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Summary
A Bayesian framework for group testing under dilution effects has been developed, using lattice-
based models. This work has particular relevance given the pressing public health need to enhance
testing capacity for COVID-19 and future pandemics, and the need for wide-scale and repeated
testing for surveillance under constantly varying conditions. The proposed Bayesian approach
allows for dilution effects in group testing and for general test response distributions beyond
just binary outcomes. It is shown that even under strong dilution effects, an intuitive group
testing selection rule that relies on the model order structure, referred to as the Bayesian halving
algorithm, has attractive optimal convergence properties. Analogous look-ahead rules that can
reduce the number of stages in classification by selecting several pooled tests at a time are
proposed and evaluated as well. Group testing is demonstrated to provide great savings over
individual testing in the number of tests needed, even for moderately high prevalence levels.
However, there is a trade-off with higher number of testing stages, and increased variability.
A web-based calculator is introduced to assist in weighing these factors and to guide decisions
on when and how to pool under various conditions. High performance distributed computing
methods have also been implemented for considering larger pool sizes, when savings from group
testing can be even more dramatic.
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2 C. Tatsuoka and others

1. Introduction

The group testing formulation originated by Dorfman (Dorfman (1943)) has found use in a diverse

array of applications, including COVID-19 testing. The motivating idea of group testing for a

disease like COVID-19 is that, say if biomarker samples from N,N > 1 subjects are pooled, and if

the prevalence is low, most likely the test result for the pooled sample will be negative, indicating

that all N subjects in the pool are negative, using only one test. On the other hand, if the result

indicates a positive test, and hence there is at least one positive sample present among the pool,

then further testing can be conducted to identify the positive subjects. Dorfman suggested that

all samples which comprise a positively-tested pool should subsequently be tested individually.

This approach has been adopted broadly. Nonetheless, in the presence of testing error, this

approach can be problematic, in that classification error thresholds may not be reached. An

important potential source of testing error is through dilution, which may occur when pooled

samples contain few positives relative to a larger number of negatives. Another important aspect

of COVID-19 is the constantly changing prevalence and individual risk levels, such as through

seasonality, uneven vaccination rates, and the emergence of new variants. A Bayesian approach is

well-suited for acknowledging and incorporating this heterogeneity into the classification process.

Described here is a Bayesian framework for systematically addressing these important issues in

pooled testing for COVID-19.

Recently, the Food and Drug Administration (FDA) has released guidelines for allowing group

testing of patients suspected of having COVID-19. There is thus a renewed flurry of interest in

group testing for COVID-19 (Lohse and others (2020); Majid and others (2020); Hogan and others

(2020); Shental and others (2020); Donoho and others (2020)), as it can play a fundamental role

in efficient disease surveillance. As there is a large percentage of asymptomatic cases, widespread

testing is important for understanding and controlling spread. There also is a need for monitoring

large swaths of the population through repeated testing, such as for front line and essential
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workers, and those at high risk. A potential drawback to such type of surveillance is the reliance

on imprecise testing. PCR-based assays based on samples taken with nasal swabs can be highly

accurate, although issues with sample collection or mis-priming can lead to errors. These error

levels also arise with pooling, and increase with pool size. We refer to this phenomenon as a

dilution effect. For instance, false negative results from pooling with PCR-based assays that

include one positive COVID-19 sample have respectively been estimated to range from 0.07,

0.09, and 0.19 for pools of size 5, 10 and 50 Bateman and others (2021). Fast, less expensive,

and non-intrusive approaches for testing, such as those based on saliva, can broaden the scope

of testing, but may be even less accurate. Emergence of variants also may affect testing error in

the future.

A basis for the proposed group testing methods are models known as lattices, in which the

classification states that represent the profiles of positivity among test subjects follow a par-

tial ordering. This order structure is used to guide next stage pool selection, and importantly,

it provides fundamental insight into the convergence properties of Bayesian group testing with

dilution effects. The proposed Bayesian group testing approach explicitly acknowledges testing

error and heterogeneity in individual risk levels through prior distribution specification, and can

be applied with general response distributions, i.e. either quantitative or categorical test re-

sponses. For COVID-19, these outcomes could be viral load level or type of variants detected.

Importantly, individual-level classification error can be systematically be reduced to any error

threshold, as our proposed approach has attractive optimality properties even in light of dilution

effects in which correct classification can efficiently be made for all test subjects. A framework for

sequential Bayesian classification on lattices has been described earlier (Tatsuoka and Ferguson

(2003)). This current work differs from the previous formulation as we now consider test response

distributions that depend on pool size and the number of positives in the pool. In terms of theo-

retical work involving partially ordered classification models, rules that rely on Kullback-Leibler
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information of response distributions that are specific to the experiment, such as in cognitive and

educational adaptive testing, has been studied (Tatsuoka (2014)). Theoretical properties of group

testing problems using partially ordered classification models also have been described (Ferguson

and Tatsuoka (2004); Tatsuoka (2005)).

Group testing has a rich statistical literature that has expanded upon Dorfman’s seminal work.

An important result in group testing by Ungar (Ungar (1960)) gives a demarcation for when it

is optimal to group test when responses are binary and there is no testing error. A Bayesian

approach was first described in Sobel and Groll (Sobel and Groll (1966)), where binary responses

without testing error are assumed. In addition to screening for disease, group testing has been used

in genetics testing (Gastwirth (2000); Sham and others (2002)), and to identify promising drug

compounds (Xie and others (2001); Remlinger and others (2006)). The phenomenon of testing

error in group testing has been widely recognized (Graff and Roeloffs (1972); Hwang (1976); Litvak

and others (1994); Thierry-Mieg (2006); Kim and others (2007)), including dilution effects with

specific functional forms (Hwang (1976); Zenios and Wein (1998); Hung and Swallow (1999)).

The possibility that subjects have different probabilities of being positive but with no testing

error has been considered (Hwang (1975); Black and others (2012)). Beyond binary, responses

have been assumed to be normally distributed (Zenios and Wein (1998)), and to reflect viral load

levels (Ghosh and others (2020)). Group testing has been studied in the context of multiplex and

high throughput testing (Bilder and others (2019); Donoho and others (2020). In (Bilder and

others (2019)), it is shown that taking into account heterogeneous prior probabilities can improve

efficiency. Recently, methods for non-adaptive single-stage COVID-19 group testing have been

suggested which are primarily based on the idea of compressed sensing (Shental and others (2020);

Ghosh and others (2020)). These methods have overlapping pools and can potentially identify the

positive samples with a single stage of testing. However, they can only work well when prevalence

rate is very low (< 1.3%), and are not necessarily convergent, as the confounding of positive
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cases is still possible. There also was no prior information included on samples and no dilution

effect. Estimation of proportion such as for disease prevalence is an important application in group

testing. Previous work has been based on binary outcomes (Sobel and Groll (1966); Gastwirth and

Hammick (1989); Gastwirth and Johnson (1994); Hughes-Oliver and Swallow (1994); Brookmeyer

(1999); Tebbs (2003)).

Below, we will first introduce the proposed method and related notions, with an example.

We then summarize theoretical properties for optimal designs in Bayesian group testing with

general response distributions, and for an intuitive pooled test selection rule. k-test look ahead

analogues are presented as well, which select k tests at a time, and can reduce the back and

forth in preparation and testing. Finally, we introduce a web-based tool that implements the

proposed algorithms and graphically represents results. Example scenarios are presented, which

demonstrate the efficiency gains of group testing, and the trade-offs among the selection rules.

As well, a brief note in the Appendix is given on how Bayesian estimation of prevalence can

be conducted within the proposed framework through mixtures of posteriors. This is relevant to

surveillance of COVID-19. Proofs of theorems and a more thorough technical discussion are also

given in the Appendix.

2. Methods

2.1 Lattice Models for Bayesian Group Testing

We illustrate how lattice-based classification models can be applied in Bayesian group testing

with dilution effects.

Example 1. Consider all the possible subsets generated by subjects A and B, as in Figure 1a.

Suppose each subset represents a profile of the subjects that are negative for COVID-19. Hence,

one of these subsets represents the true state. The collection of these subsets thus form the

classification model, and we henceforth refer to them as states: State AB denotes that both A
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and B are negative, state A denotes that only A is negative, and hence B is positive. Similarly,

state B denotes that only B is negative. State 0̂ represents that both subjects are positive.

