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 34 

Abstract 35 

Treatment of tuberculosis involves use of standardized weight-based doses of antibiotics, but 36 

there remains a substantial incidence of toxicities, inadequate treatment response, and relapse, in 37 

part due to variable drug levels achieved. Single nucleotide polymorphisms (SNPs) in the N-38 

acetyltransferase-2 (NAT2) gene explain 88% of interindividual pharmacokinetic variability of 39 

isoniazid, one of the two most important antitubercular antibiotics. A major obstacle to 40 

implementing pharmacogenomic guided dosing is the lack of a point-of-care assay. We trained 41 

an acetylation genotype classification model from a global dataset of 5,738 genomes, which 42 

achieved 100% accuracy in out-of-sample prediction on unphased SNPs from 2,823 samples 43 

using 5 SNPs. On a clinical dataset of 49 patients with tuberculosis, we found that a 5 SNP assay 44 

accurately predicted acetylation ratios and isoniazid clearance. We then developed a cartridge-45 

based molecular assay for the 5 SNPs on the GeneXpert platform, which enabled accurate 46 

classification of allele patterns directly from as little as 25 ul of whole blood. An automated 47 

pharmacogenomic assay on a platform widely used globally for tuberculosis diagnosis could 48 

enable improved dosing of isoniazid, averting toxicities and improving treatment outcomes. 49 

  50 
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INTRODUCTION 51 

Despite the availability of effective chemotherapeutic regimens for treatment and prevention of 52 

tuberculosis, a substantial proportion of patients experience toxicities, fail treatment or develop 53 

recurrent disease1-3. Standardized, weight-based dosing of anti-tuberculosis treatment has been 54 

the conventional approach to therapy, despite mounting evidence that inter-individual variability 55 

in metabolism leads to highly variable drug levels4,5. High drug levels are strongly associated 56 

with risk of toxicity, while low drug levels are a determinant of treatment failure, slow response, 57 

and emergence of drug resistance. Hepatotoxicity is the most common adverse effect, affecting 58 

up to 33% of patients receiving standard four-drug therapy6 and leading to regimen changes in 59 

up to 10% of patients7. This toxicity is associated with increased costs, morbidity, and occasional 60 

mortality, particularly among HIV co-infected individuals8. Additionally, as many as 3% of new 61 

tuberculosis cases experience treatment failure, and between 6-10% relapse within 2 years9,10 62 

Pharmacokinetic variability to a single drug is associated with treatment failure and acquired 63 

drug resistance11,12. One recent study found that individuals with at least one drug below the 64 

recommended AUC threshold had a 14-fold increased risk of poor outcomes.13 65 

There has been an increasing number of genetic markers identified that predict metabolism and 66 

toxicities from various antimicrobials. Isoniazid (INH) is among the most well characterized of 67 

these, with 88% of its pharmacokinetic variability explained by mutations in the gene encoding 68 

arylamine N-acetyltransferase 2 (NAT2), responsible for acetylation in the liver14. Individuals 69 

can be classified into three phenotypes—rapid, intermediate, and slow acetylators—according to 70 

whether they carry polymorphisms on neither, one, or both copies of this gene, respectively. 71 

Rapid acetylators typically have the lowest plasma INH concentrations, while slow acetylators 72 
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have high concentrations. A worldwide population survey on NAT2 acetylation phenotype 73 

reported that more than half of the global population are slow or rapid acetylators15. Numerous 74 

studies have investigated the relationship between acetylation genotype or phenotype and clinical 75 

outcomes of tuberculosis treatment. A recent meta-analysis found that rapid acetylators are twice 76 

as likely to have microbiological failure and acquired drug resistance16. Additional meta-analyses 77 

have identified a three- to four-fold increased risk of hepatotoxicity among slow acetylators17,18. 78 

A recent randomized trial of pharmacogenomic guided dosing for tuberculosis treatment found 79 

that, compared with standard dosing, it reduced hepatotoxicity among slow acetylators and 80 

increased treatment response at 8 weeks among rapid acetylators19 81 

 82 

Despite this evidence, pharmacogenomic testing and guided treatment has not entered the 83 

mainstream of clinical practice for tuberculosis. Few clinical laboratories perform NAT2 84 

genotyping, and such testing is not widely available in resource-constrained environments where 85 

the majority of tuberculosis burden falls. To address this gap, we developed a prototype NAT2 86 

pharmacogenomic (NAT2-PGx) assay on a commercial, automated PCR platform (GeneXpert) 87 

to detect NAT2 polymorphisms. We further developed an in-house algorithm to predict INH 88 

metabolism phenotype from unphased single nucleotide polymorphism (SNP) patterns, derived 89 

from globally representative genomic data. We demonstrate that this tool can accurately predict 90 

