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Abstract 
Objective 
To measure cortical metabolite deficits in vivo in syndromes associated with frontotemporal lobar 
degeneration, in relation to cognitive and behavioral change. 

Methods 
Sixty patients were recruited with a clinical syndrome associated with frontotemporal lobar 
degeneration (behavioral variant frontotemporal dementia n=11, progressive supranuclear palsy 
n=26, corticobasal syndrome n=11, primary progressive aphasias n=12), and 38 age- and sex-
matched healthy controls. We measured nine metabolites in the right inferior frontal gyrus, superior 
temporal gyrus and right primary visual cortex using 3T semi-laser magnetic resonance 
spectroscopy. Metabolite concentrations were corrected for age, sex, and partial volume. We related 
corrected metabolite concentrations to cognitive and behavioral measures using canonical correlation 
analysis.  

Results 
Metabolite concentrations varied significantly by brain region and diagnosis (region x metabolite x 
diagnosis interaction F(64)=1.73, p<0.001, corrected for age, sex, and atrophy within the voxel). N-
acetyl aspartate and glutamate concentrations were reduced in the right prefrontal cortex in 
behavioral variant frontotemporal dementia and progressive supranuclear palsy, even after partial 
volume correction. The reduction of these metabolites was associated with executive dysfunction and 
behavioral impairment (canonical correlation analysis R=0.95, p<0.001). 

Conclusion 
Magnetic resonance spectroscopy confirms behaviourally relevant metabolite deficits including 
glutamate, in syndromes associated with frontotemporal lobar degeneration. Magnetic resonance 
spectroscopy may be a useful index of neurodegeneration, and highlight candidates for 
pharmacological treatment. 
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Introduction 
Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of diseases characterised by 
focal neurodegeneration of frontal, temporal and subcortical regions including the basal ganglia and 
midbrain.1 These progressive, incurable diseases cause a spectrum of clinical syndromes; behavioral 
variant frontotemporal dementia (bvFTD), primary progressive aphasias (PPA), progressive 
supranuclear palsy (PSP) and corticobasal syndrome (CBS).2–5 However the clinical phenotypes 
associated with FTLD are heterogeneous and overlapping in their features6, and include higher 
cognitive changes which cause a high burden on the patient and their families and carers.7,8. There is 
a pressing need for a better mechanistic understanding of their pathophysiology, in support of new 
treatment strategies.  

Here, using magnetic resonance spectroscopy (MRS) we quantify in vivo the biochemical 
consequences of FTLD. Our aim was to compare metabolite profiles in the frontal and temporal 
lobes, the cortical regions most typically affected in FTLD, with the occipital lobe that is relatively 
spared by the diseases. We predefined the right inferior frontal and superior temporal gyri as regions 
of interest. These regions are affected by multiple FTLD syndromes1,9 and form part of a network 
regulating behavior.10,11 We tested the hypothesis that metabolites associated with neuronal structure 
and function would be reduced in the frontal and temporal lobes in disorders associated with FTLD, 
and that this metabolite deficit would correlate with the severity of cognitive and behavioral 
impairment. 

Methods 
Participant recruitment and testing 
Participants were recruited as part of the PIPPIN (“Pick’s disease and Progressive supranuclear palsy 
prevalence and incidence”) study, an epidemiological cohort study of FTLD-related syndromes in 
the East of England. Details of the study have been reported elsewhere 6,12,13. In brief, PIPPIN aimed 
to recruit all patients living with a FTLD syndrome in the UK counties of Cambridgeshire and 
Norfolk. All patients met the clinical diagnostic criteria for a principal FTLD syndrome 2–5. We 
grouped all PSP phenotypes into the PSP group, and all progressive aphasia subtypes in to the PPA 
group, in view of the group size. Control participants with no neurological or psychiatric disease 
were recruited from the NIHR Join Dementia Research register. Participants were invited for clinical 
examination, cognitive testing, and MRI. Here, we report the subset of patients (n=60) and age and 
sex matched healthy controls (n=38) who completed magnetic resonance spectroscopy. All 
participants provided written informed consent or, if they lacked capacity to consent, their next of 
kin were consulted using the ‘personal consultee’ process established in UK law. The study had 
ethical approval from the Cambridge Central Research Ethics Committee (REC 12/EE/0475). 

