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Abstract

A Bayesian framework for group testing under dilution effects is intro-
duced. This work has particular relevance given the pressing public health
need to enhance testing capacity for COVID-19, and the need for wide-
scale and repeated testing for surveillance. The proposed Bayesian ap-
proach allows for dilution effects in group testing and for general test re-
sponse distributions beyond just binary outcomes. It is shown that even
with strong dilution effects, an intuitive and simple-to-implement group
testing selection rule, referred to as the Bayesian halving algorithm, has
attractive optimal properties. A web-based calculator is introduced to
assist and guide decisions on when and how to pool under various condi-
tions.
KEY WORDS: group testing, surveillance, Bayesian, dilution effects, op-
timal rates of convergence.

1 Introduction

The group testing formulation originated by Dorfman [1] has found use in a
diverse array of applications, including COVID-19 testing. The motivating idea
of group testing for a disease like COVID-19 is that, say if biomarker samples
from N,N > 1 subjects are pooled, and if the prevalence is low, most likely
the test result for the pooled sample will be negative, indicating that all N
subjects in the pool are negative, using only in one test. On the other hand, if
the result indicates a positive test, and hence that there is at least one positive
sample present among the pool, then further testing can be conducted to iden-
tify the positive subjects. Dorfman suggested that all samples which comprise
a positively-tested pool should subsequently be tested individually. This ap-
proach has been adopted broadly. Nonetheless, in the presence of testing error,
this approach can be problematic, in that classification error thresholds may
not be reached, and it may not be comparatively efficient, as pooling subsets
can still be useful. An important potential source of testing error is through
dilution, which may occur when pooled samples contain few positives relative to
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a larger number of negatives. Described here is a Bayesian framework for sys-
tematically addressing these important issues surrounding pooled testing such
as for COVID-19.

Recently, the Food and Drug Administration (FDA) has released guidelines
for allowing group testing of patients suspected of having COVID-19. There
is thus a renewed flurry of interest in group testing for COVID-19 [2, 3, 4, 5,
6], as it can play a fundamental role in efficient disease surveillance. As there
is a large percentage of asymptomatic cases, widespread testing is important
for understanding and controlling spread. There also is a need for monitoring
through repeated testing of large swaths of the population, such as for frontline
and essential workers, and those at high risk. A potential drawback to such type
of surveillance is the reliance on imprecise testing. PCR-based assays based on
samples taken with nasal swabs can be highly accurate, although issues with
sample collection or mis-priming can lead to errors. False negative rates with
PCR-based assays with COVID-19 have for instance been estimated to range
from 0.02 to 0.29 [7, 8]. Fast, less expensive, and non-intrusive approaches for
testing, such as those based on saliva or antigens, can broaden the scope of
testing, but may be even less accurate.

A basis for the proposed group testing methods are models known as lattices,
in which states in the model follow a partial ordering. This order structure is
used to guide next stage pool selection, and to gain insight into the statistical
properties of group testing with dilution effects. The proposed Bayesian group
testing approach explicitly acknowledges testing error and heterogeneity in in-
dividual risk levels through prior distribution specification, and can be applied
with either quantitative or categorical test responses. Importantly, individual-
level classification error can be systematically be reduced to any error threshold,
as our proposed approach has attractive optimality properties in which correct
classification can efficiently be made for all test subjects. A framework for se-
quential Bayesian classification on lattices has been described earlier [9]. This
current work differs from the previous formulation as we now consider test re-
sponse distributions that depend on pool size and the number of positives in
the pool. In terms of theoretical work involving partially ordered classification
models, rules that rely on Kullback-Leibler information of response distribu-
tions that are specific to the experiment, such as in cognitive and educational
adaptive testing, has been studied [10], as well as in group testing and partially
ordered classification models [11, 12].

Group testing has a rich statistical literature that has expanded upon Dorf-
man’s seminal work. An important result in group testing by Ungar [13] gives
a demarcation for when it is optimal to group test when responses are binary
and there is no testing error. A Bayesian approach was first described in Sobel
and Groll [14], where binary responses without testing error are assumed. In
addition to screening for disease, group testing has been used in genetics testing
[15, 16], and to identify promising drug compounds [17, 18]. The phenomenon
of testing error in group testing has been widely recognized [19, 20, 21, 22, 23],
including dilution effects with specific functional forms [20, 24, 25]. The pos-
sibility that objects have different probabilities of being positive but with no
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testing error has been considered [26, 27]. Test response distributions beyond
Bernoulli distributions have for instance been employed where responses are
assumed to be normally distributed [24], and group testing has been studied
in the context of multiplex and high throughput testing [28, 6]. Estimation of
proportion such as for disease prevalence is an important application in group
testing. Previous work has been based on binary outcomes [14, 29, 30, 31, 32,
33].

Below, we will first introduce the proposed method and related notions, with
an example. We then summarize theoretical properties for optimal designs in
Bayesian group testing, and for an intuitive pooled test selection rule. Finally,
we introduce a web-based tool that implements the proposed algorithms and
graphically represents results. Example scenarios are presented, which demon-
strate the efficiency gains of group testing. Proofs of theorems and a more
thorough technical discussion are given in the Appendix, as well as a brief note
on how Bayesian estimation of prevalence can be conducted in the proposed
framework.

2 Methods

2.1 Lattice Models for Bayesian Group Testing

We illustrate how lattice-based classification models can be applied in Bayesian
group testing with dilution effects.
Example 1. Consider all the possible subsets generated by subjects A and B,
as in Figure 2.1. Suppose each subset represents a profile of the subjects that
are negative for COVID-19. Hence, one of these subsets represents the true
state. The collection of these subsets thus form the classification model, and
we henceforth refer to them as states: State AB denotes that both A and B
are negative, state A denotes that only A is negative, and hence B is positive.
Similarly, state B denotes that only B is negative. State 0̂ represents that both
subjects are positive.

Denote the collection of these states as S. In the above example, S =
{AB,A,B, 0̂}. These states (i.e. all the possible subsets of subjects that are
negative) actually have a specific order structure in that they can be ordered
by inclusion, and form what is known as a powerset lattice. When ordering by
inclusion, note for instance that state AB is greater than states A, B, and 0̂
because the set comprised of both A and B contains A alone, B alone, and 0̂,
respectively. On the other hand, states A and B are incomparable, as there is
no inclusion relationship between the respective subsets. In this example, there
are two subjects, and 4 possible profiles of them being positive or negative. In
general, for N subjects, there are 2N such possibilities, corresponding to the
powerset of the N subjects. Further, note that there is essentially a one-to one
correspondence between states in lattice model and potential pooled test. There
are 2N - 1 possible way to pool tests, since the empty set, represented as 0̂, is
not a possible test. So, in this example, for state AB, there is also a pooled test
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Figure 1: Hasse diagram of lattice model with 2 subjects, A and B

with samples from A and B; for state B, there is a test consisting of a sample
only from subject B, etc.

We adopt a Bayesian approach. An advantage is the allowance for individual-
level prior information about positivity into the classification process, as well
as systematic characterization of uncertainty from potential testing error. In
a Bayesian framework, the posterior probability values embody the combined
empirical and prior evidence as to which state in the classification model is
the true one. Larger posterior probability values for the true state are clearly
desirable, with a probability value of 1 indicating certainty in correctly identi-
fying the true status of positivity for all the subjects. A stage of testing is an
iteration of preparing a collection of (pooled) samples for testing and observing
the results of the test(s). The posterior distribution after n stages of testing on
the collection of classification states S will be denoted as πn, and for a state
j ∈ S, the posterior probability value that state j is the true state is πn(j).
Corresponding prior distribution values are denoted as π0 and π0(j).