INH clearance rates directly from clinical samples.  91 

 92 

  93 
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RESULTS 94 

SNP selection and development of acetylation prediction model 95 

Complete phased data for the seven known polymorphisms (191G>A, rs1801279; 282C>T, 96 

rs1041983; 341T>C, rs1801280; 481C>T, rs1799929; 590G>A, rs1799930; 803A>G, rs1208; 97 

and 857G>A, rs1799931) altering NAT2 gene function were available for 8,561 individuals from 98 

59 populations. The dataset contains 3,573 (41.7%) individuals with the slow genotype, 3,428 99 

(40.0%) individuals with the intermediate genotype, and 1,560 (18.2%) individuals with the 100 

rapid genotype (See Table 1). The highest proportion of rapid acetylators were in East Asia 101 

(40%), and three regions had prevalence of slow acetylator phenotypes over 50% (Central and 102 

South Asia, Europe and North Africa). 103 

We used these phased allele data to select SNPs for inclusion in an assay measuring unphased 104 

SNPs. Using a random forest model trained on two thirds of the data (n=5,738), out-of-sample 105 

phenotype prediction accuracy from unphased data on the remaining one third (n=2,823) was 106 

100% for models using 7, 6 or 5 SNPs. With 4 SNPs, prediction accuracy was 98.0% (95% CI: 107 

97.4-98.5%), and a 3 SNP model had similar performance (98.0%; 95% CI: 97.4-98.4%) (Table 108 

2). However, both of these models performed poorly on data from Sub-Saharan Africa (4 SNP 109 

model accuracy: 82.5%, 95% CI: 78.1-86.4%); 3 SNP model accuracy: 81.3%, 95% CI: 76.8-110 

85.3%). Based on these results, we selected the 5 SNP model (191G>A, 282C>T, 341T>C, 111 

590G>A and 857G>A) to take forward for clinical validation and diagnostic development. 112 

 113 

Genotype correlation with isoniazid clearance in patients with tuberculosis 114 

 115 
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We enrolled a cohort of 49 patients with newly diagnosed pulmonary tuberculosis and collected 116 

plasma at 1 hour and 8 hours after dose on day 1 and at 1 hour after dose on day 14. To detect 117 

five NAT2 polymorphisms identified by our classifier, we performed single-plex PCR assays on 118 

49 sputum samples using molecular beacon probes developed in-house (see Methods). 119 

Additionally, we used commercial 7-SNP single-plex genotyping assays and compared the 120 

results with 5-SNP single-plex PCR to validate the melt curve accuracy. There was 100% 121 

concordance in terms of SNP detection between 5-SNP and commercial 7-SNP assays. Of the 49 122 

individuals for whom NAT2 genotypes were profiled, ΔTm (°C) between wild-type and mutant 123 

alleles for positions 191, 282, 341, 590 and 857 were found to be 4.38, 4.04, 2.40, 3.63 and 3.68 124 

respectively. Both mutant and wild type probes had a minimum 2.40°C Tm difference which 125 

allowed SNP calling with high accuracy (Table 3). 126 

 127 

We further predicted phenotypes from 5-SNP using the algorithm described above as well as a 128 

publicly available tool (NAT2Pred)20, which uses 6 SNPs. Among the 49 participants, predicted 129 

acetylator types from the 5 SNP assay were: 28 (57%) slow, 16 (33%) intermediate and 5 (10%) 130 

rapid. NAT2Pred classified 4 samples as intermediate that were classified as rapid (n=1) or slow 131 

(n=3) by the 5 SNP classifier. Among those classified as slow by the 5 SNP classifier and 132 

intermediate by NAT2Pred, acetyl-INH to INH ratios at 8 hours were 0.61, 0.38, 0.41, consistent 133 

with slow acetylation (median: 0.77, range 0-1.55) rather than intermediate acetylation (median 134 

6.67, range 3.32-22.21) and suggesting misclassification by NAT2Pred. The sample classified as 135 

intermediate by NAT2PRed and rapid by the 5 SNP classifier had an acetyl-INH to INH ratio of 136 