Each participant had a structured clinical examination which recorded the presence or absence of 
clinical features in the current consensus diagnostic criteria 2–5. We grouped these features into 
behavior, language and sensorimotor “scores” based on the sum of features in each group. The 
behavior score comprised impulsivity, apathy, loss of empathy, stereotyped and/or compulsive 
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behaviors, hyperorality and dietary change. The language score included agrammatic, apraxic and 
logopenic speech and impaired semantic memory. The sensorimotor score comprised cortical 
sensory loss, apraxia and alien limb syndrome, and sensorimotor deficits. Participants completed 
formal cognitive testing including the Addenbrookes Cognitive Examination – Revised (ACE-R) and 
the Frontal Assessment Battery (FAB), which is sensitive to executive dysfunction in FTLD 
syndromes.14 Participants’ nearest relative or carer completed the revised Cambridge Behavioural 
Inventory (CBI-R). 

Magnetic resonance spectroscopy 
Participants were scanned at the Wolfson Brain Imaging Centre, University of Cambridge on a 
Siemens 3T PRISMA system. A T1-weighted structural sequence (MPRAGE 
TR=2000ms,TE=2.93ms, TI=850ms, FA=8°, 208 slices, 1.1mm isotropic voxels) was acquired for 
localisation of the spectroscopy regions of interest (ROI) and partial volume correction. Single-voxel 
magnetic resonance spectra were acquired serially from 2x2x2cm voxels placed manually by the 
same operator (AGM) over the right inferior frontal gyrus, right superior temporal gyrus and right 
primary visual cortex using anatomical landmarks. Spectra were acquired using a short-echo semi-
LASER sequence (64 repetitions, TR/TE = 5000/28 ms)15,16 with FASTESTMAP shimming17 and 
water-peak flip angle and VAPOR water suppression.18 The 64 individual repetitions were saved 
separately then corrected for eddy current effect, frequency and phase shifts using MRspa (Dinesh 
Deelchand, University of Minnesota, www. cmrr.umn.edu/downloads/mrspa). All spectra were 
visually inspected for quality control. Spectra from 18 voxels (FTLD n=9, Control n=9) were 
excluded due to movement artefact, inadequate water suppression and/or lipid contamination. 

Neurochemicals between 0.5 and 4.2ppm were quantified using LCModel (Version 6.2-3)19 with 
water scaling and a simulated basis set that included an experimentally-acquired macromolecule 
spectra. The fractions of grey matter, white matter and CSF were obtained from segmentation of the 
MP2RAGE imaging using the standard voxel-based morphometry pre-processing pipeline in 
SPM12. Nine metabolites had a mean Cramer Rao Lower Bound lower than 20 and were saved for 

further analysis. Metabolites with correlation ≤-0.3 were reported together: (i)  NAA and NAAG, (ii) 
choline and glycerophosphocholine, (iii) creatine and phosphocreatine, (iv) glucose and taurine and 
(v) ascorbate and glutathione. Measures of scan quality, including water linewidth and signal to 
noise, are reported in table 1. 
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Table 1: Magnetic resonance spectroscopy quality metrics. Values for control and FTLD-associated syndromes are the 
group mean (standard deviation in parentheses).CRLB=Cramer Rao Lower Bound.  IFG=inferior frontal gyrus, 
STG=superior temporal gyrus, V1=right primary visual cortex. t=Welch t-test comparing all FTLD syndromes with 
control, df=degrees of freedom.  

Region Quality measure Control FTLD t df p 

Right IFG 

Glutamate CRLB 3.9 (0.4) 4.8 (1.6) -3.7 71 <0.001 

NAA+NAAG CRLB 2.0 (0.2) 2.1 (0.5) -1.8 92.4 0.08 

 Water linewidth 7.3 (0.8) 6.3 (1.2) 5.13 95.5 <0.001 

Signal to noise ratio 56.4 (5.2) 47.3 (8.6) 6.53 95.8 <0.001 

Right STG 

Glutamate CRLB 4.3 (1.0) 4.9 (1.4) -2.5 82 0.02 

NAA+NAAG CRLB 2.0 (0.3) 2.1 (0.6) -1.6 76.7 0.12 

Water linewidth 9.00 (0.9) 8.4 (1.6) 1.99 77.4 0.05 

Signal to noise ratio 49.7 (9.3) 45.3 (11.3) 1.95 81.2 0.05 

Right V1 

Glutamate CRLB 5.1 (2.9) 4.7 (2.8) 0.64 59.5 0.53 

NAA+NAAG CRLB 1.9 (0.8) 1.8 (0.7) 0.62 56.6 0.54 

Water linewidth 7.5 (0.8) 7.2 (0.8) 1.38 63.2 0.17 

Signal to noise ratio 58.1 (16.0) 61.6 (13.8) -1 55.1 0.32 

 