For instance, prior to testing for COVID-19, each subject could be assigned
a prior probability of positivity based on logistic regression modeling, with ex-
planatory variables such as age, gender, location of residence, travel history,
status of household contacts, self-reported exposure, community infection rates,
etc. For a given profile of the N subjects in terms of their positivity status,
to obtain its prior probability, we take the product of the respective individual
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prior probabilities for their respective status in the profile. These values form
a prior probability distribution across the possible states. After a (pooled) test
result is observed, using Bayes rule, prior probabilities are updated to posterior
probabilities. We illustrate these computations in the example below.
Example 1, continued. Suppose that for a subject A the prior probability
that he/she is a positive (e.g. has COVID-19) is 0.05, and independently for a
higher at-risk subject B it is 0.10. The prior probabilities for state membership
follows: for state AB = 1̂, π0(AB) = (0.95)(0.90) = 0.855, for state A it is
π0(A) = (0.95)(0.10) = 0.095, π0(B) = (0.05)(0.90) = 0.045, and π0(0̂) = 0.005.
Possible tests include pooling A and B, and testing each subject individually.
Suppose also that a test has two possible outcomes, indicating that either at
least one positive is present in the pool, or that only negatives are in the pool.
Assume that the specificity, the probability of observing a negative outcome
given that the pool does in fact consist only of negative samples, is 0.99. Also,
assume that the sensitivity, the probability of observing a positive outcome
given that the pool contains at least one positive sample, also is 0.99 when all
samples are positive, and reduces slightly to 0.98 when only one of two samples
is positive.

Let the first test be comprised of pooled samples from A and B. Then, if
a negative outcome is observed, it can be seen by Bayes rule that π1(AB) =
0.9966. Hence, combined with the prior information, this test result would lead
to strong indication that both of the samples are negative. If instead a positive
test outcome is seen, then π1 = {π1(AB) = 0.0567, π1(A) = 0.6177, π1(B) =
0.2926, π1(0̂) = 0.0328}. Suppose next that samples from A and B are tested
individually in the next stage as in Dorfman, and the outcome for A is negative,
and for B is positive. If we update the posterior probabilities for the two
observed outcomes simultaneously, then, π2 = {π2(AB) = 0.0009, π2(A) =
0.9985, π2(B) = 0.0001, π2(0̂) = 0.0005}. In particular, the posterior probability
that B is positive is the sum of respective state membership probabilities that
indicate that B is positive: π2(A) + π2(0̂) = 0.9990. This is clear evidence that
indeed B is positive. Similarly, note that the probability that A is positive is
π2(B) + π2(0̂) = 0.0006, which indicates that A is clearly negative.

Making ”optimal” pooled test selections becomes more interesting and com-
plex as the number of subjects N being considered for pooling increases, the
individual risks of positivity vary, and as testing error increases through dilu-
tion effects. We consider the following criterion as a basis for optimality in pool
selection, from a theoretical perspective. First, let s ∈ S be the true state (i.e.
representing the correct identification of negatives and positives). Typically,
1 − πn(s) converges exponentially to 0 at the order e−αn for some α, and α
is called the rate of convergence. The mathematical definition of the rate of
convergence is taken to be

α = lim inf
n→∞

−(1/n) log(1− πn(s)).

We establish group testing designs and selection rules that attain the optimal
rates of convergence (largest possible alpha) with probability one under general
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dilution effects. Note that rates are in terms of number of tests administered,
with one test per stage. We show that they are also characterized in terms of
Kullback-Leibler information values, which are discrepancy measures for prob-
ability distributions.

2.2 Dilution Effects and Optimal Designs

Note that as pool size increases, it is possible that testing outcomes can become
less reliable. For instance, for a given number of positive samples, it may be
increasingly harder to detect their presence as pool size increases. Another
dilution effect can occur in relation to the number of positive samples in a pool.
For instance, for a given pool size, it may be increasingly easier to detect the
presence of positive subjects as their number increases. Such dilution effects
and their effect on the optimality of pooled test selection in terms of attaining
the optimal rate of convergence is characterized by Theorem 1 in the Appendix.

We assume the following conditions that characterize dilution effects, which
are formally represented in terms of Kullback-Leibler information values (see
Appendix). We assume that i) for a given number of positive samples, as pool
size increases, pooled tests become less discriminatory in identifying the presence
of positive samples; ii) as the difference in number of positive samples increases
for a given pool size, it is relatively easier to discriminate the presence of the
positives; (iii) for a given pool size and a fixed difference in the number of
positive samples present, as the total number of positive samples increases, the
respective test response distributions become harder to discriminate. Finally, we
assume a non-restrictive technical condition, (A4) in the Appendix. Theoretical
demarcations when it is preferable to group test depend on which state is true.
We illustrate examples of demarcations in Appendix, which show that group
testing is attractive asymptotically even under strong dilution effects.

Under these conditions, optimal designs can be considered for three case: 1)
all subjects are positive (the bottom state in the lattice), 2) all subjects being
tested are negative (the top state in the lattice), and 3) there is a mix of negative
and positive subjects (a state in the lattice ”in-between” the top and bottom
states). In Theorem 1, we see that optimal strategies for attaining the fastest
possible rates of convergence are: 1) test subjects individually, and 2) to group
test samples from all subjects. For the third case, optimal strategies are more
complex. The covers and anti-covers of the true state (states directly above
and below it) must be considered, as these states pose the most difficulty in
discriminating the true state, and hence have posterior probability values that
converge to zero the slowest. Under general conditions, the optimal strategy is
to group test the negatives and individually test the positives. Optimal rates
depend on the statistical discriminatory efficiency of the pooled tests, as mea-
sured by Kullback-Leibler information. They also depend on the complexity of
the lattice around the true state, as measured by the number of states directly
surrounding the true state. Respective tests are selected proportionally so that
the rate at which the slowest of the non-true state posterior probability value
converges to zero is maximized. In other words, it is desirable that the pos-

6

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.15.21249894doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.15.21249894


terior probabilities of the covers and anti-covers converge to zero at the same
rate. More technical details are discussed in the Appendix. In practice, the true
state identity is not known. Next, we propose a testing selection rule that will
eventually identify the true state and adopt the corresponding optimal strategy,
hence attaining the optimal rate of convergence, no matter the true state.

2.3 Bayesian Halving Algorithm and Analogous k-Test Look
Ahead Rules

A key to obtaining systematic efficiency gains is to base the sequential selection
of pooled tests on the Bayesian information provided by the posterior probability
values for the states. In Theorem 2 of the Appendix, we will establish that under
general conditions for dilution effects, a simple and intuitive selection rule for
pooling, referred to as the Bayesian halving algorithm, attains the optimal rate
for the true state posterior probability to converge to the value 1. While this is
an asymptotic property, given that the rates are exponential, attaining optimal
rates is practically attractive for finite testing horizons as well, and insures that
any error thresholds will be attained eventually with sufficient testing.

A key concept from order theory is the idea of an up-set for a state in the
lattice. This concept is useful for motivating the proposed test selection rules.
For a state j, denote its up-set as j. This is defined as the subset of states within
the lattice that are at least as great as (i.e. contain) the state in question. In
Figure 2.1, AB = {AB}; for B,B = {B,AB}, for A,A = {A,AB}, and for 0̂ it
is all 4 of the states. Practical interpretations of these up-sets are as follows: the
up-set of AB is all the states for which a pool of A and B would contain only
negative subjects, the up-set of B is all the states such that B is negative, etc.
Conversely, the complement of the up-set of AB = {A,B, 0̂}, and these are the
states for which a pooled test AB would contain at least one positive sample.
Similarly, the complement of the up-set of B = {A, 0̂} is comprised of the states
for which an individual test of a sample from subject B would be positive, etc.
Hence, the up-set of a state and its complement generate a partition of the
classification states according to whether the corresponding pooled test would
contain all negatives or not.