Denote the collection of these states as S. In the above example, S = {AB,A,B, 0̂}. These

states (i.e. all the possible subsets of subjects that are negative) actually have a specific order

structure in that they can be ordered by inclusion, and form what is known as a powerset lattice.

When ordering by inclusion, note for instance that state AB is greater than states A, B, and 0̂

because the set comprised of both A and B contains A alone, B alone, and 0̂, respectively. On

the other hand, states A and B are incomparable, as there is no inclusion relationship between

the respective subsets. In this example, there are two subjects, and 4 possible profiles of them

being positive or negative.

In general, for N subjects, there are 2N such possibilities, corresponding to the powerset of

the N subjects. Note in Figure 1 are lattice models for N = 2 and 5 subjects. Further, note that

there is essentially a one-to one correspondence between states in lattice model and potential

pooled tests. There are 2N - 1 possible way to pool tests, since the empty set, represented as 0̂,

is not a possible test. So, in this example, for state AB, there is also a pooled test with samples

from both A and B; for state B, there is a test consisting of a sample only from subject B, etc.

We denote a pooled test associated with a state e ∈ S\0̂ as
˜
e.

As the size of classification model and experiment pool grow exponentially in N , significant

computational challenges arise. We have implemented distributed computing and numerical al-

gorithms that allow models with N = 25 (over 33 million classification states and experiments)

to feasibly be analyzed when comparing performance across algorithms. We expect this num-

ber to further increase with algorithmic and hardware improvements. An overview of computing

approaches are given at the end of the Appendix.

We adopt a Bayesian approach. An advantage is the allowance for individual-level prior in-

formation about positivity into the classification process, as well as systematic characterization
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of uncertainty from potential testing error. In a Bayesian framework, the posterior probability

values embody the combined empirical and prior evidence as to which state in the classification

model is the true one. Larger posterior probability values for the true state are clearly desirable,

with a probability value of 1 indicating certainty in correctly identifying the true status of posi-

tivity for all the subjects. A stage of testing is an iteration of preparing a collection of (pooled)

samples for testing and observing the results of the test(s). The posterior distribution after n

stages of testing on the collection of classification states S will be denoted as πn, and for a state

j ∈ S, the posterior probability value that state j is the true state is πn(j). Corresponding prior

distribution values are denoted as π0 and π0(j).

For instance, prior to testing for COVID-19, each subject could be assigned a prior probability

of positivity based on generalized linear regression modeling, with explanatory variables such as

age, gender, location of residence, travel history, status of household contacts, community infec-

tion rates in relation to specific variants, etc. For a given profile of the N subjects in terms of their

positivity status, to obtain its prior probability, we take the product of the respective individual

prior probabilities for their respective status in the profile. These values form a prior probability

distribution across the possible states. After a (pooled) test result is observed, using Bayes rule,

prior probabilities are updated to posterior probabilities. We illustrate these computations in the

example below.

Example 1, continued. Suppose that for a subject A the prior probability that he/she is a

positive (e.g. has COVID-19) is 0.05, and independently for a higher at-risk subject B it is 0.10.

The prior probabilities for state membership follows: for state AB, π0(AB) = (0.95)(0.90) =

0.855, for state A it is π0(A) = (0.95)(0.10) = 0.095, π0(B) = (0.05)(0.90) = 0.045, and π0(0̂) =

0.005. Possible tests include pooling A and B, and testing each subject individually. Suppose also

that a test has two possible outcomes, indicating that either at least one positive is present in

the pool, or that only negatives are in the pool. Assume that the specificity, the probability of
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observing a negative outcome given that the pool does in fact consist only of negative samples,

is 0.99. Also, assume that the sensitivity, the probability of observing a positive outcome given

that the pool contains at least one positive sample, also is 0.99 when all samples are positive,

and reduces slightly to 0.98 when only one of two samples is positive.

Let the first test be comprised of pooled samples from A and B. Then, if a negative outcome

is observed, it can be seen by Bayes rule that π1(AB) = 0.9966. Hence, combined with the

prior information, this test result would lead to strong indication that both of the samples are

negative. If instead a positive test outcome is seen, then π1 = {π1(AB) = 0.0567, π1(A) =

0.6177, π1(B) = 0.2926, π1(0̂) = 0.0328}. Suppose next that samples from A and B are tested

individually in the next stage as in Dorfman, and the outcome for A is negative, and for B is

positive. If we update the posterior probabilities for the two observed outcomes simultaneously,

then, π2 = {π2(AB) = 0.0009, π2(A) = 0.9985, π2(B) = 0.0001, π2(0̂) = 0.0005}. In particular,

the posterior probability that B is positive is the sum of respective state membership probabilities

that indicate that B is positive: π2(A) + π2(0̂) = 0.9990. This is clear evidence that indeed B is

positive. Similarly, note that the probability that A is positive is π2(B) + π2(0̂) = 0.0006, which

indicates that A is clearly negative.

Making “optimal” pooled test selections becomes more interesting and complex as the number

of subjects N being considered for pooling increases, the individual risks of positivity vary, and as

testing error increases through dilution effects. We consider the following criterion as a basis for

optimality in pool selection, from a theoretical perspective. First, let s ∈ S be the true state (i.e.

representing the correct identification of negatives and positives). Typically, 1− πn(s) converges

exponentially to 0 at the order e−αn for some α, and α is called the rate of convergence. The

mathematical definition of the rate of convergence is taken to be

α = lim inf
n→∞

−(1/n) log(1− πn(s)).

We establish group testing designs and selection rules that attain the optimal rates of convergence
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(largest possible alpha) with probability one under general dilution effects. Note that rates are

in terms of number of tests administered, with one test per stage. We show that they are also

characterized in terms of Kullback-Leibler information values, which are discrepancy measures

for probability distributions.

2.2 Dilution Effects and Optimal Designs

Note that as pool size increases, it is possible that testing outcomes can become less reliable.

For instance, for a given number of positive samples, it may be increasingly harder to detect

their presence as pool size increases. Another dilution effect can occur in relation to the number

of positive samples in a pool. For instance, for a given pool size, it may be increasingly easier

to detect the presence of positive subjects as their number increases. Such dilution effects and

their effect on the optimality of pooled test selection in terms of attaining the optimal rate of

convergence is characterized by Theorem A.1 in the Appendix.

We assume the following conditions that characterize dilution effects, which are formally

represented in terms of Kullback-Leibler information values (see Section A.2 in the Appendix).

We assume that i) for a given number of positive samples, as pool size increases, pooled tests

become less discriminatory in identifying the presence of positive samples; ii) as the difference

in number of positive samples between two pools increases for a given pool size, it is relatively

easier to discriminate the respective test response distributions; (iii) for a given pool size and a

fixed difference in the number of positive samples present, as the total number of positive samples

increases, the respective test response distributions become harder to discriminate. Finally, we

assume a non-restrictive technical condition, (A4) in the Appendix. Theoretical demarcations

when it is preferable to group test depend on which state is true. We illustrate examples of

demarcations in the Section A.3 of the Appendix, which show that group testing is attractive

asymptotically even under strong dilution effects.
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Under these conditions, optimal designs can be considered for three case: 1) all subjects are

positive (the bottom state in the lattice), 2) all subjects being tested are negative (the top state

in the lattice), and 3) there is a mix of negative and positive subjects (a state in the lattice “in-

between” the top and bottom states). In Theorem A.1, we see that optimal strategies for attaining

the fastest possible rates of convergence are: 1) test subjects individually, and 2) to group test

samples from all subjects. For the third case, optimal strategies are more complex. The covers and

anti-covers of the true state (states directly above and below it) must be considered, as these states

pose the most difficulty in discriminating the true state, and hence have posterior probability

values that converge to zero the slowest. Under general conditions, the optimal strategy is to

group test the negatives and individually test the positives. Optimal rates depend on the statistical

discriminatory efficiency of the pooled tests, as measured by Kullback-Leibler information. They

also depend on the complexity of the lattice around the true state, as measured by the number

of states directly surrounding the true state. Respective tests are selected proportionally so that

the rate at which the slowest of the non-true state posterior probability value converges to zero

is maximized. In other words, it is desirable that the posterior probabilities of the covers and

anti-covers converge to zero at the same rate. More technical details are discussed in Section A.3

of the Appendix. In practice, the true state identity is not known. Next, we propose a testing

selection rule that will eventually identify the true state and adopt the corresponding optimal

strategy, hence attaining the optimal rate of convergence, no matter the true state.