9.8, which fell between the median values, and within both ranges, for intermediate and rapid 137 

acetylators (range 8.09 - ∞) (Supplementary Table-1). Phenotypes predicted by the 5 SNP 138 
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classifier were strongly predictive of INH acetylation and clearance (Figure 1a and 1b). INH 139 

clearance rates were lowest in slow acetylators (median 19.3 L/hr), moderate in intermediate 140 

acetylators (median 41.0 L/hr) and highest in fast acetylators (median 46.7 L/hr). 141 

 142 

Development of an automated pharmacogenomic assay  143 

 144 

Using the primers and probes sequences validated on FAM-labelled single-plex assays targeting 145 

five NAT2 polymorphisms, we developed a 5-plex multiplex assay using the FleXible Cartridge 146 

system on the GeneXpert platform, which enables automated extraction, real-time PCR, melt 147 

curve analysis and interpretation in 140 minutes (Figure 2). We performed the assay on 20 148 

whole blood samples from healthy individuals. Mutant, wild-type and heterozygous alleles were 149 

manually called based on peak patterns and Tm values detected in melt curves. Negative 150 

derivative transformed melt curves from five NAT2 gene polymorphisms are shown in Figure 3. 151 

The genotype data generated on GeneXpert was validated by Sanger sequencing. The assay 152 

detected all polymorphisms with 100% accuracy (average SD in Tm across all probes = 0.34°C). 153 

The NAT2 genotypes corresponding to 20 blood samples covered all three categories - mutant, 154 

wild-type and heterozygous for five NAT2 positions except for NAT2-191 for which all samples 155 

were all wild-type. Among the 20 samples, predicted acetylator types using the 5-SNP classifier 156 

were: 8 (40%) slow, 10 (50%) intermediate and 2 (10%) rapid (Supplementary Table 2a).  157 

 158 

We used whole blood samples from ten healthy volunteers to assess the analytic performance of 159 

the NAT2-PGx assay at lower sample volumes. The samples at decreasing volumes (200ul, 160 

100ul, 50ul and 25ul) were analyzed until the point where all melt peaks could be accurately 161 
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detected by GeneXpert. Our assay could accurately detect all melt peaks with as low as 25ul of 162 

sample volume. The variability in Tm from five NAT2 probes for sample volumes 200ul-25ul is 163 

shown in Figure 4. NAT2 polymorphisms were accurately detected at all volumes 164 

(Supplementary Table 2b). 165 

166 
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DISCUSSION 167 

  168 

Despite availability of effective treatment for drug-sensitive tuberculosis, a substantial 169 

proportion of population encounters drug associated toxicity or treatment failure, much of which 170 

could be averted through dosing guided by genetic markers of drug metabolism21,22. We 171 

previously found that pharmacogenomic guided dosing of isoniazid could be highly cost-172 

effective in low- and middle-income countries23. A major barrier to its implementation has been 173 

the lack of a simple, scalable assay that could be used at points of care where tuberculosis is 174 

treated in resource-constrained settings. To address this gap, we used globally representative 175 

genomic data to identify patterns of 5 SNPs that enable accurate prediction of isoniazid 176 

acetylator phenotype, validating this with pharmacokinetic data of patients receiving tuberculosis 177 

treatment. We then developed a prototype automated pharmacogenomic assay on the GeneXpert 178 

platform, which is widely available globally but had never been applied to pharmacogenomics. 179 

We found that this assay could robustly distinguish wild type, mutant and heterozygous alleles 180 

from a range of blood volumes as low as 25 ul, making it suitable for use with venous blood 181 

samples or finger-stick blood samples. The assay requires minimal hands-on time for sample 182 

preparation, which would facilitate its use in resource-constrained settings. 183 

 184 

An earlier model (“NAT2Pred”) predicted NAT2 acetylation phenotype from unphased genomic 185 

data; however, it had moderate error rates in distinguishing intermediate from rapid acetylators24. 186 

Moreover, error rates among individuals from Sub-Saharan Africa were 14%, in part due to the 187 

exclusion of the G191A (R64Q) SNP, common to the NAT2 *14 allele cluster, which is frequent 188 

in Africans and African-Americans, but virtually absent in Caucasian, Indian, and Korean 189 
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populations25. Indeed, striking ethnic differences in the frequencies of SNPs 190 

