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Abstract 

Osteoporosis, a disease characterized by low bone mineral density (BMD), increases the risk for 

fractures. Conventional risk factors alone do not completely explain measured BMD or 

osteoporotic fracture risk. Metabolomics may provide additional information. We aim to identify 

BMD-associated metabolomic markers that are predictive of fracture risk. We assessed 209 plasma 

metabolites by LC-MS/MS in 1,552 Framingham Offspring Study participants, and measured 

femoral neck (FN) and lumbar spine (LS) BMD 2-10 years later using dual energy x-ray 

absorptiometry. We assessed osteoporotic fractures up to 27-year follow-up after metabolomic 

profiling. We identified twenty-seven metabolites associated with FN-BMD or LS-BMD by 

LASSO regression with internal validation. Incorporating selected metabolites significantly 

improved the prediction and the classification of osteoporotic fracture risk beyond conventional 

risk factors (AUC=0.74 for the model with identified metabolites and risk factors vs AUC=0.70 

with risk factors alone, p=0.001; Net reclassification index=0.07, p=0.03). We replicated 

significant improvement in fracture prediction by incorporating selected metabolites in 634 

participants from the Hong Kong Osteoporosis Study (HKOS). The glycine, serine, and threonine 

metabolism pathway (including four identified metabolites: creatine, dimethylglycine, glycine, 

and serine) was significantly enriched (FDR p-value=0.028). Furthermore, three causally related 

metabolites (glycine, Phosphatidylcholine [PC], and Triacylglycerol [TAG]) were negatively 

associated with FN-BMD while PC and TAG were negatively associated with LS-BMD through 

Mendelian randomization analysis. In summary, metabolites associated with BMD are helpful in 

osteoporotic fracture risk prediction. Potential causal mechanisms explaining the three metabolites 

on BMD are worthy of further experimental validation. Our findings may provide novel insights 

into the pathogenesis of osteoporosis. 
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Introduction 

Osteoporosis is the most common metabolic bone disease, mainly characterized by low bone 

mineral density (BMD) and deteriorated bone strength and is associated with an increased risk of 

low-trauma fractures.(1) Osteoporotic fractures, particularly vertebral and hip fractures, can be 

associated with chronic disabling pain and have a profound impact on patients’ quality of life.(2) 

More than 75 million people in the United States, Europe, and Japan are affected by osteoporosis, 

which causes more than 8.9 million fractures annually worldwide.(3) Therefore, prevention and 

early detection of osteoporosis are essential for people to maintain bone health and improve their 

overall quality of life.  

Other than BMD, which is used for the diagnosis of osteoporosis, many clinical risk factors  have 

been identified for osteoporotic fracture prediction such as age, female sex, premature menopause, 

smoking.(4) A fracture risk assessment tool (FRAX), for example, has been developed based on 

the clinical risk factors to predict fracture.(5) However, previous studies have shown that the 

aforementioned clinical risk factors do not completely explain measured BMD or fracture risk.(6,7) 

Metabolomics, as products of metabolism, may provide additional information to predict BMD or 

may identify those individuals with a high probability of experiencing an osteoporotic facture. 

Metabolites are small molecules that can be reactants, intermediates, or products of metabolism. 

Many previous studies show that metabolites are closely related to bone health.(8-13) For example, 

a cross-sectional study identified a group of metabolites for characterizing low BMD in 

postmenopausal women.(8) Another study also reported that metabolites represented useful 

markers to predict bone loss in menopausal women.(9) However, these studies were limited by their 

relatively small sample sizes or a focus mainly on women. A larger community-based study 

including both women and men is needed to investigate potential relationships between 
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metabolites and osteoporosis in the general population. Metabolomics may also provide insights 

into the biological mechanism of osteoporosis. In this study, our primary aim was to identify BMD-

associated metabolomic markers that are predictive of fracture risk and to explore potential causal 

mechanisms between identified metabolites and BMD as a secondary goal. 

 

Subjects and Methods 

Discovery cohort 

Framingham Heart Study (FHS) Offspring participants, aged 30-82 years, whose underwent 

plasma metabolite profiling at their fifth examination cycle 1991-1995 (baseline) and who 

underwent both femoral neck (FN) and lumbar spine (LS) BMD measurements between their sixth 

and the seventh examination cycles (1996-2001) comprised the sample for the present 

investigation. The FHS is a community-based cohort study that started in 1948, with the 

recruitment of  5,209 men and women between the ages of 28 and 62 years from Framingham, 

MA, USA.(14) The FHS Offspring cohort enrolled the children of the original cohort and the 

children’s spouses, including 5,124 participants who underwent physical examination, medical 

history, and routine laboratory tests approximately every four years since 1971.(15) There were 

2067 Offspring participants with metabolites measurements at the fifth examination and 1604 of 

them also had BMD measurements between the sixth and the seventh examination. Individuals 

without body mass index information, smoking status, or women without menopausal status at the 

fifth examination were excluded. A total of 1552 individuals were eligible for the present 

investigation. All participants provided written informed consent and the study protocol was 
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approved by the Hebrew SeniorLife and Boston University Medical Campus institutional review 

boards.  