Now let us consider rules for pooled test selection based on πn. It is desir-
able to have a rule that adopts optimal strategies and attains optimal rates of
convergence of the true state posterior probability value to 1, no matter which
state is true, and under dilution effects, which are likely to arise especially for
large pool sizes. The following intuitive pooled test selection rule has these
properties, as we establish in Theorem 2 in the Appendix.

Consider the Bayesian halving algorithm, which selects the pool e that min-
imizes

h(πn, e) = |mn(e)− 0.5|, where mn(e) =
∑
j∈upe

πn(j). (1)

The Bayesian halving algorithm systematically partitions the lattice model, so
that regardless of the actual observed outcome, through Bayes rule, one of the
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two partitions of states will get increased posterior probability values, while the
states in the other partition will get decreased values. This systematically en-
courages posterior mass to eventually accumulate to one state. This property
supports that purposeful and systematic pool choices will be made as test re-
sults are observed that will lead to correct classification. From Example 1, we
compute h(π0, AB) = 0.355, h(π0, A) = 0.45, h(π0, B) = 0.40. Hence, it would
be attractive to first select e = AB, and to group test.

We also extend the halving algorithm to an analogous k-test look ahead rule,
k > 1, so that k pools are selected for simultaneous testing, as opposed to the
one at a time testing implicit with the proposed halving algorithm. Selecting
k pooled samples at a time may be more practical, as this can reduce the back
and forth involved in preparing pooled samples for testing based on observed
results. We define a stage of testing to be the simultaneous submission of one
or more pooled samples for testing. Given πn at a stage n, the idea behind our
proposed k-test version of the halving algorithm is to partition the posterior
mass on the lattice model into 2k partitions according to sets of the following
form. We choose k pooled samples e1, . . . , ek that minimize

|Σj∈e1∩e2...ekπn(j)– − 1/2k|+ |Σj∈e1∩e2...eckπn(j)– − 1/2k|+ . . .

|Σj∈ec1∩ec2...eckπn(j)– − 1/2k|.

For example, when k = 2, this criterion involves selecting e1, e2 that splits
the posterior mass on the lattice model into 2k = 4 parts as equally as possible,
minimizing

|Σj∈e1∩e2πn(j)– − 1/4|+ |Σj∈e1∩ec2πn(j)– − 1/4|+

|Σj∈ec1∩e2πn(j)– − 1/4|+ |Σj∈ec1∩ec2πn(j)– − 1/4|. (2)

We can approximate the minimization in (2) by sequentially selecting the
k experiments one at a time. First, given current posterior probabilityπn, we
choose e1 with the halving algorithm, e2 that minimizes (2) given πn and e1,
etc. This approximation is computationally much faster.

A halving algorithm that uses prior probabilities is previously described in
Black et al.[27], where samples are successively split in half for positive pooled
tests while also accounting for heterogeneity in risk. This approach is related
to what we propose here, but our approach is fully Bayesian, with posterior
probability computation that serves as the basis for selection and stopping.
Latvik et al.[21] present a set of several rules that are related to the halving
algorithm. However, the user has to select a rule from this set. These rules
differ in the amount of re-testing of pools that is conducted. In contrast, the
proposed Bayesian halving algorithm is an automated rule. It also can be used
with general distributions for test results.

8

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.15.21249894doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.15.21249894


3 Results

3.1 A Web-Based Calculator and Simulations

For the Bayesian halving algorithm and its k-test look ahead counterparts,
k > 1, we have created a web-based calculator that generates important perfor-
mance statistics relating to expected number of tests and stages, and correctness
rates, as well as false positive and false negative rates. The website address is
www.bayesgrouptest.case.edu. Expectations are taken with respect to πn. Re-
quired inputs are a vector of prior probabilities of positivity for each subject,
a matrix with the probabilities indicating presence of a positive that depend
on pool size and the number of positives in the pool, and a target posterior
probability error threshold for individual classification. Pooled test sequences
are also generated. Note that this tool currently only employs binary outcomes
for pooled tests (”positive is present”, or not).
Example 2 We next consider examples with N = 12 as an illustration, with
varying individual prior probability risk levels: 1) all prior probability values of
positivity p0 for each subject is 0.02, 2) all such values are 0.20, 3) mixed prior
values, with one subject having the value 0.20, while the rest having the value
0.02. We also assume a dilution effect model modified from Hung and Swallow
[25], which depends on constants 0 < α < 1 and h > 0, the number of positives
in a pool e, denoted as r, and pool size |e|. Suppose responses are binary, with
specificity pr=0,|e| = α, and one minus the sensitivity value

qr,|e| = α · r/((|e| − r) · h+ r), 1 ≤ r ≤ |e|.

For our examples, we assume α = 0.99, and h = 0.005. As an illustration, when
pool size is 12, sensitivity ranges from 0.9384 when only one subject is positive,
to 0.99 when all of the 12 subjects in the pool are positive. The webtool can
generate matrices of dilution effects for varying α and h. The dilution effect
conditions required in Theorem 2, which relate to optimality of the Bayesian
halving algorithm, are satisfied with this example. Finally, stopping of testing
is assessed at the individual level. Note that the posterior probability that
a subject is negative (positive) is equal to the sum of the posterior probability
values of all the states for which the subject is represented as negative (positive).
In our example, an individual subject is classified and no longer considered
for further testing once this posterior classification error of being negative or
positive is at or below a given error threshold, in this case 0.01. In these settings,
we consider performance of individual testing, k-test look ahead rules, and the
Bayesian halving algorithm (denoted as k = 1).

Simulations are based on exhaustive analyses of possible test response se-
quences, up to a number stages that varies by algorithm. This variation was
due in part due to numerical challenges as k increases. Hence, the reported
averages and error levels are approximations. Note for k = 1: 16 stages; k = 2:
12 stages; k = 3 : 8 stages; k = 4: 5 stages for 0 = 0.02 and for the case with
mixed 0 values, 6 stages for 0 = 0.2; Individual: 5 stages. Overall classification
up to these stages is generally above 99
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Simulation p0 = 0.02 p0 = 0.20 mixed p0 cases
k=1 2.071 8.648 3.313
k=2 3.238 10.72 3.554
k=3 4.305 13.161 4.926
k=4 5.508 14.092 6.188

Individual 15.948 22.5 16.884

Table 1: Average number of tests to reach classification threshold

Simulation p0 = 0.02 p0 = 0.20 mixed p0
k=1 2.071 8.648 3.313
k=2 1.619 5.36 1.777
k=3 1.435 4.387 1.642
k=4 1.377 3.523 1.547

Individual 1.329 1.875 1.407

Table 2: Average number of stages to reach classification threshold

0 = 0.02 False positive false negative rates
k=1 0.022 % 2.186%
k=2 0.011 % 1.933 %
k=3 0.007 % 1.873 %
k=4 0.005 % 1.806 %

Individual 0.0 % 0.214 %

0 = 0.2 False positive false negative rates
k=1 0.618 % 5.002%
k=2 0.721 % 5.125 %
k=3 0.557 % 4.604 %
k=4 0.376 % 3.958 %