Statistical analysis 
A generalised linear model was used to remove the effect of age, sex and partial volume (of grey and 
white matter) from the metabolite concentrations. This model was weighted with the metabolite 
Cramer Rao Lower Bound and the residuals used for further analysis. The tissue correction method 
was the same as Murley at et (2020).20 Factorial analysis of variance (ANOVA) was used to compare 
nineteen metabolite concentrations across three brain regions and between five groups. Dunnett’s 
post hoc test was used to explore differences between control participants and the FTLD syndrome 
subtypes. Welch’s t-test was used to test for differences in cognitive tests between healthy 
participants and those with a FTLD syndrome. 

Since both cognition and metabolites are multivariate, we used canonical correlation analysis (CCA) 
to compare the frontal and temporal lobe metabolite profiles (as measured by MRS) and cognitive 
and behavioral impairment (as measured by the ACE-R, FAB, CBI and clinician rating of 
behavioral, language and sensorimotor impairment). CCA is a multivariate technique that measures 
the association between two sets of variables.21 It uses a data-driven approach to reveal latent, 
common factors, or canonical covariates,  underlying these associations.6,22 All variables were 
standardised into z-scores before CCA. The CCA was permuted 5000 times to determine 
significance and ensure stability of the final components.  

Data availability 
Anonymised data are available on reasonable request for academic use, subject to restrictions 
required to protect participant confidentiality.  
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Results 
Participant characteristics are summarised in Table 2. There was no significant difference in the age 
and sex distributions of the patient and control groups. Patients had marked global cognitive and 
behavioral impairment, as rated by direct patient measures (ACE-R, FAB), structured carer interview 
(CBI-R) and clinician rating based on history and examination (Table 2). 

Table 2: Participant demographics and cognitive test results. FTLD=all FTLD-related syndromes, bvFTD=behavioral 
variant frontotemporal dementia, PSP=progressive supranuclear palsy, CBS=corticobasal syndrome, PPA=primary 
progressive aphasia (all subtypes), ACE-R: Addenbrooke’s Cognitive Examination – Revised,  FAB: Frontal Assessment 
Battery, CBI-R: Cambridge Behavioral Inventory – Revised. Clinician behavior, sensorimotor and language are the sum 
of the presence of features in each domain, t= Welch t-test comparing all FTLD syndromes with control, *=χ2 test, 
F=ANOVA of FTLD syndrome subtypes, Post-hoc pairwise Tukey’s tests (p<0.05): a=bvFTD vs PSP, b=bvFTD vs 
CBS, c=bvFTD vs PPA,d=PPA vs PSP, e=PPA vs CBS, f=CBS vs PSP,  NA = no variance in control group. 

 Control FTLD 
(all) t p bvFTD PSP CBS PPA F p Post-hoc 

N 38 60   11 26 11 12    

Age 
67.9 
(5.8) 

69.56 
(7.23) 

-1.23 0.222 
63.7 
(7.6) 

71.7 
(6.6) 

71.2 
(7.1) 

68.8 
(5.8) 

3.94 0.013 a 

Sex 
(M/F) 

19/19 33/27 0.23* 0.529 7/4 14/12 5/6 7/5 0.80* 0.848  

ACE-R Total 
96.5 
(2.4) 

73.98 
(20.53) 

8.4 <0.001 
72.4 

(18.3) 
78.2 

(14.9) 
78.5 

(18.7) 
62.1 

(30.2) 
2.02 0.122  

FAB 
17.1 
(0.8) 

11.66 
(4.52) 

9.1 <0.001 
10.7 
(5.4) 

12.1 
(3.8) 

11.3 
(5.7) 

12 
(4.4) 

0.27 0.850  

CBI-R Total 6.2 (6.1) 
54.65 

(32.97) 
-11.1 <0.001 

89.3 
(22.7) 

52 
(31.6) 

46.9 
(27.8) 

35.8 
(27) 

