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Translational Relevance: 

Deep learning (DL) models have demonstrated great promise for classifying diagnostic images 

within oncology. An on-going challenge to DL models on diagnostic images is generalizability 

and classification stability. DL models trained on diagnostic images have shown dramatic 

differences in model outputs in response to even small pixel level changes to images. Adversarial 

images are manipulated images which such small pixel-level perturbations and are specifically 

designed to test the stability of DL models. In this study, we use adversarial images to 

demonstrate the instability of DL models trained across common oncologic imaging modalities. 

We also highlight the utility of an iterative adversarial training approach as a method to improve 

the stability of DL models trained on diagnostic images. Our study provides insight into the 

development of more stable and robust DL algorithms for diagnostic image classification which 

can safely implemented into clinical practice. 

 

Abstract 

Purpose: Deep learning (DL) models have rapidly become a popular and cost-effective tool for 

image classification within oncology. A major limitation of DL models is output instability, as 

small perturbations in input data can dramatically alter model output. The purpose of the study is 

to investigate the robustness of DL models in the oncologic image domain through the 

application of adversarial images: manipulated images with small pixel-level perturbations 

designed to assess the stability of DL models.  

Experimental Design: We examined the impact of adversarial images on the classification 

accuracies of DL models trained to classify cancerous lesions across three common oncologic 

imaging modalities (CT, mammogram, and MRI). The CT model was trained to classify 

malignant lung nodules using the LIDC dataset. The mammogram model was trained to classify 

malignant breast lesions using the DDSM dataset. The MRI model was trained to classify brain 
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metastases using an institutional dataset. We also explored the utility of an iterative adversarial 

training approach to improve the stability of DL models to small pixel-level changes.  

Results: Oncologic images showed instability with small pixel-level changes. A pixel-level of 

perturbation of .004 resulted in a majority of oncologic images to be misclassified by their 

respective DL models (CT 25.64%, mammogram 23.93%, MRI 6.36%). Adversarial training 

mitigated improved the stability and robustness of DL models trained on oncologic images 

compared to naive models [(CT 67.72% vs 26.92%), mammogram (63.39% vs 27.68%), MRI 

(87.20% vs 24.32%)]. 

Conclusions: DL models naively trained on oncologic images exhibited dramatic instability to 

small pixel-level changes resulting in substantial decreases in accuracy. Adversarial training 

techniques improved the stability and robustness of DL models to such pixel-level changes. Prior 

to clinical implementation, adversarial training should be considered to proposed DL models to 

improve overall performance and safety.  
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Introduction:  

Deep learning (DL) algorithms have the promise to improve the quality of diagnostic 

image interpretation within oncology (1,2). Models generated from DL algorithms have been 

validated across a variety of diagnostic imaging modalities including magnetic resonance 

imaging (MRI), computed tomography (CT), and X-ray images with classification accuracy 

often rivaling trained clinicians (3-9). However, the success of DL models depends, in part, on 

their generalizability and stability. DL algorithms, in particular, have been shown to vary output 

based on small changes in the input data (10,11). Such variability in response to minor changes 

can signal an instability in the algorithm that could lead to misclassification and problems with 

generalizability to different patients and settings.  

Data scientists have developed strategies to quantify and mitigate the susceptibility of DL 

models to changes in their output in response to changes in the input using adversarial 

images. Adversarial images are manipulated images which undergo small pixel-level 

perturbations specifically designed to test the stability of the DL models (12-15). Pixel-level 

changes of adversarial images are often imperceptible to humans but can cause important 

differences in the model output (16-18). DL models which show stability in output when faced 

with adversarial images are likely the most robust and safe for clinical implementation. Previous 

work concerning adversarial images on DL models has largely focused on non-medical images, 

and the vulnerability of medical DL models is relatively unknown (18,19). Although techniques 

to defend against adversarial images have been proposed, the effectiveness of these methods on 

medical DL models is unclear. 

