2

1 = 0.94.
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KOR web platform

The KOR test web platform was designed to enable a rapid administration of the test. We devel-
oped a data model to store test information efficiently, paying attention to how often data about
organizations, members, and screening tests are updated. The platform’s data access layer (back-
end) was developed in Django (open-source framework), while its user interface (front-end) was
developed in the JavaScript library ReactJS (open-source). High scalability and security concerns
are handled by the deployment of the platform in Amazon Elastic Compute Cloud. General statis-
tics on platform use, such as total tests, tests per day, and average time per test, can be found at
http://metabase.imfd.cl/public/dashboard/2801acac-8414-43be-871d-dad441026d3a

Data availability

The required data to reproduce the results of this study have been deposited in Mendeley Data and
can be freely downloaded at http://dx.doi.org/10.17632/z4ktvcwfp6.2
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