7.46 <0.001 a,b,c 

Clinician: 
behavior 

0 (0) 
3.6 

(3.37) 
NA NA 

8.9 
(1.3) 

3.3 
(2.7) 

1.5 
(1.4) 

1.4 
(1.7) 

31.7 <0.001 a,b,c 

Clinician: 
language 

0 (0) 
2.52 

(2.28) 
NA NA 

2.6 
(2.6) 

1.5 
(1.5) 

2.4 
(1.6) 

4.8 
(2.4) 

8.2 <0.001 c,d,e 

Clinician: 
sensorimotor 

0 (0) 
1.15 

(1.34) 
NA NA 

0.1 
(0.3) 

0.6 
(0.8) 

3.1 
(0.9) 

1.6 
(1.2) 

29.34 <0.001 b,c,d,e,f 

 

Our analyses proceeded in two stages. First, we used single-voxel magnetic resonance spectroscopy 
(MRS) to measure nine metabolites in the frontal, temporal and occipital lobes. Metabolite 
concentrations, after correction for age, sex, and atrophy within the voxel, varied significantly by 
region and diagnosis (region x metabolite x diagnosis interaction F(64)=1.73, p<0.001).  

In other words, there were regionally specific effects of disease, for some but not all metabolites. 
These can be understood in the context of the first order interactions and main effects (Table 3) as 
follows. Metabolite concentrations varied by region but there was no region by diagnosis interaction 
(F(8)=1.23 p=0.29), validating the effective partial volume correction of the metabolite 
concentrations. Main effect analysis showed that the region by metabolite by diagnosis interaction 
was due to differences in neurotransmitter glutamate and neuronal marker N-acetyl-aspartate and N-
acetyl-asparate-glutamate (NAA+NAAG) concentration. Post hoc analyses revealed lower 
concentrations of the neurotransmitter glutamate and neuronal marker N-acetyl aspartate in bvFTD 
and PSP compared to controls (Figure 1).  A glutamate deficit was also found in PSP in the right 
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superior temporal gyrus (Figure 1). N-acetyl aspartate concentrations were low in the right visual 
cortex in PSP. Despite these significant group differences, there was wide variation in metabolite 
concentrations in all groups (Figure 1).  

Correcting for the brain volume differences between groups, had a significant effect on the variation 
in metabolite concentrations (Factorial ANOVA including corrected and uncorrected data: region x 
metabolite x uncorrected/corrected x diagnosis F(64)=7.94 p<0.001).  

 

Figure 1: Boxplots of MRS metabolites. Boxplots of metabolites that are significantly different between FTLD-related 
syndromes and control participants after post-hoc testing from ANOVA of all metabolites, regions and diagnoses. 
Metabolite values are corrected for age, sex and partial volume. *p<0.05, **p<0.01, ***p<0.001 

 

Second, we used canonical correlation analysis to test the association between (i) frontal and 
temporal lobe metabolites and (ii) behavioral and cognitive impairments.  This revealed one 
significant component (R=0.85, p<0.001). This component indicated an association between low 
glutamate and N-acetyl aspartate in the right inferior frontal gyrus (Figure 2A) and the combination 
of executive dysfunction, low verbal fluency, low frontal assessment battery scores, and high 
clinician and carer rating of behavioral impairment (Figure 2D). All FTLD-associated syndromes 
had strong positive correlations in this component (Figure 2B), and this association was stronger in 
patients than controls (Figure 2B). There was second component with a trend (p=0.037, not surviving
correction for multiple comparisons) with a negative loading from right superior temporal gyrus 
glutamate, and correlation with carer ratings of impaired everyday skills and abnormal behavior).  
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Figure 2: Canonical correlation analysis of MRS and cognitive and behavioral measures. First component from canonical
correlation analysis of MRS metabolites and cognitive and behavioral measures. 2A: Loadings from cognitive measures 
on the first CCA component. Bars colored blue have statistically significant loadings (FWE p<0.05) after permutation 
testing. Worse performance indicated by Negative ACE-R, positive CBI-R and clinician rating indicate worse 
cognition/behavior. 2B: First CCA component correlation, color-coded by group. 2C: Map of all participants’ MRS ROIs
superimposed on a mean structural image. 2D: MRS metabolite loadings onto the first CCA component. 
GSH:glutathione, PCh: phosphocholine, GPC: glycerophosphocholine, NAA: N-acetyl-aspartate, NAAG: N-acetyl-
aspartate-glutamate, PChr: phosphocreatine Bars colored blue have statistically significant loadings (FWE p<0.05) after 
permutation testing. 
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Table 3 Full factorial analysis of variance showing first order results and simple main effect of diagnosis. Regions: IFG= 
right inferior frontal gyrus, STG=right superior temporal gyrus, V1=right primary visual cortex. Diagnoses: bvFTD, PSP, 
CBS, PPA, Control. Metabolites: Aspartate, Glutamine, Glutamate, myo-inositol, N-acetyl aspartate (including N-acetyl-
aspartate-glutamate),  choline=choline and glycerophosphocholine, creatine= creatine and phosphocreatine 