Accordingly, we sought to test the effect of adversarial images on DL algorithms trained 

on three common oncologic imaging modalities. We established the performance of the DL 
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models and then tested model output stability in response to adversarial images with different 

degrees of pixel-level manipulation. We then tested the utility of techniques to defend the DL 

models against adversarial images. This research has direct application to the use of DL image 

interpretation algorithms, as it provides quantitative testing of their vulnerability to small input 

variations and determines if there are strategies to reduce this weakness.  

Methods 

Datasets 

We examined the behavior of DL algorithm outputs in response to adversarial images 

across three medical imaging modalities commonly used in oncology—CT, mammography, and 

MRI. For each imaging modality a separate DL classification model was trained to identify the 

presence or absence of malignancy when given a diagnostic image. Each dataset was split into a 

training set and a testing set in a 2:1 ratio. 

CT imaging data consisted of 2,600 lung nodules from the Lung Image Database 

Consortium and Image Database Resource Initiative (LIDC-IDRI) collection (20). The dataset 

contains 1,018 thoracic CT scans collected from 15 clinical sites across the US. Lung nodules 

used for DL model training were identified by experienced thoracic radiologists. The presence of 

malignancy was based on associated pathologic reports. For patients without pathologic 

confirmation, malignancy was based on radiologist consensus.  

Mammography imaging data consisted of 1696 lesions from the Curated Breast Imaging 

Subset of Digital Database for Screening Mammography (CBIS-DDSM) (21). The CBIS-DDSM 

contains mammograms from 1,566 patients at four sites across the US. Mammographic lesions 

used for DL model training were obtained based on algorithmically derived regions of interest 
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based on clinical metadata. The presence of malignancy was based on verified pathologic 

reports.  

MRI data consisted of brain MRIs from 831 patients from a single institution brain 

metastases registry (22).  The presence or absence of a malignancy was identified on 4,000 brain 

lesions seen on MRI. Regions of interest were identified by a multi-disciplinary team of radiation 

oncologists, neurosurgeons, and radiologists. Presence of cancer was identified based on 

pathologic confirmation or clinical consensus.  

To compare the relative vulnerability of DL models trained on oncologic images 

compared to non-medical images, two additional DL classification models were trained on 

established non-medical datasets. The MNIST dataset consists of 70,000 hand written numerical 

digits (23). The CIFAR-10 datasets includes 60,000 color images of ten non-medical objects 

(24).  

All images were center-cropped and resized, and pixels were normalized to have unit 

variance. For each medical dataset, the classes (“cancer” and “noncancer”) were balanced, and 

data was augmented using simple data augmentations: horizontal and vertical flips as well as 

random rotations with angles ranging between −ௗ20° and 20°. 

Models 

For all DL classification models, we used a pre-trained convolutional neural network 

with the VGG16 architecture (25).  Models were fine-tuned in Keras using Stochastic Gradient 

Descent. Details regarding model architecture and hyperparameter selection for DL model 

training are provided (Table S2, Table S3).   
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Adversarial Image Generation 

Three commonly employed first-order adversarial image generation methods—Fast 

Gradient Sign Method (FGSM), Basic Iterative Method (BIM), and Projected Gradient Descent 

(PGD)—were used to create adversarial images on the medical and non-medical image datasets 

(Figure 1). Each method aims to maximize the DL model’s classification error while minimizing 

the difference between the adversarial image and original image. All the adversarial image 

generation methods are bounded under a predefined perturbation size ε, which represents the 

maximum change to pixel values of an image. Vulnerability to adversarial images was assessed 

by comparing changes in model performance compared to baseline (without any adversarial 

images) under various perturbation sizes.   

The single step FGSM attack perturbs the original example by a fixed amount along the 

direction (sign) of the gradient of adversarial loss (15). 

𝑥௔ௗ௩ =  𝑥 +  𝜀 𝑠𝑖𝑔𝑛(∇௫ 𝐽(𝑥, 𝑦)) 

BIM iteratively perturbs the normal example with smaller step size and clips the pixel 

values of the updated adversarial example after each step into a permitted range (12). 