Individual 0.0 % 2.102 %

mixed 0 False positive false negative rates
k=1 0.041 % 2.61 %
k=2 0.136 % 1.962 %
k=3 0.163 % 1.7 %
k=4 0.159 % 1.608 %

Individual 0.0 % 0.375 %

Table 3: False positive and false negative rates for N = 12

Simulation p0 = 0.02 p0 = 0.2- mixed p0
k=1 ABCDEFGHIJKL ABC ABCDEFGHIJKL

k=2 (add to k=1) A DEH A
k=3 (add to k=1,2) ABCDE ABCDE ABCDEFGH

k=4 (add to k=1,2,3) ABCDEFGHI ABCDH ABCDEFGH

Table 4: First stage test selections
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Table 1 shows, as expected, that in terms of average number of tests needed
to classify all subjects, group testing with the Bayesian halving algorithm (k =
1) has the smallest average number of tests and individual testing the largest,
across all the scenarios and selection rules considered here. Indeed, the re-
duction achieved through group testing can be dramatic. Testing efficiency is
particularly striking when the prior probability values of positivity for subjects
are small. This gain in testing efficiency reduces as k increases among k-test
look ahead rules. Conversely, as seen in Table 2, in terms of the number of
stages, individual testing has the smallest average while the k = 1 case has
the largest. This isn’t surprising given that more tests are submitted per stage
as k increases. There is thus a clear trade off between minimizing number of
tests versus number of stages, with the intermediate values of k > 1 serving
as a compromise between the flexibility of single test at-a-time (k = 1) group
testing versus the relative logistical ease of individual testing. We only consider
rules with k ≤ N/3 as this allows for sufficient adaptability with respect to test
responses, as well as numerical feasibility. Larger values of k require greater
computational resources in generating and analyzing the possible testing se-
quences.

In terms of average false positive and false negative rates, note in Table 3
that false negative rates are higher, particularly as k decreases, and as p0-values
increase. It is possible to adjust error thresholds for negative versus positive
classification, making the threshold for negative classification relatively more
stringent. Table 4 lists the first stage test selections. Multi-stage lists can be
generated with the webtool. In the table, note for instance when k=2 and
p0 = 0.02 for all subjects, the first two tests selected for the first stage is to
pool all subjects and to individually test subject A. For all prior probability
scenarios, group testing is initially selected. In sum, deciding between a specific
value of k ≥ 1 and individual testing depends on the prior probability values, the
dilution effect, and the ”cost” of preparation per stage versus the cost of testing
itself. The webtool provides a way to assess the tradeoffs that are appropriate
to specific scenarios.

3.2 Conclusion

In a Bayesian group testing framework, dilution effects are considered that de-
pend on pool size and the number of positives in a pool. It is seen that even
when dilution effects are quite significant, asymptotically optimal strategies rely
on group testing. Moreover, a simple and intuitive Bayesian halving algorithm
is shown to attain optimal rates of convergence. k-test look ahead analogues
of this halving algorithm also are proposed, which still can take advantage of
pooling and adaptability, while reducing the number of stages in testing. A
web-based tool has been developed that allows for assessment of the proposed
group testing approaches, given inputted prior probabilities of positivity per
subject, dilution effects and classification error level thresholds. The respective
expected number of tests and stages, classification error, and comparisons to
individual testing are generated. Computation of performance statistics for the
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lattice models does present combinatorial challenges as N and k increases.
Detailed discussion on the estimation of dilution effects is deferred here, as

approaches will depend on the test response distribution modeling. It is pos-
sible to consider estimating response probabilities with uncertain diagnoses (in
relation to posterior probabilities in classification) using Bayesian latent class
estimation approaches that can include nonparametric density estimation [34,
35]. Varied and well-characterized pooled test data should become more accessi-
ble as group testing becomes more widespread through population-level surveil-
lance. Also, individual-level prior probabilities of positivity can for instance be
estimated through generalized linear regression models based on demographic,
geographic, clinical and exposure information. Finally, we conjecture that it
will be possible to embed Bayesian halving algorithm-based testing sequences
in high-volume, automated workflows.
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Appendices
A1. Notation

We now focus on establishing the theoretical properties of Bayesian group
testing with lattice models under dilution effects, and the discussion will hence-
forth be much more technical. We begin by reviewing the statistical formulation
more formally. The set of classification states is taken to consist of the power-
set of N subject profiles that indicate positivity status for each of N subjects.
Each state in the model describes all the subjects in terms of whether each of
the subjects is either positive or negative with respect to an outcome of inter-
est. Note that there are 2N possible states, corresponding to each element in
the powerset. States can be identified through the subjects described as being
negative, and can be partially ordered through set inclusion. Note that state
j ≥ k if the collection of negative subjects associated with state j contains all
the negative subjects associated with state k. The collection of these states thus
form what will be referred to as a powerset lattice.
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Let the collection of classification states S be a finite lattice, with an un-
known true state. In brief, recall that a lattice is a partially ordered set such
that any two elements have both a unique least upper bound (join) and a unique
greatest lower bound (meet). For two elements i, j ∈ S, their join and meet
are respectively denoted as i ∨ j and i ∧ j. The up-set of an element i is
i = {j ∈ S : i ≤ j}, and the down-set of i is i = {j ∈ S : j ≤ i}. More
generally, for a set I ⊆ S, i = {j ∈ S : there exists i ∈ I such that i ≤ j}, and
I = {j ∈ S : there exists i ∈ I such that j ≤ i}. A top element 1̂ is an element
such that for any i ∈ S, i ≤ 1̂ Similarly, a bottom element 0̂ is an element such
that for any i ∈ S, 0̂ ≤ i. Both a top and bottom element exist in a finite lattice.
For i ∈ S, define Ci to be the set of covers of i, where y ∈ S is a cover of an
element i if i < y and there does not exist z ∈ S such that i < z < y. Also, let
Di denote the set of anti-covers, in other words the set of states y ∈ S such that
for y < i, there does not exist z ∈ S such that y < z < i. In Figure 2.1, note
that the anti-covers for state AB are the states A and B, while state AB is the
only cover for both states A and B. In general, for a powerset lattice, the covers
of a true state s are the states associated with one more negative subject, while
its anti-covers are the states that are associated with one less negative subject.
Hence, |Cs| = N − |s| and |Ds| = |s|, where |Cs|, |s|, and |Ds| denote respective
cardinalities.

Let E be a finite collection of pooled tests. Denoting X as the random vari-
able being observed for an experiment e ∈ E , let f(x|e, j) be the class conditional
probability density for j ∈ S. Note that there is a one-to-one correspondence
between elements in E and S\0̂, so that for instance e = j for some j ∈ S
implies that the set of subjects out of N that are represented as negative by j
are the corresponding samples being pooled. In establishing asymptotic results,
assume each e ∈ E can be replicated an unlimited number of times. Also, let
K(f, g) represent the Kullback-Leibler information for distinguishing distribu-
tion f and g when f is true. Throughout, it will be assumed that for all e ∈ E ,
there exists j1, j2 ∈ S such that K(f(·|e, j1), f(·|e, j2)) > 0. In this case, e is
said to distinguish states j1 and j2. Also, assume that for any j1, j2 ∈ S and
e ∈ E , K(f(·|e, j1), f(·|e, j2)) is finite.