ANOVA (between and within subject effects) 

Cases Sum of Squares df F p 

Region 4.05 2 4.52 0.013 

Region x Diagnosis 4.40 8 1.23 0.288 

Metabolite 10280.33 8 2841.54 <0.001 

Metabolite x Diagnosis 31.33 32 2.17 <0.001 

Region x Metabolite 149.26 16 55.58 <0.001 

Region x Metabolite x Diagnosis 18.54 64 1.73 <0.001 

Diagnosis 5.29 4 0.91 0.464 

Simple Main Effects - Diagnosis 

Level of ROI Level of Metabolite Sum of Squares df F p 

Frontal 
(Right IFG) 

Aspartate 1.19 4 1.87 0.125 

Glutamine 0.80 4 1.05 0.391 

Glutamate 7.67 4 5.73 <0.001 

Myoinositol 2.94 4 1.41 0.240 

Ascorbate + glutathione 0.43 4 1.41 0.239 

Glucose + taurine 3.87 4 2.34 0.064 

Choline 0.10 4 0.61 0.654 

NAA + NAAG 8.83 4 4.16 0.004 

Creatine 0.41 4 0.63 0.646 

Temporal 
(Right STG) 

Aspartate 0.58 4 0.14 0.965 

Glutamine 1.19 4 1.02 0.404 

Glutamate 7.26 4 2.71 0.037 

Myoinositol 1.17 4 0.85 0.499 

Ascorbate + glutathione 0.40 4 0.45 0.776 

Glucose + taurine 1.72 4 0.98 0.426 

Choline 0.24 4 1.52 0.206 

NAA + NAAG 9.84 4 4.67 0.002 

Creatine 1.98 4 2.07 0.095 

Occipital 
(Right V1) 

Aspartate 0.94 4 0.50 0.736 

Glutamine 0.56 4 1.26 0.295 

Glutamate 1.54 4 1.33 0.267 

Myoinositol 0.74 4 0.36 0.838 

Ascorbate + glutathione 0.18 4 0.67 0.614 

Glucose + taurine 1.48 4 0.64 0.634 

Choline 0.02 4 0.33 0.860 

NAA + NAAG 3.15 4 3.36 0.014 

Creatine 0.34 4 0.52 0.719 
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Discussion 
There are two principal results of this study: (i) that N-acetyl aspartate and glutamate are reduced in 
the prefrontal cortex of people with diverse syndromes associated with frontotemporal lobar 
degeneration; and (ii) these metabolite differences, as measured by in vivo magnetic resonance 
spectroscopy, correlate with the severity of cognitive and behavioral impairments. A group-wise  
deficit in these metabolites was seen in bvFTD and PSP, but the association with cognitive and 
behavioral impairment was in found every patient group. These findings have two implications. First, 
they strengthen the evidence that metabolite and neurotransmitter deficits are a promising treatment 
target for pharmacological amelioration of clinical features. Second, because the metabolite deficits 
in brain tissue are identified after stringent atrophy correction, and correlate with cognition even in 
syndromes like PSP in which lateral prefrontal cortical atrophy is not marked, the spectroscopy 
might detect early, even pre-symptomatic, disease before patients develop brain atrophy.  