𝑥௧ =  𝐶𝑙𝑖𝑝௫,ఢ{𝑥௧ିଵ + 𝛼 𝑠𝑖𝑔𝑛(∇௫ 𝐽(𝑥௧ , 𝑦)) 

Known as the strongest first-order attack, PGD iteratively perturbs the input with smaller 

step size and after each iteration, the updated adversarial example is projected onto the ε-ball of x 

and clipped onto a permitted range (18). 

𝑥௧ = ∏ఢ(𝑥௧ିଵ + 𝛼 𝑠𝑖𝑔𝑛൫∇୶𝐽(𝑥௧, 𝑦)൯) 
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Additional information regarding adversarial image generation methods is provided 

(Table S1).  

Susceptibility of DL Models to Adversarial Images 

 We investigated the DL model performance using FGSM, PGD, and BIM adversarial 

image generation methods across different levels of pixel perturbation. We measured relative 

susceptivity to adversarial images by determining the smallest perturbation ε required for 

adversarial images to generate a different output. DL models which required larger pixel level 

perturbations are likely to be more robust and have higher levels of stability suitable for clinical 

implementation. Conversely, models which change outputs in response to small pixel-level 

perturbations are inherently unstable and potentially less generalizable across different clinical 

settings and patient populations.   

Adversarial Training to Improve Model Robustness 

One proposed defense mechanism to prevent negative effects of adversarial images is 

adversarial training, which aims to improve model robustness by integrating adversarial samples 

into DL model training (18,19). By training on both adversarial and normal images, the DL 

model learns to classify adversarial samples with higher accuracy compared to models trained on 

only normal samples. We used a multi-step PGD adversarial training to increase the robustness 

of our DL models against adversarial attacks. In each batch, 50% of training samples were 

normal images, and the other 50% were adversarial images generated by PGD attack. The 

hyperparameters for adversarial training are detailed (Table S4). We investigated the 

effectiveness of our iterative adversarial training approach on the DL models trained on medical 
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images.  We measured the effectiveness of adversarial training by comparing model accuracy on 

adversarial samples of varying perturbation size before and after adversarial training.  

Image Level Adversarial Image Sensitivity and Model Performance 

We examined each individual image’s adversarial sensitivity, as measured by the level of 

pixel-level perturbation necessary for DL model prediction to change as compared to an 

unperturbed image. We hypothesized that images requiring smaller pixel perturbations to change 

DL model predictions were also the images most likely to be misclassified by the model under 

normal conditions. By excluding images most sensitive to adversarial perturbation, we aimed to 

improve model performance on the remaining dataset. We identified the 20% of images most 

vulnerable to adversarial perturbation and excluded them from the test set. We then tested the 

performance of the original model on the reduced test set.  

The proposed networks were implemented in Python 2.7 using TensorFlow v1.15.3 

framework (26). Adversarial images were created using the Adversarial Robustness Toolbox 

v1.4.1 (27). The code to reproduce the analyses and results is available online at 

https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-Adversarial-Imaging. 

Results: 

Susceptibility of DL Models to Adversarial Images 

Both medical and non-medical DL models were highly susceptible to misclassification of 

adversarial images resulting in decreases in model accuracy (Figure 2). Medical DL models 

appeared substantially more vulnerable to adversarial images compared to non-medical DL 

algorithms. All three medical DL models required smaller pixel-level perturbations to decrease 

model accuracy compared to non-medical DL models (Figure 2). For example, adversarial 
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images generated using the PGD method (perturbation = 0.002), resulted in DL model accuracy 

of 26.92% for CT (-48.48% from baseline), 27.68% for mammogram (-48.75% from baseline), 

and 24.32% for MRI (-61.81% from baseline). In contrast, adversarial images generated using 

the same methods/parameters did not cause substantial changes in performance for the MNIST 

(-.05% from baseline) or CIFAR-10 (-4.2% from baseline) trained models (Table 1). For the 

medical DL models, adversarial images generated using smaller pixel level perturbations (ε < 

0.004) resulted in misclassification of a majority of images whereas non-medical DL models 

required much larger pixel perturbations (ε > 0.07 for MNIST, ε > 0.01 for CIFAR-10) for 

similar levels of misclassification (Table 1). 

