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Abstract  

 

Background: The rapid growth of inherently complex and heterogeneous data in HIV/AIDS 

research underscores the importance of Big Data Science. Recently, there have been increasing 

uptakes of Big Data techniques in basic, clinical, and public health fields of HIV/AIDS research. 

However, no studies have systematically elaborated on the evolving applications of Big Data in 

HIV/AIDS research. We sought to explore the emergence and evolution of Big Data Science in 

HIV/AIDS-related publications that were funded by the US federal agencies.   

 

Methods: We identified HIV/AIDS and Big Data related publications that were funded by seven 

federal agencies from 2000 to 2019 by integrating data from National Institutes of Health (NIH) 

ExPORTER, MEDLINE, and MeSH. Building on bibliometrics and Natural Language Processing 

(NLP) methods, we constructed co-occurrence networks using bibliographic metadata (e.g., 

countries, institutes, MeSH terms, and keywords) of the retrieved publications. We then 

detected clusters among the networks as well as the temporal dynamics of clusters, followed by 

expert evaluation and clinical implications.  

 

Results: We harnessed nearly 600 thousand publications related to HIV/AIDS, of which 19,528 

publications relating to Big Data were included in bibliometric analysis. Results showed that (1) 

the number of Big Data publications has been increasing since 2000, (2) US institutes have been 

in close collaborations with China, Canada, and Germany, (3) some institutes (e.g., University of 

California system, MD Anderson Cancer Center, and Harvard Medical School) are among the 

most productive institutes and started using Big Data in HIV/AIDS research early, (4) Big Data 

research was not active in public health disciplines until 2015, (5) research topics such as 

genomics, HIV comorbidities, population-based studies, Electronic Health Records (EHR), social 

media, precision medicine, and methodologies such as machine learning, Deep Learning, 

radiomics, and data mining emerge quickly in recent years.  

 

Conclusions: We identified a rapid growth in the cross-disciplinary research of HIV/AIDS and Big 

Data over the past two decades. Our findings demonstrated patterns and trends of prevailing 

research topics and Big Data applications in HIV/AIDS research and suggested a number of fast-

evolving areas of Big Data Science in HIV/AIDS research including secondary analysis of EHR, 

machine learning, Deep Learning, predictive analysis, and NLP.  
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1 Introduction 

 

Big Data Science is often referred to as research that capitalizes on the increased volume, 

variety, velocity, and veracity of data. The proliferation of massive health-related Big Data 

characterized by high dimensionality and complexity as well as the utilization of advanced 

statistical and computational technologies offers invaluable opportunities to improve the 

quality and efficiency of healthcare [1,2]. There has been an increasing consensus in the field 

that the Big Data science approach will continue to advance our understanding of disease 

prevention, identification, control, and treatment for decades to come and will be the key to 

reduce the national and global disease burdens, including those of HIV [3–5].  

 
It is estimated that 37.9 million people are living with HIV (PLWH) worldwide [6]. The HIV 

treatment cascade, a continuum from prevention, diagnosis, linkage to care, medication 

adherence and retention to viral suppression (and well-being beyond the viral suppression), is 

included in the framework for the Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-

90-90 targets [7]. The response to the HIV epidemic is complicated by the persistent and 

prevalent stigma and discrimination against PLWH, socio-cultural barriers to healthcare access, 

and challenges of disease management (e.g., medicine resistance, comorbidities), all of which 

necessitate informed decisions and evidence-based strategies for HIV prevention, treatment, 

and care. Big Data Science allows researchers to innovatively utilize data collected through 

diverse platforms and within existing systems to understand HIV transmission, clinical 

outcomes (e.g., disease progression and comorbidities), and physical and psychosocial well-

being. The increasing utilization of Big Data can better inform effective policy and practices 

regarding HIV prevention, treatment, and care. 