Denote s ∈ S as the unknown true state. For j ∈ S, let π0(j) denote the
prior probability that j = s. Assume π0(j) > 0 for all j ∈ S. Given that at
the first stage a test e1 ∈ E is selected, and a random variable X1 with density
f(·|e1, s) has observed value x1, π1(j) ∝ π0(j)f(x1|e1, j). Inductively, at stage
n for n > 1, conditionally on having chosen tests e1, e2,. . . , en−1, and having
observed X1 = x1, X2 = x2, . . . , Xn−1 = xn−1, a test en ∈ E is chosen and Xn

with density f(·|en, s) is observed. The posterior probability that j = s then
becomes

πn(j) ∝ π0(j)
n∏
i=1

f(xi|ei, j).

The posterior probability distribution on S at stage n will be denoted by πn.
As seen in (Tatsuoka and Ferguson, 2003), it is necessary and sufficient to

distinguish s from all other states in order for πn(s)→ 1 almost surely. Letting
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ne be the number of times e is administered up to stage n, the limiting proportion
that e is administered is denoted as pe, with pe = lim inf ne/n. It is desirable
to seek rules that sequentially select tests, e1, e2, . . ., in the appropriate limiting
proportions so that the posterior probability of the true state s, πn(s), converges
almost surely to 1 at the fastest possible, or optimal rate. An optimal strategy is
comprised of a collection of limiting proportions associated with each e ∈ E such
that administration of the tests in their respective limiting proportions leads to
convergence at the optimal rate. From Theorem 2 in (Tatsuoka and Ferguson,
2003), it is argued that for k ∈ S, k 6= s,

lim inf
n→∞

−(1/n) log(πn(k)) =
∑
e∈E

peK(f(·|e, s), f(·|e, k)).

The right-hand side denotes the rate at which πn(k)→ 0 as n→∞. This rate
depends on the Kullback-Leibler information values for tests that distinguish
state k from s, as well as the limiting proportions in which they are administered.
Hence, larger Kullback-Leiber information values for tests are desirable, as they
indicate greater discriminatory efficiency. It can be shown that α is the minimum
of these rates among k 6= s, and hence maximizing α is equivalent to maximizing
the rate of the slowest converging posterior probability terms among k 6= s.
A2. Dilution Effects Consider the following statistical formulation. Again,
suppose the collection of tests E corresponds to all possible non-empty subsets
of subjects and hence to S\{0̂}. In other words, every possible combination of
the N can be pooled and tested. For e ∈ E and j ∈ S, assume that

f(x|e, j) = fr,|e|(x), (A1)

where |e| denotes the number of samples in pool test e, and

r = |e| − |e ∩ j|, r ≥ 0,

where r is the number of positive samples in pool test e given j is the true state.
Note when e ≤ j, this implies r = 0. This formulation allows for response

distributions to vary depending on how many positive samples are in a pool,
and according to pool size. When fr,|e| is a Bernoulli density, let pr,|e| be the
probability that the outcome indicates that no positive samples are present given
r positive samples are present and pool size is |e|. Note then that for r = 0 (
no positives), p0,|e| represents the specificity of a test of pool size |e|. Also, for
r ≥ 1, qr,|e| = 1− pr,|e| is the sensitivity of the test when r positive samples are
present in a pool of size |e|. In this section, let K(r1, r2, |e|) = K(fr1,|e|, fr2,|e|).

The following conditions, based on Kullback-Leibler information, are given
to reflect the presence of dilution effects: (i) Suppose that both

K(r, r − r′, |e|) and K(r, r + r′, |e|) (A2)

are non-increasing in |e| for fixed r ≥ 0 and respectively for fixed 0 ≤ r′ ≤ r
and r′ ≥ 0, with K(0, 1, |e|) > 0 and K(1, 0, |e|) > 0. (ii) Suppose also that the
Kullback-Leibler information values are non-decreasing in r′ for fixed r ≥ 0 and
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|e|, with respectively 0 ≤ r′ ≤ r, and 0 ≤ r′ ≤ |e| − r. (iii) Moreover, suppose
the functions in (A2) are non-increasing in r for fixed r′ and |e|, with for each
r ≥ 1,

K(r, r − 1, |e|) ≥ K(r, r + 1, |e|). (A3)

A3. Optimal designs and optimal rates of convergence
The following examples illustrate issues that arise in determining optimal

strategies under dilution effects, which are established in Theorem 1. An em-
phasis is on how the lattice structure determines the difficulty in classification.
Given conditions (A1)-(A3), from a lattice-theoretic point of view, it is neces-
sary and sufficient to distinguish a true state from its covers and anti-covers
(the states that directly surround it) in order to distinguish the true state from
all the others.
Example A1. Suppose that S is the lattice in Figure 2.1, and that s = 0̂
(all subjects are positive), as in part (i) of Theorem 1. The covers of s are the
atoms of the lattice, in other words the states that respectively represent only
one of the samples being negative, Cs = {A,B}. Consider now possible strate-
gies for distinguishing s from its covers. One approach would be to individually
test each subject. For instance, if sample from A is tested individually, then
for states in A = {A,AB}, since A is negative, the distribution of response is
f0,1 . If the true state is in {A}c = {0̂, B}, then subject A would be positive,
and hence the corresponding distribution would be f1,1. Hence, this test distin-
guishes s = 0̂ from A and AB. Similarly, states B and AB can be distinguished
through individually testing B. In sum, when testing subjects individually, the
corresponding atoms are positive distinguished one test at a time. However,
when response distributions depend on the number of positives in a pool, the
atoms also can be distinguished from the state s = 0̂ by pooling objects. Note if
subjects A and B are pooled, then either state A or B being true would result
in the test having distribution f1,2, while for s = 0̂ it would be f2,2. This follows
since if state A or B are true, there is one positive sample in the pool, while
given s is true, both sample are positive. Hence, more than one cover at a time
can be distinguished from s through pooled experiments. Because of dilution
effects (i) and (iii), K(1, 0, 1) ≥ K(2, 1, 2), so individual testing may lead to
more efficient discrimination between s and its covers, while pooling A and B
has the advantage of distinguishing s from A and B simultaneously. Hence, in
the presence of dilution effects, there is a trade-off between these testing ap-
proaches. Theorem 1 resolves such trade-offs in terms of optimizing the rate
of convergence. Note also that by dilution effect (ii), K(2, 0, 2) ≥ K(2, 1, 2),
so state AB is distinguished from s at least as efficiently as states A and B
when samples from A and B are pooled. Under individual testing, state AB
is distinguished whenever states A or B are distinguished. Hence, with either
approach, πn(AB) will converge to zero at a rate at least as fast as either πn(A)
or πn(B).
Example A2. In part (ii) of Theorem 1, it is supposed that the true state
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s = 1̂ (all subjects are negative). In Figure 2.1, state AB = 1̂. In distinguishing
s from its anti-covers, Ds = {A,B}, again more than one strategy must be
considered. When pooling A and B, note that the test has distribution f0,2.
States A and B each have class conditional distribution f1,2. Hence, both of
the anti-covers are distinguished simultaneously from s. It is also possible to
distinguish states A and B by individually testing the subjects. For instance,
when testing subject A, states A and AB have distribution f0,1 since A would be
negative if either is the true state, while states B and 0̂ would have distribution
f1,1, as A is positive if either of those states is true. Hence, the anti-cover B
is distinguished. Similarly, the anti-cover A is distinguished when B is tested
alone. Due to the increasing pool size, K(0, 1, 1) ≤ K(0, 1, 2), as reflected by
dilution effect (i). Again, because of the presence of a dilution effect, there is
a trade-off to consider in terms of distinguishing both anti-covers at once, but
perhaps less efficiently than distinguishing them one at a time. As one would
expect, it will be seen that as the dilution effect gets stronger, it becomes more
attractive to test smaller pools.