Metabolite profiling 

Plasma samples of FHS Offspring participants were collected in a fasting state at their fifth 

examination cycle between 1991 and 1995. High throughput metabolite profiling was performed 

on the collected plasma samples and the concentration of plasma metabolites was assessed using 

a liquid chromatography / mass spectrometry (LS/MS) platform as previously described.(16,17) We 

removed metabolites with a high missing rate (≥ 20%) and replaced the missing values in the 

remaining metabolites by the half of minimum value of the same metabolite.(18) A total of 209 

metabolites were included in this study.  

BMD measurement and ascertainment of fracture incident 

We measured BMD (g/cm2) at the femoral neck (greater trochanter & Ward’s area) and lumbar 

spine (average BMD of L2-L4) using a Lunar dual-energy x-ray absorptiometry (DXA) between 

the sixth and the seventh examination of the FHS Offspring cohort. Further details about BMD 

measurements were well described previously.(19) Major incident osteoporotic fractures were 

assessed using self-report and subsequent medical record confirmation over 27 years of follow-up 

after the fifth examination. We defined incident osteoporotic fractures as follows: at least one 

fracture associated with falling from a standing height or less, excluding fracture at toes, fingers, 

skull, or face.  

Clinical covariates 

Clinical covariates including age (years), sex, body mass index (BMI, kg/m2), current smoking 

status, and menopausal status (women only) were assessed at baseline (i.e. the fifth examination). 
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BMI was calculated as weight divided by height squared. Current smoking status was defined as 

“yes” if an individual reported current smoking cigarettes regularly over the year preceding the 

Heart Study visit and “no” if an individual reported never smoking or smoking previously. 

Menopausal status in women was classified as “yes” for women whose menstruation stopped for 

at least 12 months and “no” otherwise. We additionally considered diabetes status, drinking status, 

and calcium intake at baseline for sensitivity analysis. Diabetes status was “yes” if an individual 

was treated for diabetes and “no” otherwise. Drinking status was defined as “yes” if an individual 

reported weekly drinking any type of alcohol and “no” otherwise. Calcium intake was “yes” if an 

individual reported taking calcium supplement and “no” otherwise. 

Replication cohort 

The Hong Kong Osteoporosis Study (HKOS) is a prospective cohort established since 1995. The 

cohort profile has been described elsewhere.(20) In brief, approximately 9,449 community-dwelling 

Southern Chinese subjects were recruited at baseline. Since 2015, these participants were invited 

to attend in-person follow-up visits. At both baseline and follow-up visits, the subjects were 

required to complete clinical assessments comprising physical examination (including 

measurement of height, weight, DXA-measured BMD, etc.) and self-reported questionnaires (such 

as tobacco use, menopause status, etc.). Fasting blood samples were also collected, with multiple 

aliquots of serum and plasma stored at -80 0C. Part of the serum samples collected at baseline and 

in-person follow-up visits were sent to a liquid chromatography–mass spectrometry (LC-MS) 

platform, Metabolon, for untargeted metabolomic profiling.(21) A total of 1,194 serum metabolites 

were profiled. Moreover, “in-silico” follow-up of the HKOS participants were performed using 

the electronic medical records available in the Clinical Data Analysis and Reporting System 

managed by the Hong Kong Hospital Authority.  
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Statistical analyses 

The clinical characteristics of participants are described by mean (SD) or count (%) in Table 1. 

Measurements of 209 plasma metabolites were natural logarithmically transformed and 

standardized. The flow-chart of analysis of this study is shown in Fig. 1. We first randomly split 

the entire sample into a testing dataset and a training dataset at a ratio of 4:6 by individuals’ family 

identification code to ensure that participants in the training dataset were unrelated to those in the 

testing dataset. For the training dataset, we then implemented a least absolute shrinkage and 

selection operator (LASSO) to select BMD-associated metabolites with tenfold cross validation, 

while the regularized parameter of LASSO with minimum mean cross-validated error was 

chosen.(22) We compared three models, including a model with conventional risk factors, 

consisting of age, sex, BMI, current smoking status, and menopausal status, a model with selected 

metabolites alone, and a model with both conventional risk factors and selected metabolites, on 

the testing dataset using adjusted R-squared. We repeated the process described above 100 times 

and selected the metabolites with cumulative selection frequency greater or equal to 50. We 

conducted the analysis for both FN-BMD and LS-BMD individually and estimated the variation 

of BMD explained by the selected metabolites. We also performed a sex-stratified analysis as a 

secondary analysis. We calculated the average of the adjusted R-squared using the testing dataset 

for 100 iterations and the overall adjusted R-squared using the entire dataset based on the final 

selected metabolites to determine whether incorporation of the selected metabolites improved 

model fitting for BMD. We used the F-test to test whether two nested models (model with 

conventional risk factors alone vs model with conventional risk factors + selected metabolites) 

were significantly different. Finally, we compiled a list of overall selected metabolites which were 

selected by either FN-BMD or LS-BMD analyses.  
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In order to investigate whether the overall selected metabolites improved the prediction accuracy 

of osteoporotic fracture, we fitted a logistic regression model for osteoporotic fracture (outcome) 

on conventional risk factors and conventional risk factors plus overall selected metabolites 

(predictor variables) separately and then compared their performance for predicting the risk of 

fractures using the areas under the receiver-operating-characteristic (ROC) curve (AUC) on the 

entire dataset. Nonparametric test (DeLong’s test) was used to compare the discriminative 

capability of two correlated ROC curves.(23)  Net reclassification index (NRI) and integrated 

discrimination improvement (IDI) were also estimated to evaluate the improvement in model 

performance introduced by the inclusion of selected metabolites.(24) Reclassification tables for 

subjects who do and do not experience major osteoporotic fracture during the follow-up were 

constructed into two categories using [0, 20%), [20%, 1] of predicted probability of fracture as the 

proxy of fracture risk based on the guideline of the National Osteoporosis Foundation of the United 

States.(25) All p-values are two-sided and the level of significance was set to 0.05. We also added 

either FN-BMD or LS-BMD to the above two models and compared their fracture risk prediction 

and classification using ROC curves, NRI, and IDI. As a sensitivity analysis, we included diabetes 

status, drinking status, and calcium intake as additional covariates in the model and repeated the 

same statistical strategies described above. 