 

Big Data Science can be used in exploring HIV transmission and prevention concerning health 

disparity in HIV infection, and socio-behavioral factors associated with HIV risk. In 2018, there 

were 37,968 new diagnoses in the US, among which 43% were Black/African American men and 

26% were Hispanic/Latino. New diagnoses have increased by 71% in Native Hawaiian/Other 

Pacific Islanders. The Southern US has 38% of the population yet account for 51% of new 

diagnoses [8], with a 24% higher proportion of new diagnoses in suburban and rural areas as 

compared to other regions in the US [9]. Over the last decade, HIV diagnosis rate decreased by 

17% in the Northeast and 6% in the Midwest but remains high in the South [10,11].  These 

findings collectively suggest that factors influencing HIV transmission among vulnerable 

populations are inherently complex and are involved with nuances from both clinical care and 

social care. Therefore, a novel approach is demanded to identify the dynamics of HIV 

transmission through integrating PLWH’s clinical data [e.g., data from Electronic Health Records 

(EHR)], social care data (e.g., data from community care facilities, mental health, rehabilitation), 

social determinants of health (SDOH), and health administrative data (e.g., medical claims) [12]. 

Identifying socio-behavioral factors that are associated with HIV risk appears to be interesting 

as well. The proliferation of social media, personal health records (PHR), and other forms of 

patient-generated health data (PGHD) in research has suggested a new role of perceptions and 

risk behaviors (e.g., stigma, mental status, social support, and SDOH) [13–15].  
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Big Data Science can also be employed in addressing challenges in HIV treatment and care, such 

as HIV-associated comorbidities, coinfections, and complications that lead to worse clinical 

outcomes and high healthcare expenditure [16–21]. However, because relevant studies were 

often conducted on small and single cohorts with limited variables, the findings were 

inconclusive [22]. Recently, the detection of HIV-associated comorbidities, coinfections and 

complications, and evidence-based clinical decision support (CDS) through multi-centered and 

longitudinal medical records are becoming increasingly available as advances in EHR 

interoperability unleashed the potential of secondary use of large-scale clinical data. As many 

researchers have pointed out, Big Data Science is not a “stand-alone tool” but can be 

incorporated into an existing clinical “toolbox” to advance clinical care and help end the HIV 

epidemic by transforming data into fundamental knowledge and better health outcomes.  

 

New opportunities in HIV/AIDS research have been created along with the increasingly available 

sources of Big Data. One major source of Big Data is genomics data that underpin the discovery 

of genome functions and the genetic basis of AIDS. Since the completion of the Human Genome 

Project in 2003, next-generation sequencing data have become exponentially available in 

National Center for Biotechnology Information (NCBI) and have been used in HIV/AIDS research 

with a focus on HIV mechanism and pathogenesis [23]. Another major source of Big Data is EHR 

which was incentivized by the Health Information Technology for Economic and Clinical Health 

Act (HITECH) enacted in 2009 and the Medicare and Medicaid EHR Incentive Programs initiated 

in 2011 for enhancing the EHR interoperability. A unique role of EHR lies in the capacity of 

supplying compressive patient data across the continuum of care, which is highly responsive to 

the continuum of AIDS care [4,24].  

 

However, opportunities and challenges are not apart. Health data exist in a wide variety of 

formats, with uneven quality and potential bias, which is a critical challenge for HIV/AIDS 

research because factors contributing to HIV transmission and medical care adherence are from 

multiple data sources (e.g., clinical, social care, and administrative data). Efforts towards 

integrated data have been stalled by the lack of comprehensive data repositories [25] and the 

lack of tailored methodologies in Big Data Science. For example, there have been limited but 

highly demanded studies in EHR modeling, particularly, modeling temporal clinical events 

[26,27], data extraction from clinical notes [27], and imputation for missing or sparse data [28].  

 

Over the last two decades, these emerging research topics continued to evolve and jointly 

called for a combined approach to leveraging Big Data Science for integrating, analyzing, and 

understanding heterogeneous health data for HIV/AIDS research. Such an effort is consistent 

with the National Institutes of Health (NIH) initiative of Big Data to Knowledge (BD2K) funded in 