(http://snp500cancer.nci.nih.gov) are responsible for the differences in frequency of rapid, 191 

intermediate and slow acetylator NAT2 alleles or haplotypes and therefore phenotypes15, 26, 27. We 192 

trained our SNP classifier with globally representative data, which resulted in the selection and 193 

inclusion of the G191A SNP in our model and assay. This is particularly important as Sub-194 

Saharan Africa bears a substantial burden of tuberculosis disease and mortality as well as HIV 195 

co-infection, which is independently associated with greater pharmacokinetic variability and 196 

tuberculosis treatment toxicity28-31. 197 

 198 

The association between acetylation polymorphisms and isoniazid metabolism was first 199 

demonstrated in 1959, and their importance was well characterized in subsequent decades 200 

through phenotypic descriptions32-34. Subsequent genotypic descriptions confirmed that NAT2 201 

polymorphisms predicted isoniazid early bactericidal activity, and clinical outcomes including 202 

hepatotoxicity, relapse and acquisition of drug resistance. Further dosing studies demonstrated 203 

that provision of lower doses to slow acetylators and higher doses to rapid acetylators could 204 

achieve target concentrations35. One randomized trial of pharmacogenomic-guided dosing of 205 

isoniazid during active tuberculosis treatment found that it significantly reduced toxicities 206 

(among slow acetylators) and treatment non-response (among rapid acetylators). Taken together, 207 

the evidence for pharmacogenomic guided dosing to achieve consistent drug levels and improve 208 

clinical outcomes is strong. Automated, easy-to-use assays could enable pharmacogenomic 209 

guided isoniazid dosing in resource constrained settings, where a substantial burden of the 210 

world’s tuberculosis occurs.  211 

 212 
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The findings of this study are subject to several limitations. We tested the assays on 49 213 

individuals with active tuberculosis and 20 healthy individuals with a diverse representation of 214 

polymorphisms, but the number of participants with G191A mutations was limited (n=5). A 215 

larger validation study involving testing on whole blood, including from finger stick capillary 216 

blood, is needed to assess real-world performance of this assay under field conditions. Further 217 

studies should also investigate testing on non-invasive samples including saliva or oral swabs, 218 

from which DNA is abundant. Second, we focused on NAT2 polymorphisms, as they explain 219 

88% of interindividual pharmacokinetic variability, though polymorphisms in several other 220 

genes have been associated with hepatotoxicity. However, these associations have been 221 

comparatively modest and somewhat inconsistent36-40. We focused on isoniazid and did not 222 

include other important tuberculosis drugs, such as rifampicin. The evidence base for 223 

pharmacogenomic markers predicting rifampin pharmacokinetics is less robust, and findings 224 

concerning clinical outcomes such as toxicities or treatment response are limited41,42. However, 225 

given the importance of this drug class in treatment of active and latent tuberculosis, and 226 

emerging evidence supporting greater efficacy of higher doses of rifampin, further investigation 227 

of pharmacogenomic markers in rifampicin is needed. Future assays may include polymorphisms 228 

influencing rifampicin metabolism to further optimize treatment of tuberculosis. 229 

 230 

Since the demonstration of the efficacy of six month, short-course chemotherapy in 1979, 231 

standardized treatment for drug susceptible tuberculosis using weight-based doses has remained 232 

essentially unchanged43. Additionally, isoniazid remains a major component of regimens for 233 

treatment of latent tuberculosis, which is recommended by the WHO for young children, HIV-234 

infected individuals and household contacts of tuberculosis cases44 .More than half the world’s 235 
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population have slow or rapid acetylation phenotypes, which put them at risk for excessive drug 236 

levels resulting in drug toxicities or insufficient drug levels putting them at risk of acquired drug 237 

resistance or disease relapse. Dose adjustment based on NAT2 acetylation genotyping can 238 

achieve consistent, target drug levels and reduce the incidence of poor clinical outcomes. We 239 

developed a prototype automated, cartridge-based assay that can reliably predict acetylation 240 

phenotype directly from as low as 25 ul of whole blood. By developing this for the GeneXpert 241 

platform, which is widely used in low- and middle-income countries for tuberculosis diagnosis, 242 

this assay could make personalized tuberculosis treatment dosing available in resource-243 

constrained settings. Further studies are needed to evaluate its accuracy and clinical impact in 244 

real-world clinical settings. 245 

 246 

METHODS 247 

 248 

Ethics statement 249 

The clinical study was approved by the institutional review boards of the Stanford University 250 