Adversarial Training to Improve Model Robustness 

Adversarial training led to increased robustness of DL models when classifying 

adversarial images for both medical and non-medical images (Figure 3). Compared to baseline 

trained models, adversarial trained DL models caused absolute accuracy of the model on 

adversarial images to increase by 42.9% for CT (67.72% vs 26.92%), 35.7% for mammogram 

(63.39% vs 27.68%), and 73.2% for MRI (87.20% vs 24.32%) (Table S5). Despite adversarial 

training, DL models did not reach baseline accuracy suggesting adversarial training as only a 

partial solution to improve model robustness. Adversarial training became less effective when 

attempting to defend against adversarial images that possessed greater pixel perturbations.  

Image Level Adversarial Image Sensitivity and Model Performance 

Using image-level adversarial sensitivity, we were able to identify images most at risk for 

misclassification by the DL models and improve overall model performance across all diagnostic 

imaging modalities. Excluding the images in which the smallest pixel perturbations changed DL 
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model outputs increased the absolute accuracy of DL models by 5.9% for CT, 3.7% for 

mammogram, and 5.2% for MRI (Table 2).  

Discussion: 

As the role of diagnostic imaging increases throughout clinical oncology, deep learning 

represents a cost-effective tool to supplement human decision-making and aid in image analysis 

tasks (28-30). However, instability of DL model outputs can limit the performance and 

generalizability on large-scale medical datasets and hinder clinical utility. Evaluating a proposed 

DL model’s susceptibility to adversarial images represents a way to identify the most robust DL 

models versus those at risk for erratic performance. In this study, we found that DL models 

trained on medical images were particularly unstable to pixel level changes from adversarial 

images resulting in significant decreases in expected performance. Moreover, we found 

diagnostic images within oncology to be more vulnerable such misclassification compared to DL 

models trained on non-medical images. Specifically, compared to non-medical images, all three 

diagnostic imaging modalities required substantially smaller pixel-level changes to reduce model 

performance. Furthermore, we found that adversarial training methods commonly used on non-

medical imaging datasets are effective at improving DL model stability to such pixel-level 

changes. Finally, we showed that identifying images most susceptible to adversarial image 

attacks maybe helpful in improving overall robustness of DL models on medical images.  

Several recent works have found that state-of-the-art DL architectures perform poorly on 

medical imaging analysis tasks when classifying adversarial images (14,31-35). Our work 

extends the findings of previous studies by evaluating performance across three common 

oncologic imaging modalities used for cancer detection. Additionally, we found that CT, 

mammography, and MRI images exhibit substantial vulnerability to adversarial images even 
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with small pixel-level perturbations (< 0.004). We also show that DL models exhibited different 

levels of sensitivity to adversarial images across different imaging modalities. Furthermore, 

while most previous studies used only one fixed perturbation size for adversarial image attack, 

we varied perturbation size along a broad range to examine the relationship between model 

performance and attack strength. 

In addition, our results corroborate previous work which showed that DL models trained 

on medical images are more vulnerable to misclassifying adversarial images compared to similar 

DL models trained on non-medical images (14,36). By using MNIST and CIFAR-10 as a control 

and applying the same attack settings to DL models for all datasets, we determined that DL 

models for medical images were much more susceptible to misclassifying adversarial images 

than DL models for non-medical images. One reason for this behavior could be that medical 

images are highly standardized and small adversarial perturbations dramatically distort their 

distribution in the latent feature space (37,38). Another factor could be the overparameterization 

of DL models for medical image analysis, as sharp loss landscapes around medical images lead 

to higher adversarial vulnerability (14). 

In the past, adversarial training on medical DL models have shown mixed results. In 

some studies, adversarial training improved DL model robustness for multiple medical imaging 

modalities like lung CT and retinal optical coherence tomography (37,39,40). On the other hand, 

Hirano et al. found that adversarial training generally did not increase model robustness for 

classifying dermatoscopic images, optical coherence tomography images, and chest X-ray 

images (41). The difference in effectiveness of adversarial training can be attributed to 

differences in adversarial training protocols (e.g., single-step vs. iterative approaches). It’s 

important to note that even in studies where adversarial training showed success in improving 
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model robustness, the results were still suboptimal, as the risk of misclassification increases with 

perturbation strength even after adversarial training. This is expected as adversarial training, 

while capable of improving model accuracy on adversarial examples, has limits in effectiveness 

against strong attacks even on non-medical image datasets (18). 