2.3 Bayesian Halving Algorithm and Analogous k-Test Look Ahead Rules

A key to obtaining systematic efficiency gains is to base the sequential selection of pooled tests on

the Bayesian information provided by the posterior probability values for the states. In Theorem

A.2 of the Appendix, we will establish that under general conditions for dilution effects, an

intuitive selection rule for pooling, referred to as the Bayesian halving algorithm (BHA), attains
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the optimal rate for the true state posterior probability to converge to the value 1. While this is an

asymptotic property, given that the rates are exponential, attaining optimal rates is practically

attractive for finite testing horizons as well, and insures that any error thresholds will be attained

eventually with sufficient testing, regardless of prior specification.

A key concept from order theory is the idea of an up-set for a state in the lattice. This concept

is useful for motivating the proposed test selection rules. For a state j, denote its up-set as
xj.

This is defined as the subset of states within the lattice that are at least as great as (i.e. contain)

the state in question. In Figure 1a,
xAB = {AB}; for B,

xB = {B,AB}, for A,
xA= {A,AB},

and for 0̂ it is all 4 of the states. Practical interpretations of these up-sets are as follows: the

up-set of AB is all the states for which a pool of A and B would contain only negative subjects,

the up-set of B is all the states such that B is negative, etc. Conversely, the complement of the

up-set of AB is defined as {
xAB}c = {A,B, 0̂}, and these are the states for which a pooled test

AB would contain at least one positive sample. Similarly, {
xB}c = {A, 0̂} is comprised of the

states for which an individual test of a sample from subject B would be positive, etc. Hence, the

up-set of a state and its complement generate a partition of the classification states according to

whether the corresponding pooled test would contain all negatives or not.

Now let us consider rules for pooled test selection based on πn. It is desirable to have a rule

that adopts optimal strategies and attains optimal rates of convergence of the true state posterior

probability value to 1, no matter which state is true, and under dilution effects, which are likely

to arise especially for large pool sizes. The following intuitive pooled test selection rule possesses

these properties, as we establish with Theorem A.2 in Section A.4 of the Appendix.

Consider the Bayesian halving algorithm, which selects the pool
˜
e that minimizes

h(πn, e) = |mn(e)− 0.5|, where mn(e) =
∑
j∈
xeπn(j). (1)

The Bayesian halving algorithm systematically partitions the lattice model, so that regardless
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of the actual observed outcome, through Bayes rule, one of the two partitions of states will get

increased posterior probability values, while the states in the other partition will get decreased

values. This systematically encourages posterior mass to eventually accumulate to one state.

This property supports that purposeful and systematic pool choices will be made as test results

are observed that will lead to correct classification. From Example 1, we compute h(π0, AB) =

0.355, h(π0, A) = 0.45, h(π0, B) = 0.40. Hence, it would be attractive to first select e =
˜
AB, and

to group test.

We also extend the halving algorithm to an analogous k-test look ahead rule, k > 1, so that k

pools are selected for simultaneous testing, as opposed to the one at a time testing implicit with

the proposed halving algorithm. Selecting k pooled samples at a time may be more practical,

as this can reduce the back and forth involved in preparing pooled samples for testing based on

observed results. We define a stage of testing to be the simultaneous submission of one or more

pooled samples for testing. Given πn at a stage n, the idea behind our proposed k-test version of

the halving algorithm is to partition the posterior mass on the lattice model into 2k partitions

according to sets of the following form. We choose k pooled samples
˜
e1, . . . ,

˜
ek that minimize

|
∑

j∈
xe1∩xe2...xek πn(j)− 1/2k|+ |

∑
j∈
xe1∩xe2...{xek}c

πn(j)− 1/2k|+ . . .

|
∑

j∈{
xe1}c∩{

xe2}c...{
xek}c

πn(j)− 1/2k|.

For example, when k = 2, this criterion involves selecting the pair
˜
e1 and

˜
e2 that splits the

posterior mass on the lattice model into 2k = 4 parts as equally as possible, minimizing

|
∑

j∈
xe1∩xe2 πn(j)− 1/4|+ |

∑
j∈
xe1∩{

xe2}c

πn(j)− 1/4|+

|
∑

j∈{
xe1}c∩

xe2 πn(j)− 1/4|+ |
∑

j∈{
xe1}c∩{

xe2}c

πn(j)− 1/4|. (2)
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We can approximate the minimization in (2) by sequentially selecting the k experiments one

at a time. First, given current posterior probability πn, we choose
˜
e1 with the halving algorithm,

˜
e2 that minimizes (2) given πn and

˜
e1, etc. This approximation is computationally much faster.

A halving algorithm that uses prior probabilities is previously described in Black et al.(Black

and others (2012)), where samples are successively split in half for positive pooled tests while also

accounting for heterogeneity in risk. This approach is related to what we propose here, but our

approach is fully Bayesian, with posterior probability updating serving as the basis for selection

and stopping. Latvik et al.(Litvak and others (1994)) present a set of several rules that are related

to the halving algorithm. However, the user has to select a rule from this set. These rules differ in

the amount of re-testing of pools that is conducted. In contrast, the proposed Bayesian halving

algorithm is an automated rule. It also can be used with general test response distributions.

3. Results

3.1 Simulations

For the Bayesian halving algorithm and its k-test look ahead counterparts, k > 1, we have created

a web-based calculator and code for high performance computing (HPC) distributed computing

that generates important performance statistics relating to expected values and standard devi-

ations of number of tests and stages, as well as classification rates, and false positive and false

negative rates. The website address is https://bayesgrouptest.case.edu, and the GitHub lo-

cation for the HPC implementation code is given below. These performance statistics can be

used as the basis for comparison and selection of group testing strategies depending on a specific

set of conditions. Being able to flexibility assess the trade-offs between different group testing

strategies is important for COVID-19 surveillance, as prevalence levels and individual risks, and

testing approaches and lab capacities can greatly vary over time and location. Overall perfor-

mance is derived by averaging state-level expected performance with corresponding state prior
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probability values for lattice classification. Required inputs are a vector of prior probabilities of

positivity for each subject, a matrix with the probabilities indicating presence of a positive that

depend on pool size and the number of positives in the pool, and a target posterior probability

error threshold for individual classification. Pooled test sequences are also generated. Note that

this tool currently only employs binary outcomes for pooled tests (”positive is present”, or not),

and henceforth only that case is considered.

Example 2 We next consider examples with N = 12 as an illustration, with varying individual

prior probability risk levels: 1) the prior probability value of positivity for each subject is p0 =

0.02, 2) all such values are 0.20, 3) m-mix denotes that m-subjects have the prior probability

value 0.20, while the rest have the value 0.02. We also assume a dilution effect model modified

from Hung and Swallow (Hung and Swallow (1999)), which depends on constants 0 < γ < 1 and

h > 0, the number of positives in a pool
˜
e, denoted as r, and pool size |

˜
e|. Suppose responses are

binary, with specificity pr=0,|
˜
e| = γ, and one minus the sensitivity value

qr,|
˜
e| = γ · r/((|

˜
e| − r) · h+ r), 1 ⩽ r ⩽ |

˜
e|.

For our examples, we assume γ = 0.99, and h = 0.005. As an illustration, when pool size

is 12, sensitivity ranges from 0.9384 when only one subject is positive, to 0.99 when all of the

12 subjects in the pool are positive. For one positive subject in a pool of size 5, 10, and 50,

sensitivity is respectively 0.9759, 0.9529, and 0.7942. These dilution effects are comparable for

those found with COVID-19 PCR-based pooling Bateman and others (2021). The webtool can

generate matrices of dilution effects for varying γ and h. The dilution effect conditions required

in Theorem A.2, which relate to the optimality of the Bayesian halving algorithm, are satisfied

with this example. In these settings, we consider performance of individual testing, k-test look

ahead rules, and the Bayesian halving algorithm (also denoted as k = 1).