School of Medicine and Federal University of Grande Dourados (IRB#33005). All participants 251 

were over the age of 18 and provided written informed consent. For assay optimization and 252 

validation on GeneXpert cartridge, anonymized blood samples from healthy individuals were 253 

obtained from Stanford blood center. 254 

 255 

Datasets 256 
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The datasets used to develop the NAT2 classifier was obtained from the IGSR (International 257 

Genome Sample Resource, 1000 genomes project) and a meta-analysis by Sabbagh et. al4,25. 258 

Population information on the combined dataset is provided in Supplementary Table 3.  259 

NAT2 acetylator phenotype prediction classifier  260 

Phased genomes from 8,561 individuals were used and haplotypes were labeled based on 7 261 

polymorphic sites in the NAT2 gene (191G>A, 282C>T, 341T>C, 481C>T, 590G>A, 803A>G 262 

and 857G>A), following an international consensus nomenclature (43). Individuals with two 263 

slow haplotypes were considered slow acetylators; those with two rapid haplotypes were 264 

considered rapid acetylators; and those with one slow and one rapid acetylator were considered 265 

intermediate acetylators. We then constructed an unphased dataset containing only information 266 

on whether each sample was wild type for both alleles, homozygous variant for both alleles, or 267 

heterozygous. We then split the dataset into two-thirds for a training set and one third for an out-268 

of-sample test set, using sampling stratified by geographic representation to ensure 269 

representativeness in the training and test sets. We trained a random forest model on the training 270 

set using the caret package in R45 and assessed classification performance on the test set. We 271 

began with a 7 SNP model and eliminated SNPs in sequential models according to the lowest 272 

variable importance factor.  273 

 274 

Sample collection  275 

Sputum and plasma samples from 49 newly diagnosed patients with active pulmonary 276 

tuberculosis were collected at the Federal University of Grande Dourados, Brazil. All 277 

participants were treated with standardized, weight-based doses of isoniazid, rifampicin, 278 
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pyrazinamide and ethambutol. Plasma samples were collected at 1 hour and 8 hours after the first 279 

dose and after 1 hour on day 14. Plasma drug concentrations for isoniazid and acetyl-isoniazid 280 

were quantified by high-performance liquid chromatography coupled to tandem mass 281 

spectrometry (HPLC-MS) as previously described.46 282 

 283 

Reference NAT2 SNP genotyping assays 284 

Sputum processing, host DNA extraction and single-plex assays on clinical samples  285 

Spontaneously expectorated sputum from confirmed pulmonary tuberculosis patients was 286 

collected in approximately 10mL of guanidine thiocyanate (GTC) solution (5 M guanidinium 287 

thiocyanate, 0.5% w/v sodium N-lauryl sarcosine, 25 mM trisodium citrate, 0.1 M 2-288 

mercaptoethanol, 0.5% w/v Tween 80 [pH 7.0]) as described previously47. The samples were 289 

needle sheared and centrifuged at 3000 rpm for 30 min. The supernatant was removed leaving 290 

behind 1ml pellet. The pellet was centrifuged at 11,500 rpm for 3 min. Approximately 0.5 ml 291 

supernatant was transferred to a fresh cryovial and 0.75 ml Trizol LS was added to the 292 

supernatant. The samples were frozen at -80 until used. Host DNA was extracted from the 293 

supernatant using a manual extraction method described previously48. The DNA was eluted in 50 294 

ul DNase-free water and quantified on Qubit. Approximately 10 ng of genomic DNA was used 295 

for each single-plex melt curve and commercial TaqMan SNP (NAT2 TaqMan® SNP 296 

Genotyping Assays, Applied Biosystems) assay. 297 

 298 

DNA extraction from whole blood samples from healthy individuals 299 
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For 5-plex assay validation, genomic DNA from 100ul of whole blood from healthy individuals 300 

was extracted using Qiagen Blood and tissue kit (# 69504). The DNA was eluted in 30ul DNase-301 

free water and quantified on Qubit. 100ng of DNA was used for Sanger sequencing validation.  302 

 303 

PCR amplification for Sanger DNA sequencing 304 

For DNA sequencing, an 823 bp fragment of the NAT2 gene (819–1641 bp of the gene) was 305 

amplified using the forward primer 5´-GGGCTGTTCCCTTTGAGA-3´ and reverse primer 5´-306 