Pathway enrichment analysis was performed on the selected metabolites using MetaboAnalyst 4.0 

(https://www.metaboanalyst.ca/).(26) The false discovery rate (FDR) of 0.05 was set as the 

significance level for pathway enrichment analysis. Next, we conducted a two-sample Mendelian 

randomization for causal inference for selected metabolites associated with BMD. We considered 

genetic variants associated with each selected metabolite at a genome-wide significant level (𝑝 <

5 × 10−8 ) from a genome-wide association study (GWAS).(27) We then conducted linkage 
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disequilibrium (LD) pruning at a threshold of 0.6 with minor allele frequency (MAF)>0.01 to 

exclude the genetic variants with high LD (https://ldlink.nci.nih.gov/?tab=snpclip). For each 

remaining genetic variant, we extracted the association results with FN-BMD and LS-BMD from 

the GWAS results reported by Estrada K. et al.(28) Inverse-variance weighted (IVW) estimators 

then can be calculated to make causal inference between selected metabolites and FN-BMD or LS-

BMD.(29) We also calculated the weighted median estimator.(30) We assessed the instrumental 

heterogeneity through the Q statistic and horizontal pleiotropy by Egger regression.(31) IVW p-

value less than 0.05 while both Q-statistic p-value and Egger regression intercept p-value greater 

than 0.05 was set as significance level. Significant outliers of instrumental variables can be 

detected by MR-PRESSO(32). We conduct the power analysis according to Deng et al.(33) We used 

the information about sample size of exposure and outcome, and proportion of exposure variance 

explained by the instrumental variables (r2) from the GWAS papers.(27,28) We estimated the 

variance of exposure and outcome from our study data. Since we only selected a subset of variants 

which were genome-wide significant, we also included two other settings for r2: 80% of the given 

proportion from the GWAS paper; assumed that each genome-wide significant variant explained 

0.01% of the variance. All analyses were conducted using R v3.5.3 program (https://cran.r-

project.org/) except pathway enrichment analysis. Glmnet, pROC, PredictABEL and 

MendelianRandomization, four packages implemented in R, were used for the analysis of LASSO, 

risk prediction evaluation, and Mendelian randomization.  

Results 

Conventional risk factors and osteoporosis-associated variables are shown in Table 1. In the 

discovery cohort, a total of 1,552 individuals were included in this analysis. The average age of 

participants was 55.4 years old. The proportion of women was 54.2% and 66% were post-
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menopausal. During a median follow-up period of 14 years (range 4-27) after the measurement of 

the plasma metabolites (i.e., baseline), 188 participants experienced at least one osteoporotic 

fracture. In the replication cohort, during a median of follow-up period of 10 years (range 0-22), 

36 out of 634 participants experienced at least one osteoporotic fracture. 

A total of 13 and 19 metabolites were selected at least 50 times out of 100 iterations to be associated 

with FN-BMD and LS-BMD in the discovery cohort, respectively (Supplementary Tables 1 & 

2). The selected metabolites explained 17% variation of FN-BMD and 19% variation of LS-BMD, 

respectively. Overall, 27 metabolites were identified by their associations with either FN-BMD or 

LS-BMD (Table 2). Among them, five metabolites (glycine, leucine, pyridoxate, sphingomyelin 

[SM] C22:0, and xanthurenate) were associated with both FN-BMD and LS-BMD. One selected 

metabolite, fruc_gluc_galac, was a complex of fructose, glucose, and galactose, which cannot be 

grouped into any one category. Thus, there was no corresponding Human Metabolome Database 

(HMDB) ID for it. We also associated BMD with selected metabolites either altogether or 

individually in a model after adjusting all conventional risk factors. We refer interested readers to 

Supplementary Table 3 for detail. One thing to mention is that only 18 out of 27 selected 

metabolites were available in the replication cohort. Therefore, all the results using replication 

cohort were based on those 18 available metabolites. Additionally, our secondary sex-stratified 

analysis in the discovery cohort identified more BMD-associated metabolites in female (15 and 

10) than in male (1 and 2) associated with FN- and LS-BMD, respectively (Supplementary Table 

4). Majority of them overlapped with above selected metabolites using the combined dataset.  