Finally, stopping of testing is assessed at the individual level. Note that the posterior proba-

bility that a subject is negative (positive) is equal to the sum of the posterior probability values
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of all the states for which the subject is represented as negative (positive). In our example, an

individual subject is classified and no longer considered for further testing once this posterior clas-

sification error of being negative or positive is at or below a given error threshold. The negative

threshold can be stricter to reduce the false negative rate. After subject-level classification, the

lattice model is reduced accordingly, mainly to ease computational burden associated with the

larger lattice size. Posterior probabilities are renormalized among remaining states. For instance,

in Figure 1a, if A is removed, then states AB and B are merged, A and 0̂ are merged, etc., and

posterior probabilities are correspondingly aggregated.

Simulations are based on exhaustive analyses of possible test response sequences, up to a

number stages that varies by algorithm. This variation was mainly due to numerical challenges

as k increases, and computational time limitations. Hence, the reported averages and error levels

are approximations. Note for k = 1 to 4, we construct simulations up to a maximum of 24, 16,

12 and 11 stages, respectively, and up to 5 stages for individual testing simulations. The overall

classification rates by the respective upper stage limit through various prior probability setting of

pools (low risks through relatively high risks, non-heterogeneous through heterogeneous) are high,

for instance ranging from 99.41% up to 99.99% when the error threshold for stopping is 0.001.

For test response sequences that remain unclassified after a maximum stage has been reached,

for the computation of performance statistics, it is assumed that the respective test and stage

numbers are one more than those last observed. Also, unless stated otherwise, it is assumed that

prior probabilities of positivity correctly reflect the risk of the individuals.

Figure 2a shows, as expected, that in terms of average number of tests needed to classify all

subjects, group testing with the Bayesian halving algorithm (k = 1) has the smallest average

number of tests and individual testing the largest, across all the scenarios and selection rules

considered here. Indeed, the reduction achieved through group testing can be dramatic. Test-

ing efficiency is particularly striking when the prior probability values of positivity for subjects
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are small. This gain in testing efficiency reduces as k increases among k-test look ahead rules.

Conversely, as seen in Figure 2b, in terms of the number of stages, individual testing has the

smallest average while the k = 1 case has the largest. This isn’t surprising given that more tests

are submitted per stage as k increases. There is thus a trade off between minimizing number of

tests versus number of stages, with the intermediate values of k > 1 serving as a compromise

between the flexibility of single test at-a-time (k = 1) group testing versus the relative logistical

ease of individual testing. We only consider rules with k ⩽ 4 as this still allows for adaptability

with respect to test responses, as well as numerical feasibility. Larger values of k require greater

computational resources in generating and analyzing possible binary testing sequences. The total

number of branches grows exponentially, with base 2k and exponent equal to the stage number.

Figure 2c indicates that the group testing rules can have larger standard deviations for num-

ber of tests than for individual testing, and that they increase as prevalence or risk increases,

particularly for group testing. Figure 2d indicates that for k = 1, the standard deviations for the

number of stages are relatively larger, but that as k increases, these values become more similar

to individual testing. Note that in Figure 2e, the advantage In terms of average false positive and

false negative rates, note in Figure 2e that false negative rates appear to decrease, particularly

as k increases, and as p0-values increase. We do see relatively larger false negative error for the

0.05 prior for N=12 given threshold 0.005. This is in fact due to the first pool consisting of all

12 subjects, and a negative test that results in immediate stopping for the given threshold. This

may be too early. Somewhat elevated false negative rates also arise for p0 = 0.02 at threshold

0.005, where again stopping is invoked after a first negative test. This holds for 1 ⩽ k ⩽ 4.

The false negative rate reduces across all prior probability distributions with stricter threshold

level of 0.001. Table 1 lists the first stage test selections in different settings of p0 (again, 1-mix

indicates p0 = 0.02 except for one subject that has value 0.2). Note for instance when k=2 and

p0 = 0.02 for all subjects, the first two tests selected for the first stage are to pool all subjects
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and to individually test subject A. For all prior probability scenarios, group testing is initially

selected.

In Figure 3, error threshold is set to 0.01. Note that as N increases, the ratio of expected

number of tests for individual testing relative to the proposed group testing rules also increases.

For instance, for the case when p0 = 0.02, as N increases from 6 to 16, note that for the Bayesian

halving algorithm, this ratio grows from 4.75 to 8.37. The growth rate appears slightly less as

k increases, with the ratio increasing from 1.47 to 3.63 when k = 4. As the prior risk increases,

these ratios and the advantage of group testing lessens, as noted in the mixed and p0 = 0.20

scenarios. For instance, for the Bayesian halving algorithm, the ratios range from 1.77 to 2.36,

and for k = 4, 0.99 to 1.74. Conversely, the ratio of the expected number of stages with group

testing versus individual testing also increases in N . For instance, for the case when p0 = 0.02, as

N increases from 6 to 16, note that for the Bayesian halving algorithm, this ratio increases from

1.26 to 1.91. Interestingly, the rate of decrease appears slower as k increases, with a ratio equal

to 1.37 for N = 16 when k = 2. As prior risk increases, these ratios are larger, and the relative

“cost” of group testing increases. Note when p0 = 0.20, for the Bayesian halving algorithm, the

ratios range from 7.72 to 15.93. For k > 1, the ratios of expected stages are smaller. For k = 4,

ratio values range from 4.44 to 6.76. Roughly, this trade-off appears more attractive for lower

prior risk, and less attractive as prior risk levels increase.

Variability in the number of tests and stages per rule also is an important consideration.

See Figure A.1. Note that the standard deviation in the number of stages is approximately the

standard deviation for the number of tests divided by k, the number of tests conducted per stage.

Hence, as k increases, the variability in number of stages can be even smaller than individual

testing. Individual testing has lower variability in number of tests. The variability in number of

tests and stages per algorithm appears to slightly increase in N . Overall, for p0 = 0.20, unless

the number of stages is relative inexpensive and easy to process, individual testing becomes more
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attractive. We stress that a final decision depends on “local” capacity and costs.

Example 3 In Table 2, we consider robustness with respect to the misspecification of the dilution

effect and the misspecification of prior probabilities in classification. We also consider the Dorfman

procedure, and the scenario when there are no dilution effects, to provide insight into the relative

loss in efficiency in testing from dilution effects more generally. Except for the Dorfman procedure

results, we employ the Bayesian halving algorithm (k = 1). Note that for k = 1, the number of

tests and stages are the same. Three prior probability scenarios are considered (p0 = 0.02, p0 =

0.20, and 1-mix, which denotes that all prior probabilities are equal to 0.02 expect one with p0

= 0.20), as well as two different stopping thresholds (0.01 and 0.001 for negative and positive

posterior classification error). In the examples, N=12. Computationally, the maximum number

of stages was set to 24, and the dilution effect is the same as in Example 2. “Classification

%” indicates the probability that the error thresholds have been met, through 24 stages. The

first column, “Dilution”, shows performance with correct specification of the dilution effect; “No

dilution” shows performance when there is no dilution effect, either in Bayesian updating or

in the pooled test responses; “Misspecification of dilution effect” reflects when no dilution is

assumed in Bayesian updating when actually the pooled test data does have a dilution effect;

“Misspecification of Prior” reflects that the prior probabilities do not match the actual prevalence

or risk of positivity, so that p0 is specified as 0.2 when the actual individual risk is 0.02, and p0 is

set as 0.02 when the individual risk is 0.20; the “Dorfman” column illustrates performance with

this procedure.

First, we note that in comparing when the dilution effect and prior probability values are

modeled correctly, versus when there is no dilution effect and probability values are modeled cor-

rectly, there can be longer test sequences under dilution effects. Interestingly, when one “ignores”

the dilution effect, and assumes constant sensitivity (0.99 here), we can see higher false negative

error rates, with test sequences in some cases appearing to be relatively shorter than correct
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modeling and having similar length to the actual non-dilution case. Another important scenario

is when the prior probabilities are misspecified. Asymptotically, theoretical convergence results

as described in Theorem A.2 assure that regardless of prior specification, with sufficient testing,

the correct classifications can be made. However, we see here that less stringent error thresholds

for stopping can lead to short sequences when risk is underspecified, and relatively higher false

negative rates. These results indicate that if one is unsure about prior specification, then strin-

gent thresholds are even more important for maintaining low error rates. We have also conducted

analyses of the Dorfman procedure in the dilution effect setting, and they are presented in Table

2. Note that the Dorfman procedure either performs relatively poorly in terms of false positive

and false negative rates, or does not even reach error thresholds within the maximum stage limit,

so that classification rates are low. Under dilution effects, the Dorfman procedure is not generally

appropriate.