When 0̂ < s < 1̂, more complex situations can arise. This is because in
distinguishing covers, anti-covers can be distinguished as well when positive
samples are pooled together with negative ones. However, when it is attractive
to do so, there do not exist general closed form solutions of optimal strategies
for such cases, as many contingencies can arise. It will instead be assumed that
for

r positives, 1 ≤ r ≤ N − |s|, and k negatives, 1 ≤ k ≤ |s|,

(r/(N−|s|))K(r, r−1, r) ≥ (r/(N−|s|)K(r, r−1, r+k)−(k/|s|)K(r, r+1, r+k).
(A4)

As will be argued in Theorem 1, this condition insures that for an optimal
strategy, it can be assumed that the optimal value of k is k∗ = 0, and hence
that asymptotically, positives and negatives are not tested together. In Example
6, it will be demonstrated that this condition is not restrictive. When r > 0
and k = 0, a corresponding pooled test distinguishes covers but not anti-covers.
Hence, given (A1)-(A4), when S is a powerset lattice and 0̂ < s < 1̂, it will
be shown that determining optimal rates of convergence involves identifying an
optimal value r∗, the number of positives to be pooled to distinguish covers,
and j∗, the optimal size of pools comprised only of negatives, to distinguish the
anti-covers. In contrast, when there is no dilution effect, as in (Tatsuoka and
Ferguson, 2003), the optimal strategy is to distinguish covers by individually
testing positives (r∗ = 1, k∗ = 0), and to distinguish anti-covers by pooling
negatives all at once (j∗ = |s|).

In Theorem 1, it is assumed that the true state is known. Clearly, in prac-
tice, it is unknown, and in fact determining its identity is the primary objective
of classification. Still, the following results have direct practical relevance. Af-
ter, an optimal rule for selecting pooled tests will be established. In order to be
optimal, a rule must first be convergent in the sense that the true state is eventu-
ally identified almost surely. In addition, it must then also eventually adopt an
optimal strategy for selection of tests, corresponding to whatever state is true.
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Thus, Theorem 1 characterizes the pooling sequences that must eventually be
adopted almost surely under the various scenarios that can arise.

For 0 ≤ |s| < N , let

R∗c = sup
1≤r≤N−|s|

(r/(N − |s|))K(r, r − 1, r),

with r∗ being a value that satisfies R∗c = (r∗/(N − |s|))K(r∗, r∗ − 1, r∗). Also,
for 0 < |s| ≤ N , let

R∗d = sup
1≤j≤|s|

(j/|s|)K(0, 1, j),

with 1 ≤ j∗ ≤ |s| attaining the value of R∗d.
Theorem 1. Suppose that S is a powerset lattice of N subjects, and let

s ∈ S denote the true state. Suppose that tests in E satisfy (A1), dilution
effects (i)-(iii), and (A4).

(i) If s = 0̂, the optimal rate of convergence is R∗c , with |s| = 0. This rate
is attained if each possible subset of r∗ subjects are pooled in equal limiting
proportion 1/

(
N
r∗

)
.

(ii) If s = 1̂, the optimal rate of convergence is R∗d, with |s| = N . This rate
is attained if each possible subset of j∗ subjects are pooled in equal limiting
proportion 1/

(
N
j∗

)
.

(iii) Otherwise, when 0̂ < s < 1̂, the optimal rate is

R∗c ·R∗d/(R∗c +R∗d).

This optimal rate is attained if each subset of r∗ positive subjects are pooled
and tested in equal limiting proportion

(1/

(
N − |s|
r∗

)
) ·R∗d/(R∗c +R∗d),

and all tests e ≤ s, |e| = j∗ (pools of size j∗ consisting only of negatives) are
administered in equal limiting proportion

(1/

(
|s|
j∗

)
) ·R∗c/(R∗c +R∗d).

The respective given optimal strategies are not necessarily unique. When j∗ or
r∗ are not unique, the optimal rate can be attained by any mixture of optimal
allocations associated with each of the values. If E is restricted by bounds on
pool size, Theorem 1 can straightforwardly be extended by optimizing j∗ and
r∗ with respect to the corresponding constrained values.

Theorem 1 gives demarcations for when it is optimal to pool subjects under
dilution effects. This result is in some sense analogous to that in Ungar (1960),
which states that when there is no testing error with binary outcomes, it is
preferable to individually test when the proportion of positive subjects is greater
than (1/2)(3−

√
5); otherwise, group testing is preferred. In part (i) with s = 0̂
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(all subjects are positive), the demarcation for when it is optimal to individually
test subjects is that for all 1 < r ≤ N − |s|,

K(1, 0, 1) ≥ rK(r, r − 1, r). (A5)

This condition follows by comparing rates of convergence for the covers of s = 0̂
when r subjects are tested at a time. It is a regulation on dilution effect (iii). In
part (ii) when s = 1̂, it is optimal to pool all the subjects if for 1 ≤ j ≤ N − 1,

K(0, 1, N) ≥ (j/N)K(0, 1, j). (A6)

More generally, it is optimal to do some form of pooling as long as 1 < j∗ ≤ N .
Condition (A6) regulates the decrease in efficiency of detecting a single positive
subject versus no positive subjects as pool size increases, and hence relates to
dilution effect (i). If this decrease does not occur too quickly, it is optimal to
pool all subjects, which are all negative when s = 1̂. These demarcations will
be illustrated below, as well as for when pooling is preferred when 0̂ < s < 1̂.

Given the presence of dilution effects, it will be of particular interest to
demarcate how strong the effects must be to alter the optimal strategies from
when there is no-dilution effect. If (A5) and (A6) hold, the respective optimal
strategies for when s = 0̂ and s = 1̂ correspond to the no-dilution effect case.
The following examples indicate that the same optimal strategy as with no
dilution effects is still optimal even in the presence of significant dilution effects.
Example A4. Suppose s = 1̂, let N be the number of objects to be classified,
and suppose sensitivity decreases with pool size, but specificity stays constant.
Let fr,|e| be Bernoulli density functions, with p0,|e| = 0.99 for all 1 ≤ |e| ≤ N ,
and q1,1 = 0.99. Following (A6), note that if N = 15, in terms of the rate of
convergence, group testing all fifteen subjects is preferred if q1,15 > 0.294 and
(A6) holds for the other values of j < 15. Further, (A6) would still be satisfied
at j = 30 if q1,30 > 0.174. For j = 100, (6) would still hold if q1,100 > 0.073.
Hence, under these conditions, (A6) should hold in most practical applications.

Next, supposed that specificity is affected by pool size as well, and in equal
magnitude to the sensitivity, with q1,|e| = p0,|e|. With q1,1 = p0,1 = 0.99 and
assuming (A6) holds for all other values of j < N , it is still preferable to group
test all subjects when N = 15 if q1,15 = p0,15 > 0.689, when N = 30, q1,30 =
p0,30 > 0.635, and when N = 100 if q1,100 = p1,100 > 0.575.