2013, in which the notion of “Big Data” was described as an “ever-expanding amount of 

complex data” in health sciences [1]. Despite an increasing number of publications and funded 

projects from US federal agencies [25,29,30], no existing studies have systematically reported 

the implications of Big Data Science in HIV/AIDS research area in terms of research grant 

support, collaborations, research outcomes, and trending research topics. In this study, we 

sought to address this literature gap by employing the bibliometric method to analyze 

publications sponsored by research grants from US federal agencies that focus on Big Data in 
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HIV/AIDS research. The bibliographic analysis is rooted in information science and has been 

used for detecting networks, patterns, and trends among intricate and large-scale bibliographic 

metadata [e.g., titles, abstracts, authors, institutes, keywords, Medical Subject Headings 

(MeSH) terms] [31]. This study focuses on academic research funded by the NIH and other 

federal agencies and therefore does not include "Big Data" projects done by state and city 

health departments through other funding sources such as Centers for Disease Control and 

Prevention (CDC) grants (e.g., data-to-care initiatives) [32]. Our early data mining work has 

systematically analyzed federal funding allocation on HIV/AIDS research in the US [11]. The 

present study provides additional insights to extend our knowledge about how federal efforts 

and research productivity are shaped by Big Data Science. Findings of the study may 

retrospectively reveal interesting research patterns and predictively inform trending research 

foci and future research directions in Big-Data-driven HIV/AIDS research.  

 

2 Materials and methods 

 

2.1 Data extraction  

 

2.1.1 Federally funded HIV/AIDS projects 

 

We identified HIV/AIDS-related projects in NIH ExPORTER. The database consists of 

administrative data for research projects funded by seven federal agencies: NIH, the 

Administration for Children and Families (ACF), the Agency for Healthcare Research and Quality 

(AHRQ), CDC, Health Resources and Services Administration (HRSA), U.S. Food and Drug 

Administration (FDA), and Veterans Affairs (VA).  

 

Data query with ExPORTER restricts the time of projects to be from 2000 to 2019. Because data 

before 2020 are stored in CRISP (1970-2009), the legacy system of ExPORTER, with different 

variables and formats, we did not include data from before 2020. To identify HIV/AIDS-related 

projects, we used regular expression (“HIV” OR “AIDS” OR “HIV/AIDS” OR “HIV-1” OR “human 

immunodeficiency virus” OR “acquired immunodeficiency syndrome”) to be applied in the 

fields of “abstract_text”, “project_terms”, “project_title”, and “study_section_name”. These 

four fields were selected from a total of 46 fields in ExPORTER. The regular expression was 

determined by an HIV/AIDS expert (SQ) and a medical informatics expert (CL). The 

“project_IDs” was used as a unique identifier. Fields “project_terms” and 

“study_section_name” contain controlled text that was determined by the NIH; “abstract_text” 

and “project_title” contain free text that was provided by the recipients of funded projects. 

Therefore, we performed lemmatization and punctuation removal on free-text fields prior to 

the regular expression. The data processing and extraction were performed using in-house 

Python programming codes.  

 

2.1.2 Publications involved with Big Data  

 

We extracted publications that were resulted from these funded HIV/AIDS projects by querying 

about “PMIDs” that were linked to the “project_IDs” we have identified. With these “PMIDs”, 
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we batch-downloaded MEDLINE metadata by interacting with Entrez Programming Utilities (E-

utilities) at the NCBI.  

 

To query Big-Data-related PMIDs, two domain experts (CL and SQ) selected a collection of 

MeSH terms that represent themes of Big Data. See Table 1. These MeSH terms were used in 

Perl queries for E-utilities. The pseudo-query is as follows: 

 

[HIV/AIDS-related PMIDs] AND (“big data” OR “data mining” OR “data science” OR “machine 

learning” OR “deep learning” OR “natural language processing” OR “information storage and 

retrieval” OR “data warehousing” OR “knowledge discovery” OR “artificial intelligence” OR 

“algorithms” OR “cloud computing”) 

 

The query was applied on the [TW] (text words), a field in MEDLINE metadata that includes free 

text in the title, abstract, other abstract, MeSH terms, MeSH Subheadings, Publication Types, 

Substance Names, Personal Name as Subject, Corporate Author, Secondary Source, 

Comment/Correction Notes, and Other Terms ([OT] field) typically non-MeSH subject terms 

(e.g., keywords). 

 

Upon the completion of the query, we received bibliographic information of 19,528 

publications in MEDLINE format. This total excludes less than 5% of data loss that is due to 

erroneously reported or downloaded PMIDs [33]. Figure 1 shows the diagram of data extraction 

procedures.  