TAGTGAGTTGGGTGATAC-3´. A 20 μl PCR mixture contained 0.5 μl of each forward and 307 

reverse primers from 10 μM stocks, 8 μl double distilled water, 0.5ul Phusion Taq polymerase 308 

and 1 μl (~100ng) DNA template. PCR was performed with initial denaturation at 95°C for 5 309 

min followed by 30 cycles of denaturation at 95°C for 30 s, annealing at 55°C for 30 s and 310 

extension at 72°C for 1 min, with an additional extension at 72°C for 10 min. PCR products were 311 

analyzed on 1.5% agarose gels to confirm size of product which was then sequenced at the 312 

(Stanford PAN Facility, CA). 313 

 314 

Primers and probes for melt curve analysis 315 

Three sets of primers spanning the NAT2 gene were used for single-plex and multiplex PCR. 316 

Primers and sloppy molecular beacon (SMB) probes were designed using Beacon Designer 317 

(Premier Biosoft International, Palo, CA; version 8). Three of 5 molecular beacon probes 318 

(NAT2-191, NAT2-590 and NAT2-857) were designed with 100% complementarity towards 319 

mutant alleles and two (NAT2-282 and NAT2-341) were 100% specific to wild type alleles. For 320 

single-plex assays, all probes were labelled with FAM at their 5’ end and BHQ-1 at 3’. For the 321 

multiplex assay on GeneXpert, FAM was replaced with other fluorophores except for NAT2-322 
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590. A list of primers and probes sequences for the multiplex assay with their corresponding 323 

fluorophores and quenchers is provided in Supplementary Table 4. 324 

 325 

Single-plex PCR and melt curve analysis on pulmonary TB patients 326 

Genomic DNA extracted from sputum samples from TB positive patients was used for single-327 

plex assays performed on StepOne Plus Real Time PCR. A 20ul total reaction volume was set up 328 

using 10ng genomic DNA per assay. PCR mastermix included (0.5 ul of 2U Aptataq exo-DNA 329 

polymerase, 1X betaine, 1X Aptataq buffer, 4mM MgCl2, 1X ROX passive reference dye, 60nM 330 

FP,1000nM reverse primers, 250uM of each probe). PCR was initiated by 10 min of 331 

denaturation–activation at 95°C, followed by 50 cycles at 95°C for 15 sec (denaturation), 332 

annealing at 60°C for 15 s and extension at 76°C for 20sec. The melting program included three 333 

steps: denaturation at 95°C for 1 min, followed by renaturation at 35°C for 3 min and a 334 

continuous reading of fluorescence from 45 to 85°C by heating at increments of 0.03°C/s. The 335 

MMCA curve was analyzed using the StepOne Plus software version 2.0. For single-plex melt 336 

curve assay validation, TaqMan 7-SNP genotyping assays were performed using commercial 337 

assays (NAT2 TaqMan® SNP Genotyping Assays, Applied Biosystems) on DNA extracted from 338 

sputum samples from 49 pulmonary TB patients on a StepOne Plus Real Time PCR machine. 339 

 340 

Pharmacokinetic analysis of INH clearance in tuberculosis patients  341 

The population PK analysis was performed using the non-linear mixed effects modeling 342 

approach using NONMEM (version 7.4.3; ICON plc, Gaithersburg, MD, USA), PsN and R-343 

based Xpose (version 4.7 and higher)49,50. One-compartment model with a first-order absorption 344 

with a lognormal distribution for inter-individual variability (IIV) on different PK parameter(s) 345 
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as well as an additive and/or proportional model for the residual error were tested for the base 346 

model selection. Mixture models with two or three subpopulations representing different 347 

clearance rate were then evaluated. The first-order conditional estimation with interaction 348 

method (FOCEI) was applied and the model-building procedure and model selection was based 349 

on the log-likelihood criterion (the difference in the minimum OFV between hierarchical models 350 

was assumed to be Chi-square distributed with degrees of freedom equal to the difference in the 351 

number of parameters between models), goodness-of-fit plots (e.g. relevant residuals against 352 

time randomly distributed around zero), and scientific plausibility of the model. Visual predictive 353 

check was conducted to evaluate whether the final model with estimated fixed-effect parameters 354 

and covariates adequately describe data.  355 

 356 

Automated NAT2-PGx Multiplex PCR and melt curve analysis  357 

Asymmetric PCR and melt curve analysis were performed on a GeneXpert IV instrument using 358 