We present the adjusted R-squared results for the model comparisons in Table 3. Model 3 with 

conventional risk factors plus selected metabolites fit the data best with the highest adjusted R-

squared for both discovery and replication cohorts (FN-BMD: overall adjusted R2 = 0.36 in the 
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discovery cohort, and 0.39 in the replication cohort; LS-BMD: 0.28 for overall adjusted R2 in the 

discovery cohort, and 0.35 in the replication cohort) compared to model 1 with conventional risk 

factors alone (FN-BMD: 0.33 in the discovery cohort, and 0.36 in the replication cohort; LS-BMD: 

0.23 in the discovery cohort, and 0.30 in the replication cohort) and model 2 with selected 

metabolites alone (FN-BMD: 0.16 in the discovery cohort, and; LS-BMD: 0.18 in the discovery 

cohort, and 0.13 in the replication cohort). Meanwhile, model 3 was significantly different from 

model 1 by F-test with overall p-value less than 0.001 for FN-BMD and LS-BMD in both 

discovery and replication cohorts. In the sensitivity analysis, additionally adjusting for diabetes 

status, drinking status, and calcium intake in the model 3, the model with clinical risk factors plus 

selected metabolites still fit the data best with the highest adjusted R2 and was significantly 

different from model 1 with p-value less than 0.001 for both FN-BMD and LS-BMD in the 

discovery cohort (Supplementary Table 5). 

In terms of fracture risk prediction, 27 selected metabolites significantly improved osteoporotic 

fracture risk prediction when added to conventional risk factors using the entire dataset (AUC = 

0.74 [95% CI 0.70, 0.77] for model 2 with conventional risk factors + selected metabolites vs AUC 

= 0.70 [95% CI 0.66, 0.74] for model 1 with conventional risk factors alone, 𝑝 = 0.001) (Fig. 2A). 

The difference in average predicted risks between the individuals with and without fracture 

increased by 3.1% in the model 2 (IDI=0.031, 𝑝 < 0.001). Besides, when additionally accounting 

for FN-BMD or LS-BMD, the models with selected metabolites in addition to conventional risk 

factors still performed significantly better than the models with conventional risk factors alone 

(AUC = 0.75 [95% CI 0.72, 0.79] for model 2 with conventional risk factors + FN-BMD + selected 

metabolites vs AUC = 0.72 [95% CI 0.68, 0.76] for model 1 with conventional risk factors + FN-

BMD , 𝑝 = 0.002; AUC = 0.74 [95% CI 0.71, 0.78] for model 2 with conventional risk factors + 
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LS-BMD + selected metabolites vs AUC = 0.71 [95% CI 0.67, 0.75] for model 1 with conventional 

risk factors + LS -BMD , 𝑝 = 0.003 ) (Fig. 2B & 2C). The IDI=0.029 with 𝑝 < 0.001 and 

IDI=0.032 with 𝑝 < 0.001  for models additionally accounting for FN-BMD and LS-BMD, 

respectively. These results were replicated in the HKOS (Table 4). 

Reclassification table for subjects with and without a major osteoporotic fracture event during 

follow-up are summarized in Table 5. Take model 1 with conventional risk factor alone vs model 

2 with conventional risk factor + selected metabolites as an example. For 23 individuals who 

experience a fracture event, model 2 with selected metabolites improved the classification (i.e. 23 

individuals with events moved from the low-risk group [0, 20%) in model 1 to the high-risk group 

[20%, 1] in model 2). For 11 people with fracture event, the model 2 classification became worse 

(i.e. 11 individuals with events moved from the high-risk group [20%, 1] in model 1 to the low-

risk group [0, 20%) in model 2). Similarly, for people who do not experience a fracture event, 

classification improved for 78 individuals and got worse for 70 individuals using the model 2 with 

selected metabolites. Overall, model 2 significantly improved classification of fracture risk with 

the NRI=0.07 (p-value=0.03). When additionally accounting for either FN-BMD or LS-BMD, 

model 2 with selected metabolites still significantly improved classification of fracture risk (FN-

BMD: NRI=0.08, p-value < 0.001; LS-BMD: NRI=0.12, p-value < 0.001). These results were also 

replicated in the HKOS except for model 2 + FN-BMD vs model 1 + FN-BMD with p-value=0.16 

(Table 4). In the sensitivity analysis with additional clinical risk factors in the model using the 

discovery cohort, incorporating selected metabolites still significantly improved osteoporotic 

fracture prediction (AUC=0.75 [95% CI 0.71, 0.78] for model 2 vs AUC=0.71 [95% CI 0.67, 0.75] 

for model 1, 𝑝 = 0.002) although model 2 no longer significantly improved classification of 

fracture risk with the NRI=0.056 (p-value=0.14) (Supplementary Table 6). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.16.21249919doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.16.21249919
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

Based on the selected 27 metabolites, the glycine, serine, and threonine metabolism pathway 

including four identified metabolites (creatine, dimethylglycine, glycine, and serine) was 

significantly enriched with an FDR adjusted p-value=0.028. We also performed two-sample 

Mendelian randomization to investigate the causal effect of these selected metabolites on BMD. 

We focused on six selected metabolites (leucine, glycine, creatinine, phosphatidylcholine [PC], 

sphingomyelin [SM], and triacylglycerol [TAG]) since the genetic association data for the other 

selected metabolites were not available in the GWAS (27). Three selected metabolites (glycine, PC, 

and TAG) had a causally negative association with FN-BMD and two (PC and TAG) had a causally 

negative association with LS-BMD at a significance level of 0.05 based on IVW p-value while 

heterogeneity and horizontal pleiotropy were not observed (i.e. neither p-value of Q statistic nor 

p-value of Egger regression intercept was less than 0.05) (Table 6). In particular, for every 1 

standard deviation increase in glycine, the value of FN-BMD decreases 0.033 in g/cm2. Similarly, 

LS-BMD decreased by 0.136 g/cm2 for each standard deviation increase in PC. Note that PC with 

FN-BMD as outcome and TAG with either FN- or LS-BMD as outcome are no longer significant 

based on the weighted median method (Table 6). We did not observe any significant outliers 

through MR-PRESSO. All the related genetic variants are available in Supplementary Table 7. 