Suppose f0,|e| is the density for the standard normal distribution for all e,
and f1,|e| is the density for a normal distribution with mean µ1,|e| and variance
1. Assume that (A6) holds for j < N . Letting µ1,1 = 3.0, it can be seen that
when N = 15, it is still more attractive to group test all objects if µ1,15 > 0.775,
when N = 30, µ1,30 > 0.548, and when N = 100, if µ1,100 > 0.300.
Example A5. Consider when s = 0̂. The demarcation in (A5) can similarly
be illustrated numerically for when it is more attractive to individually test
subjects under this case. As described in Example A2, the trade-off is between
discriminatory efficiency as measured by Kullback-Leibler information versus
the number of covers of s = 0̂ being distinguished per test. Pooling allows
for more covers to be distinguished, but is less efficient in discrimination than
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individual testing. For instance, sensitivity qr,r = 0.99 for r ≥ 1, and specificity
p0,|e| = 0.99 for all 0 < |e| ≤ N . For this case, the demarcation is the same as
in Example A4. Thus, assuming (A5) holds for all j < N , (A5) is also satisfied
for N = 15, 30 and 100 when respectively q14,15 < 0.294, q29,30 < 0.174, and
q99,100 < 0.174. This example illustrates that the dilution effect (iii) can be
quite strong, and yet the no-dilution effect strategy of eventually individually
testing positive subjects is not affected.

Given (A1), dilution effects (i)-(iii), and 0̂ < s < 1̂, a simple condition that
is sufficient for insuring that r∗ = 1 is

K(1, 0, 1) ≥ rK(r, r − 1, r) (A7)

for 2 ≤ r ≤ N − |s|. This condition is essentially the same as (A5), except (A7)
applies to a smaller range of r. Hence, if (A5) is already established, (A7) follows
as well. The numerical demarcation in Example A5 is thus applicable to (A7),
and indicates that (A7) can hold generally. If the following condition holds,
along with (A7), testing positives individually is optimal: for all 1 ≤ k ≤ |s|,

(1/(N−|s|))K(1, 0, 1) ≥ (1/(N−|s|))K(1, 0, k+1)−(k/|s|)K(1, 2, k+1). (A8)

Note that (A8) is a special case of (A4) with r = 1. Finally, given (A7) and
(A8), it follows that distinguishing the anti-covers is conducted by pooled tests
consisting of negatives of size j∗. For 1 ≤ j ≤ |s| − 1, j∗ = |s| when

K(0, 1, |s|) ≥ (j/|s|)K(0, 1, j). (A9)

Note that (A6) implies (A9). Indeed, substituting N with |s|, note that Example
A4 illustrates that j∗ = |s| except under strong dilution effects. In practice,
checking conditions (A5) and (A6), and (A8) with |s| = N , is sufficient for
determining for all states whether or not corresponding strategies are altered.

In sum, Examples A4 and A5 illustrate that dilution effects, unless severe,
do not generally alter the optimal strategy of eventually pooling all negative
subjects, while individually testing each of the positive subjects. One practical
ramification that these results suggest is that, given low prevalence of positive
samples, it is attractive to initially pool as many samples as possible, in spite
of dilution effects, since the top element is most likely the true state a priori.
In the next section, it will be seen that when (A5), (A6) and (A8) hold, a
simple and intuitive rule for dynamically selecting pools will be optimal in the
sense that optimal strategies will be selected eventually, corresponding to the
unknown true state, with probability one.

A4. Optimal Pooling Selection Under Dilution Effects Now let us con-
sider rules for pooling selection that, given the observed outcomes to previously
administered pools and prior information, select the composition of the next
stage pool to test. It is desirable to have a rule that adopts optimal strategies
and attains optimal rates almost surely, no matter which state is true. It will
be seen in this section that an intuitive and simple rule, a halving algorithm,
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attains optimal rates of convergence when the optimal strategy coincides with
the no-dilution effect case, and hence even under strong dilution effects. For in-
stance, if (A5), (A6) and (A8) hold and s = 1̂, then it is desirable for a pooling
selection rule to eventually pool all objects. If 0̂ < s < 1̂, then we would want
the rule to lead to sequences of pools that eventually consist of all the negative
subjects, or individually tests the positive subjects.

Theorem 2. Under (A1), dilution effects (i)-(iii), and (A5), (A6), and (A8),
for S being a powerset lattice and any s ∈ S being the true state, the Bayesian
halving algorithm described by (1) will attain the optimal rate almost surely.
A5. Bayesian Estimation of Prevalence Through Group Testing

Based on the above-described group testing frameworks, prevalence can be
estimated in a Bayesian manner. Suppose that it is of interest to estimate the
proportion of positives in a target population, denoted by θ, based on group
testing data. Given there is uncertainty as to the positivity status of subjects, a
natural estimate could rely the information provided by πn. For instance, given
a conjugate Beta prior distribution for θ, f(a, b), the posterior distribution for
θ given the observed group testing outcomes is a mixture of posterior Beta
densities with respect to πn, where the Beta densities are updated depending
on which state is true: ∑

j∈S
f(a+ |j|, b+N − |j|) · πn(j).

For the powerset lattice, |j| is the number of negatives out of the N objects given
state j is true. Note that this mixture will converge to the posterior distribution
for θ that would be obtained if the correct diagnoses for all the N subjects were
known exactly, given πn(s) converges to 1 almost surely for true state s.
Example A6. As a simple illustration, suppose as in Example 1 that N=2.
We are interested in estimating θ, and suppose a beta prior distribution, β(2, 2).
Prior mean and standard deviation are thus 0.50 and 0.22. For n = 2 stages, re-
call π2 = {π2(AB) = 0.0009, π2(A) = 0.9985, π2(B) = 0.0001, π2(0̂) = 0.0005}.
The posterior density for θ is thus the mixture

(0.0009)f(4, 2) + (0.9985)f(3, 3) + (0.0043)f(3, 3) + (0.0005)f(2, 4).

The mixture posterior mean of θ is 0.5022, and the mixture posterior standard
error is 0.1888.
A7. Proofs

Proof of Theorem 1. Again, let pe denote the limiting proportion that e ∈
E is administered. From (Tatsuoka and Ferguson, 2003), the optimal rate of
convergence of πn(s) to 1 is thus related to the following linear program: find
probability vector {pe}e∈E and v to

maximize v

subject to
pe ≥ 0, e ∈ E , and

∑
e∈E pe = 1,
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and

v ≤
∑
e∈E

peK(|e| − |e ∩ s|, |e| − |e ∩ k|, |e|) for k ∈ S\{s}. (A10)

A probability vector, {pe}, is sought to maximize the minimum of the right
side of (A10) over k ∈ S\{s}. Note that the right side of (11) is the rate of
convergence for state k given the allocation {pe}.

Consider first when s = 1̂. The case when s = 0̂ follows similarly. For z ∈
Ds\Ds, note that since S is a powerset lattice, there exists x, y ∈ Ds such that
z ≤ x∧ y. Hence, z is distinguished from s whenever x and y are distinguished.
Further, by (2), the rate of convergence for terms in Ds is thus slowest for terms
in Ds. We thus need only consider the terms in Ds in establishing the optimal
rates. Moreover, it can be established that if all experiments in {e : |e| = j, e ≤
s}, 1 ≤ j ≤ N , are each administered in limiting proportion 1/

(
N
j

)
, the rate of

convergence is (j/N)K(0, 1, j). Denote such an allocation as a(j,N).
It will now be shown that if

|e′|K(0, 1, |e′|) > |e|K(0, 1, |e|) and |e′| < |e|,

then it is optimal for pe = 0. Suppose e is administered with limiting proportion
pe > 0, and let δ = {pk}k∈E be an optimal allocation. Note that the rate of
convergence contribution to each state distinguished from s by administration
of e is peK(0, 1, |e|). However, by instead administering all k ∈ E contained in

{e}c ∩Ds, |k| = |e′|, in equal limiting proportion pe(1/
( |e|
|e′|
)
), the corresponding

rate contribution to each state in {e}c ∩ Ds is pe(|e′|/|e|)K(0, 1, |e′|), which is
greater than peK(0, 1, |e|). Hence, allocation δ can be improved, and would not
be optimal.