Computation of performance statistics presents combinatorial challenges as N , k and number

of stages l increases. To address these challenges and systematically evaluate simulations under a

wider range of scenarios that are beyond the practical scope of the webtool in terms of computa-

tional time requirements, we utilize state-of-the-art big-data technologies. We have designed and

developed a simulation framework based on Apache Spark Zaharia and others (2010). Currently,

we have conducted simulations for N as large as 25, which involves 33,554,432 states in the lat-

tice model. Using BHA, when p0 = 0.02 and the error threshold for stopping is 0.001, the total

classification rate with a maximum number of 30 stages is 94.71512%, the false positive rate is

0.017258%, the false negative rate is 0.41134%, and the expected number of stage/tests is 5.13132.

The ratios of expected number of tests and stages for this N = 25 scenario are approximately 8.31

(individual testing versus BHA) and 3.33 (BHA versus individual testing). For N = 25p0 = .02

and error threshold of 0.01, these ratios are 10.28 and 2.43. In comparing these values with those

in Figure 3, where the same threshold of 0.01 was applied, note that the efficiency gains from
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group testing continue to increase as N becomes larger.

4. Conclusion

In a Bayesian group testing framework, dilution effects are considered that depend on pool size

and the number of positives in a pool. It is seen that even when dilution effects are quite signif-

icant, asymptotically optimal strategies rely on group testing. Moreover, an intuitive Bayesian

halving algorithm utilizes the natural order structure in the group testing problem that becomes

explicit when viewed as a lattice model. Importantly, it is shown to attain optimal rates of con-

vergence. k-test look ahead analogues of this halving algorithm also are proposed, which still

can take advantage of pooling and adaptability, while reducing the number of stages in test-

ing at the expense of testing efficiency. Computational tools have been developed that allow for

assessment of the proposed group testing approaches, given inputted prior probabilities of pos-

itivity per subject, dilution effects and classification error level thresholds. These tools include

the use of distributed computing to address the Big Data lattice representations for larger N ,

and they establish the feasibility and practicality of simulated group testing designs that involve

performance assessments up to N = 25. Future work will focus on extending the computational

feasibility for even larger N . The respective expected number of tests and stages (and standard

deviations), classification error, and comparisons to individual testing are generated. Balancing

the expected number of tests versus stages, as well as the respective variances and error rates,

can be weighed across different k-test look ahead rules, and compared against individual testing.

Deciding when to group test depends on the relative expense of tests versus stages, as well as the

other performance statistics, and preferences may vary across testing sites.

Detailed discussion on the estimation of dilution effects is deferred here, as approaches will

depend on the test response distribution model. Note that this framework can seamlessly in-

corporate continuous outcomes such as Ct values from PCR testing. In the future, it will be of
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interest to see if such values can provide formalized insight into the precise number of positive

subjects within a pool, as opposed to just applying a binary threshold that indicates presence

only. It also could be possible to consider estimating response probabilities with uncertain disease

status (reflected by posterior probabilities in classification) using Bayesian latent class estimation

approaches that can include nonparametric density estimation (Tatsuoka (2002); Tatsuoka and

others (2013)). Varied and well-characterized pooled test data should become more accessible as

group testing becomes more widespread through population-level surveillance. Finally, we con-

jecture that it will be possible to embed Bayesian halving algorithm-based testing sequences in

high-volume, automated workflows, which will reduce the practical burden of requiring higher

number of stages.

5. Software

Source code available at

https://github.com/ben072292/bayesgrouptestbackend

https://github.com/ben072292/bayesgrouptestfrontend

The web tool referenced in Section 3 is available at

https://bayesgrouptest.case.edu.

6. Supplementary Material

Appendix referenced in Section 1 and Section 2 is available with this paper at the Medrxiv website

on Wiley Online Library. Data sharing not applicable to this article as no datasets were generated

or analysed during the current study.
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AB

A B

(a) Hasse diagram of lattice model with 2 subjects, A and B

(b) 5-element lattice, with 25 = 32 states

Fig. 1: Lattice models
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Simulation p0 = 0.02 p0 = 0.20 1-mix
k=1 ABCDEFGHIJKL ABC ABCDEFGHIJKL

k=2 (add to k=1) A DEH A
k=3 (add to k=1,2) ABCDE ABCDE ABCDEFGH
k=4 (add to k=1,2,3) ABCDEFGHI ABCDH ABCDEFGH

Table 1: First stage test selections, N = 12.

Dilution Non-dilution
Missspecification
of dilution effect

Misspecification
of prior probability Dorfman

Expected Tests 3.188 2.218 2.17 5.81 3.315
Expected Stages 3.188 2.218 2.17 5.81 1.21
Classification % 99.99% 99.99% 99.99% 99.99% 94.97%
False Positive % 0.0175% 0.077% 0.109% 0.071% 0%
False Negative % 0.122% 0.262% 1.492% 0.0003% 1.38%

Test/Stage Std Dev 0.685 0.621 0.753 0.88 1.878

(a) 0.02

Dilution Non-dilution
Missspecification
of dilution effect

Misspecification
of prior probability Dorfman

Expected Tests 4.476 3.54 3.502 13.17 4.798
Expected Stages 4.476 3.54 3.502 13.17 1.345
Classification % 99.96% 99.98% 99.97% 92.41% 89.08%
False Positive % 0.019% 0.071% 0.11% 0.264% 0%
False Negative % 0.101% 0.27% 1.5% 0.641% 1.07%

Test/Stage Std Dev 0.649 0.622 0.757 1.415 1.924

(b) 1-mix

Dilution Non-dilution
Missspecification
of dilution effect

Misspecification
of prior probability Dorfman

Expected Tests 11.08 11.05 11.06 12.83 10.9
Expected Stages 11.08 11.05 11.06 12.83 1.9
Classification % 99.88% 99.91% 99.89% 92.48% 23.67%
False Positive % 0.567% 0.623% 0.61% 0.18% 0%
False Negative % 0.0096% 0.0% 0.0599% 1.46% 0.49%

Test/Stage Std Dev 1.239 1.08 1.272 1.481 2.125

(c) 0.2

Table 2: Robustness analysis of test response distribution specification and prior specification,
and Dorfman procedure performance, under 3 different prior risk scenarios, with BHA.
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False Negative 0.001

Correct 
Classification

False Positive False Negative Stddev Stages Stddev

0.02 0.017401754959158600%0.12239857294920200%0.68513900308849000.6851390030884900

0.05 0.049004505132520200%0.1974954428774900%0.89163038845345200.8916303884534530

0.1 0.1778592775097100%0.14147649759162500%1.14039780221395001.1403978022139500

0.15 0.4585881791736960%0.08887918071756180%1.214247467267350 1.2142474672673600

0.2 0.5671817515258910%0.0096056990002438%1.24342200112894001.2434220011289400

1-mix 0.018231890887977200%0.10093733426667400%0.64909358235302900.6490935823530290

2-mix 0.019729351616386800%0.10566116858549800%0.725874614144493 0.7258746141444930

3-mix 0.20918522853570900%0.17625335736464500%0.796905233104043 0.7969052331040430

4-mix 0.2321309001758040%0.2070893073685430%0.89121719994287200.8912171999428720

0.02 0.0025276452214031400%0.06407494399809030%0.351603680557950000.70320736111590000

0.05 0.11212403391026000%0.1308227739181650%0.48790475888574100.9758095177714820

0.1 0.14831530168913300%0.13321940596602000%0.60952134569238501.2190426913847700

0.15 0.37978644611503400%0.05912022351003420%0.61211734372049801.2242346874410000

0.2 0.45236046315905600%0.026624627034664700%0.65727000353648701.3145400070729700

1-mix 0.13112364393184300%0.10243607094631900%0.413677899379074000.82735579875814800

2-mix 0.02588149790401980%0.13739244261564300%0.392177724608062000.78435544921612400