 

Table 1. Big-Data-related MeSH terms. 

MeSH terms MeSH IDs 

big data  D000077558 

data mining D057225 

data science D000077488 

machine learning D000069550 

deep learning D000077321 

natural language processing D009323 

information storage and retrieval D016247 

data warehousing D000073458 

knowledge discovery D063369 

artificial intelligence D001185 

algorithms D000465 

cloud computing D000067917 
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Figure 1. Data extraction flowchart. 

2.2 Data analysis 

 

We constructed co-occurrence networks of the bibliographic data using the following data 

elements available in MEDLINE metadata: countries, institutes, MeSH terms, and keywords. 

These co-occurrence networks exhibit frequency occurrences of the involved data elements 

over time (2000-2019). For example, we can explore international collaborations by assessing 

the publications associated with the same countries. Aside from the co-occurrence networks, 

we also generated clusters for MeSH terms and keywords, which were used to detect salient 

research topics and trends over time. Specifically, we employed the Latent Semantic Analysis 

(LSA) [34] and log-likelihood ratio (LLR) for analyzing the neighboring MeSH terms and 

keywords to be included in a cluster. These methods measure similarities among MeSH terms 

and keywords. Co-occurrence networks, clustering, and visualization were completed on 

CiteSpace [35].  

 

3 Results  

 

The number of relevant publications has constantly increased from 818 as of 2000 to 2,450 as 

of 2016 (Figure 2). There was a decline in 2017 (n=2,431), 2018 (n=2,176), and 2019 (n=1,586).  
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Figure 2. Number of publications by year. 

 

3.1 International collaborations 

 

97% (n=18,937) of the publications were published with at least one US institute. US institutes 

often collaborate with China (n=462, 2.4%), Canada (n=412, 2.1%), and Germany (n=326, 1.7%). 

See Table 2. The US began to apply Big Data Science in HIV/AIDS research as early as 2000. 

China, Canada, and France initiated Big Data in HIV/AIDS research earlier than other non-US 

countries.  

 

Table 2. Number of publications by countries. 

Countries No. of publications Percentage  

US 18,937 97.0% 

China 462 2.4% 

Canada 412 2.1% 

Germany 326 1.7% 

France 256 1.3% 

Australia 190 1.0% 

8
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UK 177 0.9% 

Switzerland 148 0.8% 

Spain 142 0.7% 

Italy 133 0.7% 

Total  19,528 100% 

 

3.2 Participation and productivity of institutes  

 

As shown in Table 3, the University of California system (n=309) and Harvard University (n≥284) 

were among the most productive institutes. Note that research centers, schools, and research 

institutes affiliated with a university could be counted apart from their parent institutes in 

MEDLINE data format because authors do not constantly include their parent institutes in 

publications.  

 

Table 3. Number of publications by institutes. 

Institutes No. of publications 

University of California 309 

MD Anderson Cancer Center 138 

*Harvard Medical School 134 

*Athinoula A. Martinos Center for Biomedical Imaging 103 

University of Pennsylvania 77 

University at Albany 53 

Jude Children’s Research Hospital 53 

*Harvard T.H. Chan School of Public Health 47 

Stanford Center for Biomedical Informatics Research 45 

Emory University 44 

Fred Hutchinson Cancer Research Center 43 

Duke University Medical Center 30 

Total  19,528 

* Same parent institute 

 

We developed a time zone figure to visualize the participation and productivity of institutes 

over time (Figure 3). This figure shows institutes that were not only productive in Big-Data-

related HIV/AIDS research but also entered the field early, such as the University of California 

system, MD Anderson Cancer Center, and Harvard Medical School. Several institutes were not 

at an advantage in terms of the number of publications but started exploring the relevant 

research as early as between 2000 to 2008, including Johns Hopkins University School of 

Medicine, Drew University, Fred Hutchinson Cancer Center, Jude Children’s Research Hospital, 

Massachusetts General Hospital, etc. Despite a fairly large number of HIV/AIDS research coming 

from the field of public health, the only public health institute that was active in Big-Data-

related research was Harvard T.H. Chan School of Public Health as dated in 2015 (Figure 3), 
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suggesting that in public health Big Data was introduced to HIV/AIDS research comparatively 

late.  