Suppose now there exists e such that |e| < j∗, |e| = infk:pk∈δ,pk>0 |k|. From
above, there exists e′ ∈ δ such that pe′ > 0, |e′| > |e|, e 6< e′, and |e′|K(0, 1, |e′|) >
|e|K(0, 1, |e|), or else the allocation is dominated. Consider

D′ = {{e}c ∪ {e′}c} ∩Ds = Ds\{e ∩ e′}.

It will now be established that the rate can be improved by administering all
tests in

E(e, e′) = {k : |k| = |e′|, {k}c ∩Ds ⊆ D′, {e}c ∩Ds ⊆ {k}c ∩Ds},

in a certain equal limiting proportion given below instead of administering e

with proportion pe. Note that there are n′ =
(|D′|−|e|
|e′|−|e|

)
such experiments.

Consider two cases: First suppose

(i) pe′ − pe((K(0, 1, |e|)/K(0, 1, |e′|)− 1) > 0.

For terms in {e}c ∩ Ds, note that if tests in E(e, e′) are administered in equal
proportion

(pe + pe((K(0, 1, |e|)/K(0, 1, |e′|))− 1))/n′ = pe((K(0, 1, |e|)/K(0, 1, |e′|))/n′,
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then the corresponding rate contribution for each distinguished state is still

peK(0, 1, |e|),

the same as if e were administered in proportion pe. Moreover, administering
e′ with proportion

pe′ − pe((K(0, 1, |e|)/K(0, 1, |e′|))− 1),

note that terms in {e′}c ∩ e ∩Ds are distinguished in proportion

(pe + pe((K(0, 1, |e|)/K(0, 1, |e′|))− 1))(|e′| − |e|)/(|D′| − |e|)+

pe′ − pe((K(0, 1, |e|)/K(0, 1, |e′|))− 1).

The corresponding rate contribution is greater than pe′K(0, 1, |e′|) when |D′| >
|e′| > |e| > 0, |e′|+ |e| > |D′|, and |e′|K(0, 1, |e′|) > |e|K(0, 1, |e|), as is assumed.
Finally, note the rate contribution to states in {e′}c∩{e}c∩Ds by administration
of tests in E(e, e′) and e′ is even greater.

Suppose now

(ii) pe′ − pe((K(0, 1, |e|)/K(0, 1, |e′|))− 1) ≤ 0.

Solving for p∗e such that

pe′ − p∗e((K(0, 1, |e|)/K(0, 1, |e′|))− 1) = 0,

it can be found that

p∗e = pe′K(0, 1, |e′|)/(K(0, 1, |e|)−K(0, 1, |e′|)).

The rate contribution to terms in {e}c ∩ Ds from administration of exper-
iments in E(e, e′) in equal proportion (pe′ + p∗e)/n

′, and administration of e in
proportion pe − p∗e is still

(pe′ + p∗e)K(0, 1, |e′|) + (pe − p∗e)K(0, 1, |e|) = peK(0, 1, |e|).

Further, note the rate contribution to each state in {e′}c∩e∩Ds by experiments
in E(e, e′)is

(pe′ + p∗e)((|e′| − |e|)/(|D′| − |e|))K(0, 1, |e′|),

which is greater than pe′K(0, 1, |e′|) under the given conditions. The rate con-
tribution to states in {e′}c ∩ {e}c ∩Ds is thus also greater. Hence any optimal
allocation will administer only tests such that |e| = j∗. Moreover, the optimal
rate is attained when all terms in Ds converge to zero at the same rate. The
allocation a(j∗, j∗) is thus optimal.

Suppose now that 0̂ < s < 1̂. The condition in (4) results from comparing
the respective maximin rate among states in Cs ∪ Ds that would result when
covers are distinguished by pools comprised of r positives with no positives,
versus pools with r positives and k negativess, and anti-covers are distinguished
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by e ∈ s, |e| = j∗. By (3), even when anti-covers are distinguished by pools
containing both positives and negatives, it is necessary to administer tests in
s in positive limiting proportion. Using the arguments above, in an optimal
strategy, among experiments in s, only e ∈ s with |e| = j∗ will be administered.
Given (4), then, among states in Cs ∪ Ds, the maximin rate is obtained by
administering r positives with k = 0 negatives rather than if k > 0. Hence, for
states in Cs ∪Ds, it is optimal to consider only strategies with k = 0.

If j is incomparable to s, then there must be an object k1 that is negative if
s is true but that is positive if j is true. Let d1 ∈ Ds be the anti-cover associated
with k1 in the sense that the objects associated as negative for d1 correspond to
all the negatives for s except k1. When d1 is so distinguished, so is j. Further,
if k = 0 when distinguishing covers, j converges at least as fast as d1. Hence,
only states in Cs ∪ Ds would determine the optimal rate, and so it is optimal
to only consider strategies with k = 0. Following as above, only pools with r∗

positives and k = 0 negatives will be administered to distinguish covers, along
with pools comprised only of j∗ negatives to distinguish anti-covers. Respective
limiting proportions that insure that posterior probability terms for states in
Cs ∪Ds converge at the same rate, such as stated in (iii), are optimal.

Proof of Theorem 2. Define pj(n) = nj/n, where nj represents the number
of times j ∈ E is administered through stage n, and pjs(n) = njs/n, where njs
represents the number of times j ∈ S\{s} is distinguished from s through stage
n. Also, let Gcs be the minimal elements in Kcs. For a powerset lattice, Gcs
corresponds to the atom associated with the subject that is negative for c but
positive for s.

First note that the halving algorithm is convergent in the sense that πn(s)→
1 almost surely, and that all states are distinguished from s infinitely often. Note

{c} = c ∩ {
⋃

c′∈Cs\{c}

Gc′s}c for c ∈ Cs, and Ds = {s}c ∩ {
⋃
c∈Cs

Gcs}c.

Also, let

M c
n = |S| · πn(c) for c ∈ Cs, and Ms

n = |S| · sup
j∈Ds

πn(j).

Define two test selection rules, procedures AI and AII . Procedure AI is
defined as follows:{

en = s if Ms
n ≥ πn(c) for all c ∈ Cs;

otherwise, select j ∈
⋃
c∈Cs

Gcs which maximizes h(j, πn).

Consider now procedure AII :{
en = s if πn(0̂) > M c

n for all c ∈ Cs;
otherwise, select j ∈

⋃
c∈Cs

Gcs which maximizes h(j, πn).

Both of these procedures attain the optimal rate of convergence for s being the
true state in a general lattice model. This can be seen by applying the arguments
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of Theorem 6 in (Tatsuoka and Ferguson, 2003) (in Proposition 1 of (Tatsuoka
and Ferguson, 2003) it should instead be stated that a(n)/n → B/(A + B)).
Note the slowest converging states in S\{s} are those in Cs and those in Ds.

When n is large and hence πn(s) > 0.5, each cover c is distinguished by the
corresponding element c∗ ∈ G∗cs. This follows since mn(c∗) > mn(j) for any
j ∈ {j′ : c∗ < j′ ≤ c}. Note also that for n large, 1 −mn(s) > 1 −mn(j) for
j ∈ Ds. This implies that h(s, πn) > h(j, πn) eventually for all j ∈ Ds.

Again following as in Theorem 6 of (Tatsuoka and Ferguson, 2003), it can
be argued that eventually j ∈ {Cs}c is not administered. Further, the halving
algorithm can be compared with procedures AI and AII , establishing that the
halving algorithm administers the respective optimal limiting proportions.

27

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.15.21249894doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.15.21249894