3-mix 0.2253743622444990%0.13319959005541100%0.43637294017785700.8727458803557140

4-mix 0.1588336360714920%0.1974276541903050%0.45276652081313800.9055330416262760
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False Negative 0.005

Correct 
Classification

False Positive False Negative Stddev Stages Stddev Tests

0.02 0.017881020607228100%1.5128784908436200%0.74292869063787300.7429286906378730

0.05 0.06069180955913210%3.09418381827019% 1.13724617848245001.1372461784824500

0.1 0.20353015247747300%0.7448009598535150%1.100753063990340 1.100753063990340

0.15 0.46508876647314000%0.7300917389026020%1.09967398157781001.0996739815778100

0.2 0.5730511465478820%0.2762291403724340%1.18693273219321001.1869327321932100

1-mix 0.022538229885916500%1.5097228372601100%0.73479050447499900.7347905044749990

2-mix 0.014258883301787400%1.7120632646864800%0.79108530900480100.7910853090048010

3-mix 0.20643728819265200%1.2539763281081400%0.84256299469800500.8425629946980050

4-mix 0.23130143437820900%1.2552850298805500%0.82341940703221400.8234194070322140

0.02 0.006254908561212750%1.4290023565950400%0.41030733759224100.8206146751844820

0.05 0.10468087507970000%3.063988870594180%0.57755448353345801.1551089670669200

0.1 0.15715114403872500%1.163117457644160%0.55932013237855201.1186402647571000

0.15 0.386709182507983%0.580290458765304%0.55362701754062001.1072540350812400

0.2 0.4529735494771860%0.2059260637705510%0.61438562259876801.2287712451975400

1-mix 0.141009452122607%1.2963066771447500%0.46408230525902900.9281646105180580

2-mix 0.014090737842730300%1.0341313712976100%0.388000290517586000.77600058103517200

3-mix 0.19122796137269400%1.038736945180190%0.38643047916459200.7728609583291840

4-mix 0.17748562999594100%1.029765336368120%0.425028980936409000.85005796187281800

False Negative 0.01

Correct 
Classification

False Positive False Negative Stddev Stages Stddev tests

0.02 0.02194312040485180%2.055224393621450%0.70892028133145700.7089202813314570

0.05 0.11006774446076300%4.281420846272350%1.07261143914121001.0726114391412100

0.1 0.2719183518138320%4.58886742541571% 1.108372939411160 1.108372939411160

0.15 0.5228014847477860%4.186648956154280%1.07528203688468001.0752820368846800

0.2 0.7248470224810140%4.55409391632323% 0.99964451109068300.9996445110906830

1-mix 0.0413118571810169%2.4608006594263000%0.64886293811206300.6488629381120630

2-mix 0.022013923181369800%2.2775902897096900%0.75487530835410600.7548753083541060

3-mix 0.21798697616958600%2.556753944080620%0.82814049974894700.8281404997489470

4-mix 0.23372705534933200%2.768636988643170%0.75681365221702100.7568136522170210

0.02 0.006650228761628450%1.5727639561613800%0.33583088468430900.6716617693686180

0.05 0.13131064134864400%3.9326603475256900%0.53943861664640801.0788772332928200

0.1 0.1514053323962640%3.885529977960580%0.63194322628506301.2638864525701300

0.15 0.4648297454560670%4.122232616137480%0.55205456220438701.1041091244087700

0.2 0.7112483264241030%4.464127954669860%0.53031422060779001.0606284412155800

1-mix 0.14963546409998700%1.7179463803136500%0.431160823887287000.86232164777457400

2-mix 0.02178888711653090%1.7269788760065300%0.397432603669203000.79486520733840600

3-mix 0.1738456080897440%1.8728077016661700%0.503345433329018 1.006690866658040

4-mix 0.17091639419581300%1.9268137847840900%0.42004505890257 0.84009011780514

0.02 0.016831206583636600%1.5130667820504200%0.28124437679907300.8437331303972190

0.05 0.06475161839502300%3.637025316318550%0.37425418375956501.1227625512787000

0.1 0.19659286088811600%3.7845788930041500%0.415188635772730001.24556590731819000

0.15 0.33282063448192400%4.15646833549487% 0.38850895527777501.1655268658333300

0.2 0.7038630985395490%4.312783005950930%0.38932288849698301.1679686654909500

1-mix 0.14357868534377700%1.2754043865232300%0.304711671742995000.91413501522898500

2-mix 0.013860030601156700%1.3365530137773600%0.189954294500624000.56986288350187200

3-mix 0.02736150635411340%1.9637565273355900%0.31147001420989600.9344100426296880

4-mix 0.13301145822916400%1.5645105934354600%0.33081949208377100.9924584762513130

0.02 0.034497055723016600%1.5020171982655600%0.177845524153686000.71138209661474400

0.05 0.11901569187700900%3.079442009509060%0.31720087338755101.2688034935502000
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Correct 
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False Positive False Negative Stddev Stages Stddev

0.02 0.017401754959158600%0.12239857294920200%0.68513900308849000.6851390030884900

0.05 0.049004505132520200%0.1974954428774900%0.89163038845345200.8916303884534530

0.1 0.1778592775097100%0.14147649759162500%1.14039780221395001.1403978022139500

0.15 0.4585881791736960%0.08887918071756180%1.214247467267350 1.2142474672673600

0.2 0.5671817515258910%0.0096056990002438%1.24342200112894001.2434220011289400

1-mix 0.018231890887977200%0.10093733426667400%0.64909358235302900.6490935823530290

2-mix 0.019729351616386800%0.10566116858549800%0.725874614144493 0.7258746141444930

3-mix 0.20918522853570900%0.17625335736464500%0.796905233104043 0.7969052331040430

4-mix 0.2321309001758040%0.2070893073685430%0.89121719994287200.8912171999428720

0.02 0.0025276452214031400%0.06407494399809030%0.351603680557950000.70320736111590000

0.05 0.11212403391026000%0.1308227739181650%0.48790475888574100.9758095177714820

0.1 0.14831530168913300%0.13321940596602000%0.60952134569238501.2190426913847700

0.15 0.37978644611503400%0.05912022351003420%0.61211734372049801.2242346874410000

0.2 0.45236046315905600%0.026624627034664700%0.65727000353648701.3145400070729700

1-mix 0.13112364393184300%0.10243607094631900%0.413677899379074000.82735579875814800

2-mix 0.02588149790401980%0.13739244261564300%0.392177724608062000.78435544921612400

3-mix 0.2253743622444990%0.13319959005541100%0.43637294017785700.8727458803557140

4-mix 0.1588336360714920%0.1974276541903050%0.45276652081313800.9055330416262760
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False Negative 0.005

Correct 
Classification

False Positive False Negative Stddev Stages Stddev Tests

0.02 0.017881020607228100%1.5128784908436200%0.74292869063787300.7429286906378730

0.05 0.06069180955913210%3.09418381827019% 1.13724617848245001.1372461784824500

0.1 0.20353015247747300%0.7448009598535150%1.100753063990340 1.100753063990340

0.15 0.46508876647314000%0.7300917389026020%1.09967398157781001.0996739815778100

0.2 0.5730511465478820%0.2762291403724340%1.18693273219321001.1869327321932100

1-mix 0.022538229885916500%1.5097228372601100%0.73479050447499900.7347905044749990

2-mix 0.014258883301787400%1.7120632646864800%0.79108530900480100.7910853090048010

3-mix 0.20643728819265200%1.2539763281081400%0.84256299469800500.8425629946980050

4-mix 0.23130143437820900%1.2552850298805500%0.82341940703221400.8234194070322140

0.02 0.006254908561212750%1.4290023565950400%0.41030733759224100.8206146751844820

0.05 0.10468087507970000%3.063988870594180%0.57755448353345801.1551089670669200

0.1 0.15715114403872500%1.163117457644160%0.55932013237855201.1186402647571000

0.15 0.386709182507983%0.580290458765304%0.55362701754062001.1072540350812400

0.2 0.4529735494771860%0.2059260637705510%0.61438562259876801.2287712451975400

1-mix 0.141009452122607%1.2963066771447500%0.46408230525902900.9281646105180580

2-mix 0.014090737842730300%1.0341313712976100%0.388000290517586000.77600058103517200