The power analysis under type I error (𝛼 = 0.05) demonstrates insufficient power (estimated 

power < 0.4) to detect the significant association between leucine and creatinine with either FN- 

or LS-BMD, glycine with LS-BMD, and SM with FN-BMD for all three settings of r2 

(Supplementary Table 8). Therefore, those insignificant associations between selected 

metabolites and BMD could be due to limited statistical power. 

Discussion 
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We performed an association study among FHS Offspring participants relating plasma metabolites 

to both FN-BMD and LS-BMD, and we assessed the use of metabolites for predicting the risk of 

major osteoporotic fractures over a follow-up period exceeding two decades. We identified 27 

metabolites that were associated with FN-BMD or LS-BMD. Incorporating these metabolites into 

a prediction model for fractures significantly improved the prediction of osteoporotic fracture risk 

beyond the conventional clinical risk factors including sex, age, BMI, current smoking status, and 

menopausal status. These results were replicated in an independent study and showed the potential 

of metabolites in the prediction of fracture. Additionally, the glycine, serine, and threonine 

metabolism pathway (including four identified metabolites: creatine, dimethylglycine, glycine, 

and serine) was significantly enriched. Among six selected metabolites, using Mendelian 

randomization, three (glycine, PC, and TAG) were found to be causally negatively associated with 

FN-BMD. Two of these metabolites (PC and TAG) were causally negatively associated with LS-

BMD. It suggested that those metabolites may contribute to alterations in BMD and may relate to 

osteoporosis pathogenesis.  

A major clinical implication of our study is that incorporating selected metabolites can help 

improve osteoporotic fracture risk prediction beyond conventional clinical risk factors. Previous 

studies have only shown that incorporating metabolites can improve the classification of people 

with different levels of BMD, but not directly on osteoporotic fracture risk prediction.(9-11) Our 

study additionally demonstrated that lipid profiles (11 out of 27 selected metabolites are lipid-

related) and amino acids (six out of 27 selected metabolites belong to amino acids) might involve 

in bone metabolism, which was consistent with previous studies (Table 2).(11,34) We not only 

confirmed previous reports of associations between two selected plasma metabolite 

(dimethylglycine, creatinine) and BMD,(9,13) we also identified many novel metabolites compared 
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to other studies. One possible reason could be that different types of metabolites were measured 

across different studies without a uniform standard, which suggests that a harmonized platform for 

metabolomic analysis is needed for future studies.  

The glycine, serine and threonine metabolism pathway was enriched based on the selected 

metabolites in our study, which was consistent with a recent association analysis finding reported 

by Zhao Q. and colleagues.(10) While there is no known direct mechanism to explain our pathway 

enrichment results related to osteoporosis, three (creatine, dimethylglycine, and glycine) out of the 

four selected metabolites involved in this pathway have been reported to be associated with bone 

health in various ways. The creatine/phosphorylcreatine system is involved in bioenergetic 

processes, especially in tissues with high metabolic demand such as skeletal muscle and bone.(35) 

A recent review suggested that creatine may affect the bone remodeling process and have 

beneficial effects on lean mass and muscle for older individuals.(35) Dimethylglycine belongs to 

the choline oxidation pathway and is demethylated in the mitochondria, leading to the subsequent 

formation of glycine, which is a non-essential amino acid.(36) Low plasma dimethylglycine was 

found to be associated with low BMD and an increased risk of hip fractures by Øyen J et al.(37) 

Men with idiopathic osteoporosis had a higher plasma glycine.(38) Our Mendelian randomization 

results (Table 6) also supported that glycine was causally negatively associated with FN-BMD. In 

other words, higher plasma glycine may result in lower FN-BMD and osteoporosis. In addition, 

our Mendelian randomization analysis found that PC and TAG may causally result in lower FN- 

and LS-BMD (Table 6). PC and TAG are both lipids. Several studies suggest that lipid profiles 

are associated with BMD and might be useful for osteoporosis prediction.(11,12) One study reported 

that higher concentrations of phosphatidylcholine docosahexaenoic acid (PC DHA) was associated 

with loss of FN-BMD over 4 years in women, where PC is the backbone of PC DHA.(39) Overall, 
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though our identified metabolites may be of potential clinical value for the early detection of 

osteoporosis, further experimental validation and clinical replication are required. We anticipate 

that based on studies like ours and those of others, these data will guide future hypothesis-driven 

analyses for better understanding of the relationship between metabolites and skeletal traits. 

Due to the difficulties in harmonizing metabolite platforms, one potential limitation of this study 

was the external validation. While our results were in general replicated, not all of our selected 

metabolites were available in our replication cohort. A second limitation of our investigation was 

that only 209 metabolites were measured. As technology advances, the number of identifiable 

metabolites increases. We believe that including more metabolites in a future association study is 

meaningful to get a more comprehensive understanding of the relationship between metabolites 

and osteoporosis. Third, BMD were measured two to ten years later after metabolites measured 

and the storage time for metabolites were about 15-20 years in our discovery and require more 

validations even though we had replicated our results in an independent study. Lastly, we did not 

conduct the analysis to account for time-varying covariates. Such analysis also be of interest 

because the metabolite’s measurements may change over time. This would be a potential future 

direction with newly generated data. 