 

Figure 3. Time zone figure. Each node shows the inception year of an institute measured by the

number of related publications. The size of nodes indicates the frequency of relevant 

publications by institutes. The colors indicate the years by which an institute started to produce

significant amounts of relevant publications, spanning 2000 (dark) to 2019 (light). The edges 

indicate the collaborations between institutes. For clarity of the figure, the thickness of the 

edges is unified and does not represent frequency differences. The time zone where an 

institute displays indicates the year the institute began to produce relevant publications. 

3.3 Areas of study 

 

Figure 4 demonstrated the top 100 bursts of MeSH terms and keywords, in which bursts 

measure the period of time that related MeSH terms and keywords rise sharply in frequency in 

the co-occurrence networks [36]. These bursts carried critical implications in terms of emerging 

research topics and methods in publications. In addition to MeSH terms and keywords that 

have been used in high-frequency throughout 2000-2019, we found several MeSH terms and 

keywords that did not emerge until recent years. Some mentions of medical conditions are not 

directly associated with HIV/AIDS because they are comorbidities and complications discussed 

in the same papers that HIV/AIDS topics are included. To ease the description, we organized 

them into the following categories. (1) Machine learning methods: “deep learning”, 

“convolutional neural network”, “feature selection”, “random forest”, “clustering”, “LASSO”, 

“sensitivity”, “specificity”, “Markov Chain Monte Carlo”, “cross validation”, “support vector 

0

  
 

e 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 14, 2021. ; https://doi.org/10.1101/2021.01.11.21249624doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.21249624
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11

machine”, etc. Arguably, these methods and techniques have been increasingly used for 

automated classification and clustering of health data. (2) Emerging health data related terms: 

“data sharing”, “electronic medical record”, “missing data”, “imputation”, “social media”, etc. 

These terms provide insights into the growing number of electronic health data and multi-

modal health data that have been used for Big Data analysis. (3) Biomedical techniques and 

related topics: “precision medicine”, “RNA-seq” (RNA sequencing), “radiomics”, “parallel 

imaging”, “diffusion MRI”, “fMRI”, “genomics”, “tractography”, “network analysis”, “imaging 

analysis”, “next-generation sequencing”, “compressed sensing”, “flow cytometry”, “signal 

processing”, “imaging processing”, “mass spectrometry”, etc. (4) HIV-associated comorbidities, 

coinfections, and complications: “glaucoma”, “cancer”, etc.  

 

 
Figure 4. Top 100 MeSH term and keyword bursts. The red bar indicates the course of bursts 

over time. 
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On top of the co-occurrence network of MeSH terms and keywords, we generated clusters of 

MeSH terms and keywords. Table 4 shows the valid clusters, surrounding terms included in the 

clusters, and cluster parameters. The validity of the clusters was measured by Silhouette scores, 

in which a high score indicates a high consistency of terms within a cluster [37]. These clusters 

were generated by LLR. The LAS algorithm failed to produce robust results with low consistency 

in the clusters. Figure 5 visualizes these colored-labeled clusters with colored nodes of MeSH 

terms and keywords. The labeled names of clusters in Figure 5 are the terms with top log-

likelihood ratio in a cluster and do not necessarily represent the meaning of a cluster. The 

meaning of a cluster is interpreted by domain experts (CL, SQ) in the review of the included 

terms. To the best of our understanding, cluster #7 is related to eye disorder, comorbidity with 

AIDS. Cluster #6 is related to hearing loss, another comorbidity with AIDS. Cluster #5 is related 

to clinical natural language processing (NLP) which is focused on integrating and mining clinical 

notes within the electronic health records (EHR). Cluster #4 is related to the methods of 

structural biology. Cluster #3 is related to breast cancer, one of the comorbid cancers with 

AIDS. Cluster #2 is related to genomics, a field of biology focusing on genomes. Cluster #1 is 

comparatively less coherent as it involves medical imaging, clinical NLP, and comorbidity. 