Our work applied an iterative adversarial training approach to DL models for lung CTs, 

mammograms, and brain MRIs, demonstrating substantial improvement in model robustness for 

all imaging modalities. The effectiveness of adversarial training was highly dependent on the 

hyperparameters of adversarial training, especially the perturbation size for attack. While too-

small perturbation sizes limit the increase in model robustness post-adversarial training, 

increasing the perturbation size beyond a certain threshold prevents the model from learning 

during training, causing poor model performance on both clean and adversarial samples. Our 

work demonstrated how the performance of the DL model post-adversarial training is inversely 

proportional to the perturbation size of the adversarial samples on which the model is evaluated. 

While adversarial training is effective in defending against weaker attacks with smaller 

perturbation magnitudes, it showed less success with attacks which altered pixels more 

substantially. While adversarial training proved successful at improving model performance on 

adversarial examples, our results were still far from satisfactory. One contributing factor is that 

medical images have fundamentally differently properties than non-medical images (14,37). 

Thus, adversarial defenses well-suited for non-medical images may not be generalizable to 

medical images.  

We also showed that image level adversarial sensitivity, defined by the level of 

adversarial perturbation necessary to change image class predicted by model, is a useful metric 

for identifying normal images most at-risk for misclassification. This has potentially useful 
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clinical implications as we can improve the robustness of DL models by excluding such ‘high 

risk’ images from DL model classification and instead providing them to a trained radiologist for 

examination.   

There are several limitations to our study. First, we only used two-class medical imaging 

classification tasks. Thus, our findings might not generalize to multi-class or regression problems 

using medical images. Given that many medical diagnostic problems involve a small number of 

classes, our findings are likely still widely applicable to a large portion of medical imaging 

classification tasks. Our study employed only first-order adversarial image generation methods 

rather than higher-order methods, which have been shown to be more resistant against 

adversarial training (42). While the most commonly used adversarial image generation methods 

are first-order, there is still need for additional research on how to defend DL models for medical 

images against higher-order methods. A final limitation is that we used traditional supervised 

adversarial training to improve model robustness, while other nuanced methods like semi-

supervised adversarial training and unsupervised adversarial training exist (37,43,44). While we 

demonstrated that supervised adversarial training is an effective method to improve model 

performance on adversarial examples, an interesting direction for future work would be to 

compare the utility of supervised adversarial training with that of semi-supervised or 

unsupervised adversarial training on DL models for medical images.  

Conclusion 

In this work, we utilized adversarial images to explore the stability of DL models trained 

on three common diagnostic imaging modalities used in oncology. Our findings suggest that DL 

models trained on diagnostic images are vulnerable to pixel level changes which can 

substantially change expected performance. Specifically, we found vulnerability to adversarial 
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images can be a useful method to identify DL models which are particularly unstable in their 

classifications. Additionally, we found adversarial image training may improve the stability of 

DL models trained on diagnostic images. Lastly, we found that image-level adversarial 

sensitivity is a potential way to identify image samples which may benefit from human 

classification rather than DL model classification. By shedding light on the stability of DL 

models to small pixel changes, the findings from this paper can help facilitate the development of 

more robust and secure medical imaging DL models which can be more safely implemented into 

clinical practice. 
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Figure 1. Examples of clean images and their adversarial counterparts generated using FGSM, 

PGD, and BIM attack methods. The percentage displayed represents the probability predicted by 

the model that the image is of a certain class.  
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Figure 2. Classification accuracy of VGG16 model on adversarial examples generated by 

FGSM, BIM, and PGD attacks with increasing L∞ maximum perturbation size ε. Model 

performance decreased as ε increased for all datasets: A) lung CT; B) mammography; C) brain 