In conclusion, we identified 27 metabolites that were associated BMD and helpful in osteoporotic 

fracture risk prediction. The glycine, serine and threonine metabolism pathway was significantly 

enriched based on our selected metabolites. Three selected metabolites (glycine, PC, and TAG) 

had causally negative associations with BMD. These identified metabolites may have a role in the 

early stages of osteoporosis and may provide novel insights into the mechanisms underlying this 

disease. Our findings raise the possibility of using metabolite profiling to improve the prediction 

of osteoporotic fracture if confirmed by other studies.  
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Supplemental Data include eight tables. 
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Fig. 1. Flow-chart illustrating the main steps of the analysis.  

First, the entire sample was randomly split into a testing dataset and a training dataset at a ratio of 

4:6 by individuals’ family id. For the training dataset, we then implemented a least absolute 

shrinkage and selection operator (LASSO) to select bone mineral density (BMD)-associated 

metabolites with ten-fold cross validation, while the regularized parameter of LASSO with 

minimum mean cross-validated error was chosen. Models with conventional risk factors alone, 

selected metabolites alone, and both conventional risk factors and selected metabolites were 

compared on the testing dataset through adjusted R-squared. We iterated the process (red dashed 

line) for 100 times and selected the metabolites with cumulative selection frequency greater or 

equal to 50. We conducted the analysis using both femoral neck (FN)-BMD and (LS)-BMD 

individually. Finally, we got a list of overall selected metabolites which were selected by either 

FN-BMD or LS-BMD. Next, we evaluated the fracture prediction accuracy and fracture risk 

classification using the overall selected metabolites on the entire dataset by the receiver-operating-

characteristic (ROC) curve and net reclassification index (NRI). Pathway enrichment analysis was 

performed on the selected metabolites. We also conducted a two-sample Mendelian randomization 

for causal inference between selected metabolites and BMD. 
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Fig. 2. ROC curves of models for predicting osteoporotic fracture incidence with and without 

selected metabolites.  

(A) Blue line, model 1 with conventional risk factors alone: AUC = 0.70 (95% CI 0.66, 0.74); red 

line, model 2 with conventional risk factors + selected metabolites: AUC = 0.74 (95% CI 0.70, 

0.77), with p-value=0.001. (B) Blue line, model 1 with conventional risk factors + FN-BMD: AUC 

= 0.72 (95% CI 0.68 0.76); red line, model 2 with conventional risk factors + FN-BMD + selected 

metabolites: AUC = 0.75 (95% CI 0.72, 0.79), with p-value=0.002. (C) Blue line, model 1 with 

conventional risk factors + LS-BMD: AUC = 0.71 (95% CI 0.67 0.75); red line, model 2 with 

conventional risk factors + LS-BMD + selected metabolites: AUC = 0.74 (95% CI 0.71, 0.78), 

with p-value=0.003. The p-value, calculated from DeLong’s test, less than 0.05 suggests the 

significant difference between two ROC curves. AUC=Area under curve. ROC=Receiver 

Operating Characteristic. BMD=bone mineral density. FN=femoral neck. LS=lumbar spine. 
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Table 1. Clinical characteristics of participants in discovery and replication cohorts. Continuous 

variables are summarized as mean (SD=standard deviation) and categorical variables are 

summarized as count (percentage). 

 BMI=body mass index. BMD=bone mineral density. 

  

 Discovery cohort Replication cohort 

Characteristic  Mean (SD) or  

Count (percentage) 

Mean (SD) or  

Count (percentage) 

Number of participants 1552 634 

Age, years  55.4 (9.5)  52.1 (14.2) 

Women 841 (54.2%) 525 (82.8%) 

BMI, kg/m2 27.5 (4.9) 22.8 (3.8) 

Postmenopausal 555 (66%) 293 (55.8%) 

Current smoking 246 (15.9%) 26 (4.1%) 

Femoral neck BMD, g/cm2 0.9 (0.2) 0.7 (0.2) 

Lumbar spine BMD, g/cm2 1.2 (0.2) 0.9 (0.2) 
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Table 2. Twenty-seven metabolites were repeatedly selected ≥ 50 times in 100 iterations based on 

either FN-BMD or LS-BMD analysis. 