Cluster #0 is related to diagnostics and clinical care of AIDS. HIV-associated comorbidities 

generally appear across most of the clusters.  

 

 

Table 4. Clusters generated based on the co-occurrence network of MeSH terms and keywords. 

Clusters Size of 

clusters 

Silhouette 

scores 

Years 

(mean) 

Top terms (LLR: log-likelihood ratio) 

0 276 0.71 2007 Risk factors, diagnostic code, HIV incidence, 

racial disparities, care population, acute HIV 

infection 

1 230 0.71 2007 Human brain, clinical text, optical 

properties, computer tomography, 

malignant breast tumor 

2 177 0.79 2008 Genome-wide association studies, 

sequencing data, exome sequencing, 

genetic variant, humanexome beadchip 

3 162 0.72 2008 Breast cancer, large b-cell lymphoma, 

breast MRI, clinical trial, diffusion MRI, 

epidermal growth factor receptor 

4 159 0.80 2006 Tandem mass spectra, efficient recognition, 

low sequence identity, conservative 

application, cryo-electron microscopy 

5 129 0.82 2006 Clinical text, clinical narrative, temporal 

expression, clinical document, coreference 

resolution, i2b2 challenge 

6 129 0.82 2006 Local field potential, moderate hearing loss, 

working memory, neuronal oscillator, 
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Bayesian approach, hearing loss  

7 12 0.98 2012 Optical coherence tomography, 

correspondent cluster, visual field 

measurement, detecting progression, 

recognizing glaucomatous defect patterns  

 

 

 
Figure 5. Visualization of clusters. Clusters are color labeled and annotated by a name (red) that

refers to the term of top log-likelihood-ratio in a cluster. Other terms within the clusters are in 

maroon. The clusters are ranked by the Silhouette scores, in which a high value indicates well-

coherent terms to its own cluster. 

To visualize the temporal dynamics of the detected clusters and the surrounding terms, we 

projected the clusters onto a chart with a timeline view (see Supplement). This visualization 

demonstrated a number of findings that were not revealed in other analyses, e.g., terms within 

a cluster appearing at different times. Notably, machine learning algorithms, Deep Learning, 

and CDS raised rapidly in conjunction with the emergence of EHR-related and patient-data-

3
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related topics. Many of such combinations were related to HIV-associated comorbidities, 

coinfections, and complications. Among the eight clusters, at least three (clusters #7, #6, and #3) 

were directly related to HIV comorbidities, and cluster #7 was the only one that disappeared 

since 2017.  

 

4 Discussion 

 

We extracted Big Data publications based on HIV/AIDS research grants that were funded by the 

US federal agencies from 2000 to 2019. We further demonstrated the emergence and evolution 

of diverse research topics, methods, data sources, and research collaborations in these 

publications. Our study captured a consistent upsurge in the number of both US federal funding 

support and the resulted publications for Big-Data-related HIV/AIDS research over time, 

suggesting an increasingly important role of Big Data Science in HIV/AIDS research. The 

exception is the decline from 2017 to 2019 that is likely related to the budget cut on federal 

funding in HIV/AIDS research and is related to the incomplete integration of new data in 

ExPORTER as found in other studies [38]. This trend is consistent with the US federal funding for 

HIV/AIDS research measured by total cost in the same period of time [11,39].  

 

Analysis of international collaborations showed that these US-funded projects have fostered 

close and productive collaborations with countries such as China, Canada, Germany, and France, 

measured by the number of co-authored publications. These international collaborations 

started as early as 2000. With regard to institutional productivity, the University of California 

system, MD Anderson Cancer Center, Harvard University, University of Pennsylvania were 

among the most productive institutes. We have three major findings regarding the temporal 

dynamics. First, institutes (e.g., the University of California system, MD Anderson Cancer Center, 

Harvard Medical School) that applied Big Data in HIV/AIDS research as early as 2000 have been 

highly productive over the last two decades and have established wide collaborations with 

other institutes early. Some institutes (e.g., Johns Hopkins University School of Medicine, Drew 

University, Fred Hutchinson Cancer Center, Jude Children’s Research Hospital, Massachusetts 

General Hospital) that initiated Big-Data-related HIV/AIDS research as early as around 2000 

were comparatively less productive probably because of the diverse research strategies and 

relatively small setting as compared to large academic settings such as the University of 

California system. Second, most of the high-profile institutes were centered on biomedical and 

clinical research. Third, public health communities have been making substantial contributions 

to HIV/AIDS research over time but were not active in Big Data until a much later time marked 

by the emergence of Harvard T.H. Chan School of Public Health in 2015.  