GeneXpert Dx 4.8 software (Cepheid, Sunnyvale). Flex cartridge-01 (Cepheid) were used to 359 

perform automated DNA extraction from whole blood followed by PCR amplification and melt 360 

curve analysis to detect SNPs. PCR and melt conditions were optimized using mastermix 361 

prepared in house. The NAT2-PGx assay was performed in an 80ul reaction volume (70ul 362 

mastermix and 10ul eluted DNA). Briefly, 100ul of whole blood was mixed with 900ul of lysis 363 

buffer (Cepheid) in a 1.5ml Eppendorf tube. The sample was vortexed for 2-3 sec and incubated 364 

at room temperature for 2min. The entire 1ml whole blood and lysis buffer mix was loaded into 365 

sample preparation chamber of flex cart-01 for automated DNA extraction. 70ul PCR mastermix 366 

was simultaneously loaded in the PCR reaction chamber of the flex cart-01. The GeneXpert was 367 

programmed to elute DNA in 10ul volume which was used for the NAT2-PGx assay. PCR 368 
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mastermix included (2ul of 2U Aptataq exo-DNA polymerase, 1X Betaine, 1X PCR additive 369 

reagent, 1X Aptataq buffer, 8mM MgCl2, 400nM FP, 900nM reverse primers, 500nM of 191-370 

Cy5.5 and 857-Alexa-405, 430nM 282-Alexa-647 and 590-FAM and 300nM 341-Alexa-537 371 

probes). PCR was initiated at holding stage- 50°C for 2min, initial denaturation at 94°C for 372 

2min, followed by 50 cycles of denaturation at 95°C for 15 sec, annealing at 57°C for 30 sec and 373 

extension at 65°C for 60 sec. The melting program included three steps: denaturation at 95°C for 374 

1 min, followed by renaturation at 40°C for 3 min and a continuous reading of fluorescence from 375 

40 to 72°C by heating at increments of 0.05°C/sec. The MMCA curve was analyzed using the 376 

GXP version 4.8 software.   377 

 378 

We validated the automated NAT2-PGx assay by analyzing 20 blood samples, for which 379 

polymorphisms in the 5 positions were confirmed by Sanger sequencing. We assessed analytical 380 

sensitivity of the assay and robustness to input blood volume by performing it on varying 381 

volumes of whole blood (200 ul, 100 ul, 50 ul, 25 ul) and comparing the Tm results and standard 382 

deviation for each position across blood volumes. 383 
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Reporting summary. Further information on research design is available in the Nature Research 391 

Reporting Summary linked to this article. 392 
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 393 

Data availability 394 

Data supporting the findings of this manuscript are available in the Supplementary Information 395 

files or from the corresponding author upon request. 396 

 397 
Code availability 398 
 399 
Code and dataset used to develop NAT2 classifier are provided with the manuscript. 400 

  401 
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Figure 1. Predicted NAT2 phenotype from sputum samples and associated acetylation ratio 536 

and isoniazid clearance rates from patients receiving tuberculosis treatment. The (a) 8 hour 537 

acetyl-INH to INH ratio and (b) isonazid clearance rates, according to acetylation phenotype 538 

predicted from 5 SNPs, measured in sputum samples from 49 patients receiving treatment for 539 

active tuberculosis. 540 

 541 

Figure 2. Schemata for the automated NAT2 Pharmacogenomic assay. 1-2 drops of blood is 542 

collected in an Eppendorf tube and mixed with lysis buffer to a total of 1 ml, which is then 543 

loaded onto a GeneXpert Flex01 cartridge and placed into a GeneXpert instrument for automated 544 

DNA extraction, asymmetric PCR and meltcurve analysis. Allele patterns for each of the 5 SNPs 545 

are determined by Tm analysis, and the resulting data are used to predict acetylator phenotype.  546 

                             547 

Figure 3. Negative derivative transformed melt curves for the five NAT2 gene 548 

polymorphisms. The shift in melt curve temperature is observed during a nucleotide exchange. 549 

Sloppy molecular beacon probes are first hybridized and then melted off of their NAT2 target 550 

amplicon. The melt curves indicate wild type alleles at positions 191(red), 341(green) and 857 551 

(orange); and mutant alleles at positions 282(Blue) and 590(Purple). 552 

 553 

Figure 4. Effect of whole blood sample volume on melting temperature for wild type and 554 

mutant alleles at 5 positions in NAT2: NAT2 polymorphisms were accurately detected at all 555 

volumes with sufficient different in melting temperature (Tm) to distinguish wild type from 556 

mutant alleles. No individuals in this dataset had mutations at position 191. 557 