Name Trait Chemical class Name Trait Chemical class 

aconitate 

FN 

BMD 

Carboxylic acids 

and derivatives PC C36:2 

FN 

BMD Glycerophospholipids 

ADP 

LS 

BMD Purine nucleotides pyridoxate 

FN & 

LS 

BMD  

Pyridines and 

derivatives 

creatine 

LS 

BMD Amino acids serine 

LS 

BMD Amino acids 

creatinine 

LS 

BMD Amino acids serotonin 

LS 

BMD Indoles and derivatives 

dimethylglycine 

FN 

BMD Amino acids SM C16:1 

FN 

BMD 

Organonitrogen 

compounds 

fruc_gluc_galac 

LS 

BMD N.A. SM C18:1 

LS 

BMD Sphingolipids 

glycine 

FN & 

LS 

BMD  Amino acids SM C22:0 

FN & 

LS 

BMD  Sphingolipids 

hydroxyglutarate 

FN 

BMD 

Hydroxy acids and 

derivatives sucrose 

FN 

BMD 

Carbohydrates and 

carbohydrate 

conjugates 

hypoxanthine 

LS 

BMD 

Imidazopyrimidine

s TAG C48:0 

LS 

BMD Glycerolipids 

leucine 

FN & 

LS 

BMD  Amino acids TAG C50:1 

LS 

BMD Glycerolipids 

LPC C18:1 

LS 

BMD 

Glycerophospholipi

ds TAG C54:4 

LS 

BMD Glycerolipids 

LPE C18:2 

FN 

BMD 

Glycerophospholipi

ds TAG C58:10 

LS 

BMD Glycerolipids 

pantothenate 

FN 

BMD 

Organooxygen 

compounds xanthurenate 

FN & 

LS 

BMD  

Quinolines and 

derivatives 

PC C36:1 

LS 

BMD 

Glycerophospholipi

ds    

BMD=bone mineral density. FN=femoral neck. LS=lumbar spine. SM=Sphingomyelin. 

LPE=Lysophosphatidylethanolamine. PC=Phosphatidylcholine. LPC=Lysophosphatidylcholine. 

TAG=Triacylglycerol. fruc_gluc_galac=Fructose+glucose+galactose. N.A.=not available  
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Table 3. Average and overall results of model comparisons 
  

Average results 

on the testing 

dataset over 100 

iterations 

Overall 

results on 

the entire 

discovery 

cohort 

 

Results on 

the 

replication 

cohort  

 
Models Average 

adjusted R2 

Overall 

adjusted 

R2 

Overall 

adjusted 

R2 

FN-

BMD 

Model 1: conventional risk factors 

alone (sex, age, BMI, current 

smoking status, menopausal status) 

0.33 0.33 0.36 

 
Model 2: selected metabolites alone 0.15 0.16 0.09 

 
Model 3: conventional risk factors + 

selected metabolites 

0.34 0.36 

 

0.39 

   Overall p-

value 

Overall 

p-value 

 Comparison of model 1 and model 3 

by F-test 

 < 0.001   <0.001 

LS-

BMD 

Model 1: conventional risk factors 

alone (sex, age, BMI, current 

smoking status, menopausal status) 

0.23 0.23 0.30 

 
Model 2: selected metabolites alone 0.15 0.18 0.13 

 
Model 3: conventional risk factors + 

selected metabolites 

0.25 0.28 0.35 

   Overall p-

value 

Overall 

p-value 

 Comparison of model 1 and model 3 

by F-test 

 < 0.001   <0.001 

Average adjusted R2 calculates the mean of adjusted R2 over 100 iterations using the testing 

dataset. Overall adjusted R2 is the adjusted R2 based on the final selected metabolites whose 

cumulative selection frequency ≥ 50 over 100 iterations using the entire dataset. Overall p-value 

calculated the p-value from the F-test between model 1 and model 3 on the entire dataset. 

BMD=bone mineral density. FN=femoral neck. LS=lumbar spine. 
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Table 4. Model evaluation for fracture risk prediction 

 Models AUC 95% CI of 

AUC 

Delong’s test 

p-value 

IDI IDI p-

value 

NRI  NRI p-

value 

Discovery 

cohort 

Model 1: 

conventional 

risk factors 

alone 

0.70 0.66, 0.74 N.A. N.A. N.A. N.A. N.A. 

 Model 2: 

conventional 

risk factors + 27 

selected 

metabolites 

0.74 0.70, 0.77 0.001 0.031 <0.001 0.07 0.03 

 Model 1+ FN-

BMD 

0.72 0.68, 0.76 N.A. N.A. N.A. N.A. N.A. 

 Model 2+ FN-

BMD 

0.75 0.72, 0.79 0.002 0.029 <0.001 0.08 <0.001 

 Model 1+ LS-

BMD 

0.71 0.67, 0.75 N.A. N.A. N.A. N.A. N.A. 

 Model 2+ LS-

BMD 

0.74 0.71, 0.78 0.003 0.032 <0.001 0.12 <0.001 

Replication 

cohort 

Model 1: 

conventional 

risk factors 

alone 

0.81 0.73, 0.89 N.A. N.A. N.A. N.A. N.A. 

 Model 2: 

conventional 

risk factors + 18 

selected 

metabolites 

0.87 0.81, 0.94 0.013 0.110  <0.001 0.23 0.03 

 Model 1+ FN-

BMD 

0.87 0.80, 0.93 N.A. N.A. N.A. N.A. N.A. 

 Model 2+ FN-

BMD 

0.91 0.86, 0.96 0.015 0.079  0.003 0.09 0.16 

 Model 1+ LS-

BMD 

0.85 0.78, 0.92 N.A. N.A. N.A. N.A. N.A. 