 

The emergence of Big Data Science in HIV/AIDS research was as early as 2000 but the research 

foci and context have changed substantially over time. The application of Big Data Science was 

found in the following cross-cutting themes: (1) HIV-associated comorbidities, coinfections, and 

complications. Big Data methods adopted in this theme varied by specific research topics. For 

example, Markov Chain and Stochastic processes were widely used in modeling cancer 

progression (e.g., breast cancer) as early as 2001. Survival analysis, genetic testing, and 

bioinformatics were introduced a few years later. In recent years, an increasing number of 
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studies within the theme were found in conjunction with the secondary use of EHR. (2) System 

biology including genomics and bioinformatics. This theme focused on fundamental research 

questions such as HIV/AIDS mechanism, pathogenesis, and antiretroviral therapy (ART) drug 

towards HIV cure and next-generation therapies. (3) Secondary use of EHR. This theme widely 

interacted with HIV-associated comorbidities, coinfections, and complications in terms of 

modeling clinical characteristics based on large-scale EHR. The theme interacts with methods 

such as machine learning, Deep Learning, predictive analysis, and NLP. It also interacted with 

epidemiological, behavioral, and social aspects of HIV/AIDS research. (4) Increased utilization of 

PGHD and social media data in research. Although this theme is relatively small in the number 

of publications, it grew rapidly in recent years. Additionally, there are other cross-cutting topics 

including pharmacy, therapies, medical imaging, etc. The emergence of these research themes 

is generally aligned with (and responsive to) the evolving trend and priorities of HIV prevention 

and treatment cascade as well as the development of analytic techniques and the increased 

availability of data sources [4,12,24,40]. 

 

This study is subject to limitations. First, the search strategy for identifying relevant projects 

from ExPORTER favors minimizing miss-detected relevant projects and, as a result, may tolerate 

a small number of projects that include but do not primarily focus on HIV/AIDS. Second, our 

bibliographic data did not include citations because the data were from MEDLINE. Third, our 

method is limited in capturing meaningful clusters that have a small number of publications 

because bibliographic analyses heavily rely on co-occurrence probabilities. Fourth, detecting a 

full spectrum of Big Data related methods and datasets is important but requires 

comprehensive NLP analyses, which is beyond the scope of this study. Fifth, because 

bibliometric analysis processes the entire corpus of publications, it may not be intuitive for 

audiences with respect to sample size, inclusion/exclusion criteria of publication selection, and 

other typical information a traditional systematic review study would be able to provide in a 

standard CONSORT flow diagram. Sixth, because our findings are based on federally funded 

academic research, they do not reflect service-based research funded by agencies such as CDC. 

 

5 Conclusion 

 

This study is the first that systematically analyzed the emergence and evolution of applying Big 

Data Science in HIV/AIDS research, which provided critical implications on US federal research 

priorities, trending research topics, and challenges. This systematic bibliometric analysis 

contributes to the discussions of future study direction and informs effective strategies for 

interdisciplinary and cross-institutional collaborations so that the implications of Big Data 

Science can be better integrated into the efforts to end the HIV epidemic.  
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Summary table 

What was already 

known on the topic 

• Big Data Science is widely used in health sciences in recent years.  

• There have been an increasing number of studies that employed 

Big Data Science in HIV/AIDS research. 

What this study added 

to our knowledge 

• Big Data Science in HIV/AIDS research started as early as 2000, yet 

the research topics have changed over time. 

• An increasing number of HIV/AIDS studies are focusing on 

secondary use of Electronic Health Records, machine learning, 

Deep Learning, predictive analysis, and natural language 

processing.  

• Challenges of Big Data Science in HIV/AIDS research include the 

integration of heterogeneous health data and data mining 

methods tailored for HIV/AIDS research. 
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