MRI; D) MNIST; and E) CIFAR-10. *Note that the horizontal axis (ε) was scaled to 10-3 for 

graphs A) to C), to 10-1 for D), and to 10-2 for E). 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 8, 2021. ; https://doi.org/10.1101/2021.01.17.21249704doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.17.21249704
http://creativecommons.org/licenses/by/4.0/


21 
 

Table 1. Effects of adversarial attacks of varying perturbation sizes on model classification 

accuracy. Adversarial samples were created by FGSM, BIM, and PGD with increasing L∞ 

maximum perturbation size ε. Models for medical datasets (CT, mammogram, and MRI) 

required smaller attack perturbation sizes than models for non-medical datasets (MNIST, 

CIFAR-10) for attacks to be generally effective.  

 

Attack Perturbation 
size 𝜀 

CT 
Accuracy 

(%) 

Mammogram 
Accuracy (%) 

 MRI 
Accuracy 

(%) 

MNIST 
Accuracy 

(%) 

CIFAR-10 
Accuracy 

(%) 
Baseline  75.41 76.43 93.64 99.13 86.13 
FGSM 0.001 

0.002 
0.004 
0.006 

51.98 
34.62 
31.12 
31.59 

46.96 
30.00 
24.46 
23.93 

77.27 
56.36 
43.03 
40.38 

99.05 
99.05 
99.04 
98.96 

85.32 
82.39 
74.29 
65.27 

PGD 0.001 
0.002 
0.004 
0.006 

41.84 
26.92 
25.64 
25.64 

45.36 
27.68 
23.93 
23.57 

61.36 
24.32 
6.36 
6.36 

99.06 
99.05 
99.01 
98.92 

85.29 
81.93 
71.90 
59.98 

BIM 0.001 
0.002 
0.004 
0.006 

44.99 
27.74 
25.87 
25.76 

46.07 
28.57 
23.93 
23.57 

64.24 
29.02 
6.44 
6.36 

99.06 
99.05 
99.01 
98.93 

85.32 
82.06 
72.84 
62.28 
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Figure 3. Comparison of model classification accuracy before and after adversarial training on 

adversarial samples crafted by FGSM, BIM, and PGD with increasing L∞ maximum perturbation 

size ε. Adversarial training significantly increased model accuracy for datasets: A) lung CT; B) 

mammography; C) brain MRI; D) MNIST; and E) CIFAR-10. *Note that the horizontal axis (ε) 

was scaled to 10-3 for graphs A) to C), to 10-1 for D), and to 10-2 for E). 
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Table 2. Classification accuracy (%) of VGG16 model on the original test set and the test set 

excluding the 20% of test images most susceptible to adversarial attack. Images were excluded if 

PGD attack with perturbation size less than a certain threshold was sufficient to change the 

model prediction on the image. That threshold perturbation size was 0.0003 for CT, 0.00025 for 

mammogram, and 0.0006 for MRI.   

 Model Accuracy (%) 

Original Test Set 

Model Accuracy (%) 

Adversarially Aware 

Test Set 

Change in Model 

Accuracy (%) 

CT 75.41 81.31 5.90 

Mammogram 76.43 80.13 3.70 

MRI 93.64 98.82 5.18 
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Supplementary Material 

Table S1. Equations and parameters for FGSM, PGD, and BIM attack methods. The number of 

perturbation steps for BIM and PGD are both set to 10, and the step sizes are set to ε/10 and ε/4 

for BIM and PGD, respectively. 