 Model 2+ LS-

BMD 

0.89 0.83, 0.95 0.022 0.089  0.001 0.26  0.01 

Model 1: conventional risk factors includes sex, age, BMI, current smoking status, menopausal 

status. Model 2: conventional risk factors which includes sex, age, BMI, current smoking status, 

menopausal status plus 27 or 18 selected metabolites. Participants were grouped into two 

categories, [0, 20%) and [20%, 1], based on their fracture risk for NRI. Delong’s test, IDI, and 
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NRI were used to compare model 2 and model 1, and additionally accounting for FN-BMD or 

LS-BMD for both model 2 and model 1. AUC=Area under curve. IDI=Integrated discrimination 

improvement. NRI=Net reclassification index. CI=confidence interval. BMD=bone mineral 

density. FN=femoral neck. LS=lumbar spine. N.A.=not applicable 
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Table 5. Reclassification table among people with and without a major osteoporotic fracture 

event during follow-up 

Models without selected metabolites Models with selected metabolites  

Model 1: Conventional risk factors 

alone 

Model 2: Conventional risk factors + 

selected metabolites 

 

Individuals who experience a major osteoporotic fracture event 

Fracture risk [0, 20%) [20 %, 1] Total 

[0, 20%) 102 23 125 

[20 %, 1] 11 52 63 

Total 113 75 188 

Individuals who do not experience a major osteoporotic fracture event 

Fracture risk [0, 20%) [20 %, 1] Total 

[0, 20%) 1092 70 1162 

[20 %, 1] 78 124 202 

Total 1170 194 1364 

Overall NRI=0.07 NRI p-value=0.03  

    

Model 1 + FN-BMD Model 2 + FN-BMD   

Individuals who experience a major osteoporotic fracture event 

Fracture risk [0, 20%) [20 %, 1] Total 

[0, 20%) 94 23 117 

[20 %, 1] 9 62 71 

Total 103 85 188 

Individuals who do not experience a major osteoporotic fracture event 

Fracture risk [0, 20%) [20 %, 1] Total 

[0, 20%) 1104 60 1164 

[20 %, 1] 71 129 200 

Total 1175 189 1364 

Overall NRI=0.08 NRI p-value < 0.001    

    

Model 1 + LS-BMD Model 2 + LS-BMD   

Individuals who experience a major osteoporotic fracture event 

Fracture risk [0, 20%) [20 %, 1] Total 

[0, 20%) 95 27 122 

[20 %, 1] 8 58 66 

Total 103 85 188 

Individuals who do not experience a major osteoporotic fracture event 

Fracture risk [0, 20%) [20 %, 1] Total 

[0, 20%) 1103 57 1160 

[20 %, 1] 76 128 204 

Total 1179 185 1364 

Overall NRI=0.12 NRI p-value < 0.001    

    

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.16.21249919doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.16.21249919
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

Model 1: conventional risk factors includes sex, age, BMI, current smoking status, menopausal 

status. Model 2: conventional risk factors which includes sex, age, BMI, current smoking status, 

menopausal status plus 27 selected metabolites. Logistic regression was fitted to get the 

predicted probability of fracture as fracture risk here for all models. Participants were grouped 

into two categories, [0, 20%) and [20%, 1], based on their fracture risk. NRI=Net reclassification 

index. CI=confidence interval. BMD=bone mineral density. FN=femoral neck. LS=lumbar spine. 
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Table 6. Two-sample Mendelian randomization results for FN-BMD and LS-BMD 

Exposure 

(Metabolite

) 

Outcome 

(BMD) 

IVW 

beta 

IVW p-

value 

Weighte

d median 

beta 

Weighte

d median 

p-value 

Q 

statisti

c p-

value 

Egger 

regressio

n 

intercept 

p-value 

leucine FN BMD -0.028 0.63 -0.057 0.34 0.22 0.75  
LS BMD 0.071 0.19 0.074 0.24 0.35 0.72 

glycine FN BMD -0.033 2.51×10
-5 

-0.040 6.82×10-4 0.98 0.87 

 
LS BMD -0.013 0.14 -0.017 0.16 0.89 0.71 

creatinine FN BMD 0.074 0.39 0.169 0.03 0.01 1.08×10-4  
LS BMD 0.146 0.02 0.164 0.04 0.16 3.90×10-3 

PC FN BMD -0.066 6.89×10
-3 

-0.043 0.19 0.84 0.05 

 
LS BMD -0.136 1.84×10

-7 

-0.106 2.96×10-3 0.57 0.30 

SM FN BMD -0.017 0.75 -0.011 0.84 0.06 0.21  
LS BMD -0.145 0.01 -0.164 7.41×10-3 0.05 0.03 

TAG FN BMD -0.065 7.46×10
-3 

-0.033 0.35 0.78 0.59 

 
LS BMD -0.070 0.02 -0.039 0.35 0.18 0.54 

Genetic information of above six metabolites (exposure) and two outcomes, FN-BMD and LS-

BMD, are available from the summary statistics of GWAS.23,24 IVW (inverse variance weighted) 

beta estimates the causal effect of each selected metabolite on BMD, either FN-BMD or LS-

BMD. Q statistic p-value less than 0.05 indicates the instrumental heterogeneity for each selected 

metabolite. Egger regression intercept p-value less than 0.05 implicates the horizontal pleiotropy 

for the instrumental variants of each selected metabolite. IVW p-value less than 0.05 while both 

Q-statistics p-value and Egger regression intercept p-value greater than 0.05 was set as the 

significance level. Bold ones are the metabolites with significant causal effect on either FN-

BMD or LS-BMD. BMD=bone mineral density. FN=femoral neck. LS=lumbar spine. 

IVW=inverse-variance weighted. PC=phosphatidylcholine. SM=Sphingomyelin. 

TAG=Triacylglycerol. 
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