3-mix 0.19122796137269400%1.038736945180190%0.38643047916459200.7728609583291840

4-mix 0.17748562999594100%1.029765336368120%0.425028980936409000.85005796187281800

False Negative 0.01

Correct 
Classification

False Positive False Negative Stddev Stages Stddev tests

0.02 0.02194312040485180%2.055224393621450%0.70892028133145700.7089202813314570

0.05 0.11006774446076300%4.281420846272350%1.07261143914121001.0726114391412100

0.1 0.2719183518138320%4.58886742541571% 1.108372939411160 1.108372939411160

0.15 0.5228014847477860%4.186648956154280%1.07528203688468001.0752820368846800

0.2 0.7248470224810140%4.55409391632323% 0.99964451109068300.9996445110906830

1-mix 0.0413118571810169%2.4608006594263000%0.64886293811206300.6488629381120630

2-mix 0.022013923181369800%2.2775902897096900%0.75487530835410600.7548753083541060

3-mix 0.21798697616958600%2.556753944080620%0.82814049974894700.8281404997489470

4-mix 0.23372705534933200%2.768636988643170%0.75681365221702100.7568136522170210

0.02 0.006650228761628450%1.5727639561613800%0.33583088468430900.6716617693686180

0.05 0.13131064134864400%3.9326603475256900%0.53943861664640801.0788772332928200

0.1 0.1514053323962640%3.885529977960580%0.63194322628506301.2638864525701300

0.15 0.4648297454560670%4.122232616137480%0.55205456220438701.1041091244087700

0.2 0.7112483264241030%4.464127954669860%0.53031422060779001.0606284412155800

1-mix 0.14963546409998700%1.7179463803136500%0.431160823887287000.86232164777457400

2-mix 0.02178888711653090%1.7269788760065300%0.397432603669203000.79486520733840600

3-mix 0.1738456080897440%1.8728077016661700%0.503345433329018 1.006690866658040

4-mix 0.17091639419581300%1.9268137847840900%0.42004505890257 0.84009011780514

0.02 0.016831206583636600%1.5130667820504200%0.28124437679907300.8437331303972190

0.05 0.06475161839502300%3.637025316318550%0.37425418375956501.1227625512787000

0.1 0.19659286088811600%3.7845788930041500%0.415188635772730001.24556590731819000

0.15 0.33282063448192400%4.15646833549487% 0.38850895527777501.1655268658333300

0.2 0.7038630985395490%4.312783005950930%0.38932288849698301.1679686654909500

1-mix 0.14357868534377700%1.2754043865232300%0.304711671742995000.91413501522898500

2-mix 0.013860030601156700%1.3365530137773600%0.189954294500624000.56986288350187200

3-mix 0.02736150635411340%1.9637565273355900%0.31147001420989600.9344100426296880

4-mix 0.13301145822916400%1.5645105934354600%0.33081949208377100.9924584762513130

0.02 0.034497055723016600%1.5020171982655600%0.177845524153686000.71138209661474400

0.05 0.11901569187700900%3.079442009509060%0.31720087338755101.2688034935502000
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(c) SD for expected number of tests
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Correct 
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False Positive False Negative Stddev Stages Stddev

0.02 0.017401754959158600%0.12239857294920200%0.68513900308849000.6851390030884900

0.05 0.049004505132520200%0.1974954428774900%0.89163038845345200.8916303884534530

0.1 0.1778592775097100%0.14147649759162500%1.14039780221395001.1403978022139500

0.15 0.4585881791736960%0.08887918071756180%1.214247467267350 1.2142474672673600

0.2 0.5671817515258910%0.0096056990002438%1.24342200112894001.2434220011289400

1-mix 0.018231890887977200%0.10093733426667400%0.64909358235302900.6490935823530290

2-mix 0.019729351616386800%0.10566116858549800%0.725874614144493 0.7258746141444930

3-mix 0.20918522853570900%0.17625335736464500%0.796905233104043 0.7969052331040430

4-mix 0.2321309001758040%0.2070893073685430%0.89121719994287200.8912171999428720

0.02 0.0025276452214031400%0.06407494399809030%0.351603680557950000.70320736111590000

0.05 0.11212403391026000%0.1308227739181650%0.48790475888574100.9758095177714820

0.1 0.14831530168913300%0.13321940596602000%0.60952134569238501.2190426913847700

0.15 0.37978644611503400%0.05912022351003420%0.61211734372049801.2242346874410000

0.2 0.45236046315905600%0.026624627034664700%0.65727000353648701.3145400070729700

1-mix 0.13112364393184300%0.10243607094631900%0.413677899379074000.82735579875814800

2-mix 0.02588149790401980%0.13739244261564300%0.392177724608062000.78435544921612400

3-mix 0.2253743622444990%0.13319959005541100%0.43637294017785700.8727458803557140

4-mix 0.1588336360714920%0.1974276541903050%0.45276652081313800.9055330416262760
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False Negative 0.005

Correct 
Classification

False Positive False Negative Stddev Stages Stddev Tests

0.02 0.017881020607228100%1.5128784908436200%0.74292869063787300.7429286906378730

0.05 0.06069180955913210%3.09418381827019% 1.13724617848245001.1372461784824500

0.1 0.20353015247747300%0.7448009598535150%1.100753063990340 1.100753063990340

0.15 0.46508876647314000%0.7300917389026020%1.09967398157781001.0996739815778100

0.2 0.5730511465478820%0.2762291403724340%1.18693273219321001.1869327321932100

1-mix 0.022538229885916500%1.5097228372601100%0.73479050447499900.7347905044749990

2-mix 0.014258883301787400%1.7120632646864800%0.79108530900480100.7910853090048010

3-mix 0.20643728819265200%1.2539763281081400%0.84256299469800500.8425629946980050

4-mix 0.23130143437820900%1.2552850298805500%0.82341940703221400.8234194070322140

0.02 0.006254908561212750%1.4290023565950400%0.41030733759224100.8206146751844820

0.05 0.10468087507970000%3.063988870594180%0.57755448353345801.1551089670669200

0.1 0.15715114403872500%1.163117457644160%0.55932013237855201.1186402647571000

0.15 0.386709182507983%0.580290458765304%0.55362701754062001.1072540350812400

0.2 0.4529735494771860%0.2059260637705510%0.61438562259876801.2287712451975400

1-mix 0.141009452122607%1.2963066771447500%0.46408230525902900.9281646105180580

2-mix 0.014090737842730300%1.0341313712976100%0.388000290517586000.77600058103517200

3-mix 0.19122796137269400%1.038736945180190%0.38643047916459200.7728609583291840

4-mix 0.17748562999594100%1.029765336368120%0.425028980936409000.85005796187281800

False Negative 0.01

Correct 
Classification

False Positive False Negative Stddev Stages Stddev tests

0.02 0.02194312040485180%2.055224393621450%0.70892028133145700.7089202813314570

0.05 0.11006774446076300%4.281420846272350%1.07261143914121001.0726114391412100

0.1 0.2719183518138320%4.58886742541571% 1.108372939411160 1.108372939411160

0.15 0.5228014847477860%4.186648956154280%1.07528203688468001.0752820368846800

0.2 0.7248470224810140%4.55409391632323% 0.99964451109068300.9996445110906830

1-mix 0.0413118571810169%2.4608006594263000%0.64886293811206300.6488629381120630

2-mix 0.022013923181369800%2.2775902897096900%0.75487530835410600.7548753083541060

3-mix 0.21798697616958600%2.556753944080620%0.82814049974894700.8281404997489470

4-mix 0.23372705534933200%2.768636988643170%0.75681365221702100.7568136522170210

0.02 0.006650228761628450%1.5727639561613800%0.33583088468430900.6716617693686180

0.05 0.13131064134864400%3.9326603475256900%0.53943861664640801.0788772332928200

0.1 0.1514053323962640%3.885529977960580%0.63194322628506301.2638864525701300

0.15 0.4648297454560670%4.122232616137480%0.55205456220438701.1041091244087700

0.2 0.7112483264241030%4.464127954669860%0.53031422060779001.0606284412155800

1-mix 0.14963546409998700%1.7179463803136500%0.431160823887287000.86232164777457400

2-mix 0.02178888711653090%1.7269788760065300%0.397432603669203000.79486520733840600