Adversarial Attack Methods 

Attack Type Equation Parameters 
Fast Gradient Sign 
Method (FGSM) 

𝑥௔ௗ௩ =  𝑥 +  𝜀 𝑠𝑖𝑔𝑛(∇௫ 𝐽(𝑥, 𝑦))                       
 

xୟୢ୴  = adversarial image 
x  = clean input image 
ε = perturbation size 
J = loss function 
y = target label 
 

Projected Gradient 
Descent (PGD) 

𝑥଴ = 𝑥, 
𝑥௧ =  𝐶𝑙𝑖𝑝௫,ఢ{𝑥௧ିଵ + 𝛼 𝑠𝑖𝑔𝑛(∇௫ 𝐽(𝑥௧, 𝑦))} 

x଴ = clean input image 
x  

୧ = adversarial image at i୲୦step 
ε = maximum perturbation size 
α = perturbation step size 
J = loss function 
y = target label 
Clip{ }  function limits updated 
adversarial sample to within range 
of ϵ ball ([x-ϵ, x+ϵ]) and the input 
space ([0,1] for pixel values) 
 

Basic Iterative Method 
(BIM) 

𝑥଴ = 𝑥, 
𝑥௧ = ∏ఢ{𝑥௧ିଵ + 𝛼 𝑠𝑖𝑔𝑛൫∇୶𝐽(𝑥௧ , 𝑦)൯} 

x଴ = clean input image 
x  

୧ = adversarial image at i୲୦step 
ε = maximum perturbation size 
α = perturbation step size 
J = loss function 
y = target label 
y = target label 
∏ { } function projects the 
adversarial example back onto the 
ϵ ball ([x-ϵ, x+ϵ]) 
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Table S2. VGG16 model architecture and parameters. 

Model Architecture 

Layer (type) Output Shape Parameter Number 
input_1 (Input Layer) (None, 224, 224, 3) 0 
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856 
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 
dropout (Dropout) (None, 7, 7, 512) 0 
flatten (Flatten) (None, 25088) 0 
fc1 (Dense) (None, 4096) 102764544 
dropout_1 (Dropout) (None, 4096) 0 
fc2 (Dense) (None, 1024) 4195328 
predictions (Dense) (None, 2) 2050 
Total parameters: 121,676,610 
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Table S3.  Training parameters for VGG16 models for all datasets. 

Model Training Parameters 

Parameters CNN-1 
 (CT) 

CNN-2 
(Mammogram) 

CNN-3 
(MRI) 

CNN-4 
(MNIST) 

CNN-5 
(CIFAR-10) 

Input 
Image Size 

224 x 224 116 x 116 224 x 224 32 x 32 32 x 32 

Batch Size 50 50 50 64 128 
Max 
Epochs 

200 100 100 20 60 

Patience 50 20 5 0 10 
Initial 
Learning 
Rate 

0.0002 0.0002 0.0002 0.01 0.001 

Learning 
rate decay 

1e-6 1e-6 1e-6 0 1e-5 

Momentum 0.9 0.9 0.9 0 0.9 
Loss Binary  

cross-entropy 
Binary  
cross-entropy 

Binary  
cross-entropy 

Categorical 
cross-entropy 

Categorical 
cross-entropy 

Optimizer SGD SGD SGD SGD SGD 
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Table S4.  Adversarial training parameters for multi-step PGD training of VGG16 models. 

Parameters CNN-1 
 (CT) 

CNN-2 
(Mammogram) 

CNN-3 
(MRI) 

CNN-4 
(MNIST) 

CNN-5 
(CIFAR-10) 

Epsilon 0.003 0.002 0.004 0.2 0.02 
Epsilon step 0.00075 0.0005 0.001 0.05 0.005 
Max 
Iterations 

7 7 7 7 7 

# random 
initializations 

1 1 1 1 1 

Number of 
Epochs 

200 100 200 50 100 

Batch size 128 128 128 128 128 
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Table S5. Effectiveness of Adversarial Training on Classification accuracy (%) of VGG16 

model (perturbation size of .002). 

Attack CT 
Accuracy (%) 

Mammogram 
Accuracy (%) 

 MRI 
Accuracy (%) 

Model Original  Adv 
trained 

Difference Original Adv 
trained 

Difference Original Adv 
trained 

Difference 

FGSM 34.62 70.75 36.13 30.00 64.29 34.29 56.36 88.64 32.28 
PGD 26.92 67.72 40.80 27.68 63.39 35.71 24.32 87.20 62.88 
BIM 27.74 68.88 41.14 28.57 63.57 35.00 29.02 87.42 58.40 
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