  558 
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Table 1. Summary of populations included in genomic analysis and their acetylation 559 

genotypes.   560 

 561 

Region 

Number of 

individuals 

Acetylation Genotype, n (%) 

 

Slow Intermediate Rapid 

Americas 1,112 432 (39%) 463 (42%) 217 (20%) 

Central and South Asia 588 355 (60%) 198 (34%) 35 (6%) 

East Asia 2,308 340 (15%) 1049 (45%) 919 (40%) 

Europe 3,458 1966 (57%) 1249 (36%) 243 (7%) 

North Africa 44 30 (68%) 10 (23%) 4 (9%) 

sub-Saharan Africa 1,051 450 (43%) 459 (44%) 142 (14%) 

Total 8,561 3573 (42%) 3428 (40%) 1560 (18%) 

 562 
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Table 2. Out-of-sample prediction accuracy of unphased NAT2 SNP data for acetylation 564 

phenotype in random forest models. Models were trained with 5,738 individuals and tested on 565 

2,823 individuals. Sens: sensitivity. Spec: specificity.  566 

 567 

NAT2 SNP 
Positions 

SNP 
number 

Accuracy 95% CI 
Sens. 
Rapid

Spec. 
Rapid 

Sens. 
Slow 

Spec 
Slow 

191, 282, 341, 481, 
590, 803, 857 

7 1.000 (0.999-1.000) 1.000 1.000 1.000 1.000 

191, 282, 341, 
481, 590, 857 

6 1.000 (0.999-1.000) 1.000 1.000 1.000 1.000 

191, 282, 341,  
590, 857 

5 1.000 (0.999-1.000) 1.000 1.000 1.000 1.000 

282, 341, 
590, 857 

4 0.978 (0.972-0.983) 0.996 0.988 0.969 0.999 

341, 590, 
847 

3 0.976 (0.970-0.982) 1.000 0.986 0.967 1.000 

341,  
590 

2 0.852 (0.838-0.865) 1.000 0.889 0.832 1.000 

 568 
 569 
 570 

 571 

 572 

 573 
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Table 3. Melting temperature (Tm) values for five NAT2 polymorphisms derived from 575 

DNA-probe hybrid melts using single-plex assays validated on 49 pulmonary TB patients 576 

 577 

  Mutant Wild type Het Mutant Wild type   

NAT2 SNP 
position 

Total samples 
analyzed 

Total samples 
analyzed 

Total samples 
analyzed 

Tm ± SD Tm ± SD 
ΔTm 
(WT-
MT) 

191 0 44 5 66.3 ± 0.28 
61.92 ± 

0.68 
4.38 

282 6 24 19 62.81 ± 0.40 
66.85 ± 

0.34 
4.04 

341 12 23 14 66.30± 0.48 
68.70 ± 

0.38 
2.40 

590 0 35 14 68.0 ± 0.28 
64.37 ± 

0.28 
3.63 

857 1 41 7 66.4± 0.11 
62.72 ± 

0.29 
3.68 

SD: Standard deviation 578 
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 580 

Supplementary Table 1. NAT2 polymorphism profiles of 49 pulmonary TB patients detected 581 

from 5-SNP and 7-SNP genotyping assays. Acetylator phenotypes predicted from 5-SNP, 6-SNP 582 

and 7-SNP classifiers and plasma INH and acetyl-INH levels recorded at various time-points.  583 

 584 

Supplementary Table 2. (a) NAT2 genotype of whole blood samples (n=20) analyzed on 5-585 

plex NAT2-PGx assay and validated on Sanger sequencing. (b) NAT2 genotypes of ten whole 586 

blood samples analyzed using 200ul, 100ul, 50ul and 25ul samples 587 

 588 

Supplementary Table 3. Population information on the dataset used to develop 5-SNP 589 

classifier. 590 

 591 

Supplementary Table 4. List of primers and probes sequences for multiplex assay with their 592 

corresponding fluorophores and quenchers 593 

 594 

 595 
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--Slow acetylator

Sample 
collection
Sample 
collection

Collect 1-2 drops of whole 
blood (approx. 50ul)

Mix 950ul lysis bu�er, 
vortex for 2 sec and incubate
 at RT for 2min

Whole blood 
pretreatment

+

Total run 
time= 140min
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