3-mix 0.1738456080897440%1.8728077016661700%0.503345433329018 1.006690866658040

4-mix 0.17091639419581300%1.9268137847840900%0.42004505890257 0.84009011780514

0.02 0.016831206583636600%1.5130667820504200%0.28124437679907300.8437331303972190

0.05 0.06475161839502300%3.637025316318550%0.37425418375956501.1227625512787000

0.1 0.19659286088811600%3.7845788930041500%0.415188635772730001.24556590731819000

0.15 0.33282063448192400%4.15646833549487% 0.38850895527777501.1655268658333300

0.2 0.7038630985395490%4.312783005950930%0.38932288849698301.1679686654909500

1-mix 0.14357868534377700%1.2754043865232300%0.304711671742995000.91413501522898500

2-mix 0.013860030601156700%1.3365530137773600%0.189954294500624000.56986288350187200

3-mix 0.02736150635411340%1.9637565273355900%0.31147001420989600.9344100426296880

4-mix 0.13301145822916400%1.5645105934354600%0.33081949208377100.9924584762513130

0.02 0.034497055723016600%1.5020171982655600%0.177845524153686000.71138209661474400

0.05 0.11901569187700900%3.079442009509060%0.31720087338755101.2688034935502000
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(d) SD for expected number of stages
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Correct 
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False Positive False Negative Stddev Stages Stddev

0.02 0.017401754959158600%0.12239857294920200%0.68513900308849000.6851390030884900

0.05 0.049004505132520200%0.1974954428774900%0.89163038845345200.8916303884534530

0.1 0.1778592775097100%0.14147649759162500%1.14039780221395001.1403978022139500

0.15 0.4585881791736960%0.08887918071756180%1.214247467267350 1.2142474672673600

0.2 0.5671817515258910%0.0096056990002438%1.24342200112894001.2434220011289400

1-mix 0.018231890887977200%0.10093733426667400%0.64909358235302900.6490935823530290

2-mix 0.019729351616386800%0.10566116858549800%0.725874614144493 0.7258746141444930

3-mix 0.20918522853570900%0.17625335736464500%0.796905233104043 0.7969052331040430

4-mix 0.2321309001758040%0.2070893073685430%0.89121719994287200.8912171999428720

0.02 0.0025276452214031400%0.06407494399809030%0.351603680557950000.70320736111590000

0.05 0.11212403391026000%0.1308227739181650%0.48790475888574100.9758095177714820

0.1 0.14831530168913300%0.13321940596602000%0.60952134569238501.2190426913847700

0.15 0.37978644611503400%0.05912022351003420%0.61211734372049801.2242346874410000

0.2 0.45236046315905600%0.026624627034664700%0.65727000353648701.3145400070729700

1-mix 0.13112364393184300%0.10243607094631900%0.413677899379074000.82735579875814800

2-mix 0.02588149790401980%0.13739244261564300%0.392177724608062000.78435544921612400

3-mix 0.2253743622444990%0.13319959005541100%0.43637294017785700.8727458803557140

4-mix 0.1588336360714920%0.1974276541903050%0.45276652081313800.9055330416262760
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False Negative 0.005

Correct 
Classification

False Positive False Negative Stddev Stages Stddev Tests

0.02 0.017881020607228100%1.5128784908436200%0.74292869063787300.7429286906378730

0.05 0.06069180955913210%3.09418381827019% 1.13724617848245001.1372461784824500

0.1 0.20353015247747300%0.7448009598535150%1.100753063990340 1.100753063990340

0.15 0.46508876647314000%0.7300917389026020%1.09967398157781001.0996739815778100

0.2 0.5730511465478820%0.2762291403724340%1.18693273219321001.1869327321932100

1-mix 0.022538229885916500%1.5097228372601100%0.73479050447499900.7347905044749990

2-mix 0.014258883301787400%1.7120632646864800%0.79108530900480100.7910853090048010

3-mix 0.20643728819265200%1.2539763281081400%0.84256299469800500.8425629946980050

4-mix 0.23130143437820900%1.2552850298805500%0.82341940703221400.8234194070322140

0.02 0.006254908561212750%1.4290023565950400%0.41030733759224100.8206146751844820

0.05 0.10468087507970000%3.063988870594180%0.57755448353345801.1551089670669200

0.1 0.15715114403872500%1.163117457644160%0.55932013237855201.1186402647571000

0.15 0.386709182507983%0.580290458765304%0.55362701754062001.1072540350812400

0.2 0.4529735494771860%0.2059260637705510%0.61438562259876801.2287712451975400

1-mix 0.141009452122607%1.2963066771447500%0.46408230525902900.9281646105180580

2-mix 0.014090737842730300%1.0341313712976100%0.388000290517586000.77600058103517200

3-mix 0.19122796137269400%1.038736945180190%0.38643047916459200.7728609583291840

4-mix 0.17748562999594100%1.029765336368120%0.425028980936409000.85005796187281800

False Negative 0.01

Correct 
Classification

False Positive False Negative Stddev Stages Stddev tests

0.02 0.02194312040485180%2.055224393621450%0.70892028133145700.7089202813314570

0.05 0.11006774446076300%4.281420846272350%1.07261143914121001.0726114391412100

0.1 0.2719183518138320%4.58886742541571% 1.108372939411160 1.108372939411160

0.15 0.5228014847477860%4.186648956154280%1.07528203688468001.0752820368846800

0.2 0.7248470224810140%4.55409391632323% 0.99964451109068300.9996445110906830

1-mix 0.0413118571810169%2.4608006594263000%0.64886293811206300.6488629381120630

2-mix 0.022013923181369800%2.2775902897096900%0.75487530835410600.7548753083541060

3-mix 0.21798697616958600%2.556753944080620%0.82814049974894700.8281404997489470

4-mix 0.23372705534933200%2.768636988643170%0.75681365221702100.7568136522170210

0.02 0.006650228761628450%1.5727639561613800%0.33583088468430900.6716617693686180

0.05 0.13131064134864400%3.9326603475256900%0.53943861664640801.0788772332928200

0.1 0.1514053323962640%3.885529977960580%0.63194322628506301.2638864525701300

0.15 0.4648297454560670%4.122232616137480%0.55205456220438701.1041091244087700

0.2 0.7112483264241030%4.464127954669860%0.53031422060779001.0606284412155800

1-mix 0.14963546409998700%1.7179463803136500%0.431160823887287000.86232164777457400

2-mix 0.02178888711653090%1.7269788760065300%0.397432603669203000.79486520733840600

3-mix 0.1738456080897440%1.8728077016661700%0.503345433329018 1.006690866658040

4-mix 0.17091639419581300%1.9268137847840900%0.42004505890257 0.84009011780514

0.02 0.016831206583636600%1.5130667820504200%0.28124437679907300.8437331303972190

0.05 0.06475161839502300%3.637025316318550%0.37425418375956501.1227625512787000

0.1 0.19659286088811600%3.7845788930041500%0.415188635772730001.24556590731819000

0.15 0.33282063448192400%4.15646833549487% 0.38850895527777501.1655268658333300

0.2 0.7038630985395490%4.312783005950930%0.38932288849698301.1679686654909500

1-mix 0.14357868534377700%1.2754043865232300%0.304711671742995000.91413501522898500

2-mix 0.013860030601156700%1.3365530137773600%0.189954294500624000.56986288350187200

3-mix 0.02736150635411340%1.9637565273355900%0.31147001420989600.9344100426296880

4-mix 0.13301145822916400%1.5645105934354600%0.33081949208377100.9924584762513130

0.02 0.034497055723016600%1.5020171982655600%0.177845524153686000.71138209661474400

0.05 0.11901569187700900%3.079442009509060%0.31720087338755101.2688034935502000
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(e) False Positive and False Negative

Fig. 2: Comparison of expected number of tests and stages, their standard deviations, and false
positive/negative rates, using different classification error thresholds for stopping (0.01, 0.005 and
0.001), and under different prior probability scenarios. N = 12.
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Fig. 3: Ratio of expected number of stages, k = 1 to 4 versus individual testing, and expected
number of tests, individual testing versus k = 1 to 4. Pool sizes range from N = 6 to 16 over
three prior probability scenarios. Error threshold is 0.01.
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