The hypotheses of this study were based on post mortem neurochemistry and pre-clinical 
evidence23,24, supported by later ultra-high field MRS.20,25 We predicted an association in all FTLD-
associated syndromes between glutamate concentration and clinically relevant carer- and clinician-
measures of behavioral impairment. Pharmacological correction of such neurochemical deficits 
might be a tractable target for symptom treatment, especially where these have neurotransmitter 
functions in addition to metabolic roles. Such symptomatic treatment is a priority given the severe 
sequelae of cognitive impairment in FTLD.7,23,26 However, it remains unclear to what extent our 
findings reflect a potentially reversible deficit of synaptic glutamate. MRS measures the total pool of 
unbound glutamate, involved in neuron and glia metabolism, protein synthesis and 
neurotransmission.27 The NMDA antagonist memantine has been used commonly off-licence in 
frontotemporal dementia treatments, but this is ineffective and anecdotally can worsen cognition in 
some patients.28 Further work is therefore required to understand the relationship between synaptic 
loss in syndromes associated with FTLD and glutamate deficits.29 Healthy age-matched participants 
also had a weak but statistically significant correlation on this component, corroborating with 
previous research on glutamate deficits in healthy ageing.30 

N-acetyl aspartate (NAA) is an abundant amino acid in the central nervous system and comprises the 
largest peak in the proton spectroscopy spectrum.31 NAA is concentrated in neurons and is proposed 
as a marker of neuronal density, health and function.31 Deficits are found in a wide range of 
neurological diseases associated with neuronal loss including Alzheimer’s disease32, stroke33 and 
traumatic brain injury.34 NAA is therefore not specific to the proteinopathies associated with 
FTLD25. However, our findings replicate previous studies in FTLD-related syndromes35–40 and 
suggest that NAA levels are a sensitive measure of neuronal loss, over and above structural MRI 
estimates of brain atrophy. As part of a multi-model MRI battery, NAA spectroscopy may be a 
useful endpoint in experimental medicine studies, and to understand phenotypic heterogeneity.41 

We did not replicate the previous studies that reported reduced choline45 and elevated myo-
inositol45,46, despite a relatively large sample size, high field strength and use of a consensus 
sequence and analysis pipelines.47 We did find that different partial volume correction methods 
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change the conclusions regarding metabolite concentrations. It is therefore possible that our results 
are overly stringent in partial volume correction. This has important implications for the clinical use 
of MRS as some correction methods, e.g. creatine ratios, may be less accurate in measuring 
metabolite levels in residual brain tissue. 

Canonical correlation analysis indicated that glutamate and NAA concentrations in the right inferior 
frontal gyrus were associated with executive dysfunction and behavioral impairment. The first 
canonical correlate represented concordant neuropsychological, carer and clinician ratings. This 
emphasises that frontal NAA and glutamate deficits are associated with clinically relevant cognitive 
impairment, building on earlier correlations with specific neuropsychological tasks.20 

Metabolites with lower loadings on the first canonical correlate were not statistically significant, as 
estimated by permutation testing, but may still be of interest. For example, myo-inositol, which is 
concentrated in glia and elevated with neuroinflammation, had a positive loading. 
Neuroinflammation has been identified by TSPO-ligand position emission tomography, in bvFTD, 
PPA and PSP42,43, where it is not only elevated but also prognostic of a more rapid decline.44   

Our results are relevant to the nosology of syndromes associated with FTLD. The diseases of 
bvFTD, PSP, CBS, PPA are clinically and pathologically distinct in their classical phenotypes, and 
there are critical differences in underlying neuropathology even where there is tauopathy. We 
therefore used the current consensus diagnostic criteria for each clinical disorder. However, the 
clinical phenotypes associated with FTLD do not respect the diagnostic boundaries and many 
patients develop clinical features that would meet criteria for more than one disorder.6 We have 
proposed an alternative, transdiagnostic, approach to encompass clinical heterogeneity and 
phenotypic overlap.6 This approach, emphasising commonalities in clinic-pathological correlations 
across the spectrum of FTLD, is supported by our data. The association between prefrontal 
glutamate, NAA and cognition was observed in all FTLD syndromes jointly, and individually. This 
is consistent with the metabolite deficits being down-stream of the disease-specific causes of brain 
injury, and more proximate to the clinical phenotype.  

Our study has several limitations. First, this study omits to report GABA concentrations, despite 
preclinical and ultra-high field MRS evidence of GABA deficits in bvFTD and PSP 20,23–25. This 
omission is because of the low sensitivity and inadequate spectral resolution for GABA using semi-
LASER sequence at 3T. Second, the deficits identified by magnetic resonance spectroscopy are 
unlikely to be specific to one proteinopathy. Participants were diagnosed according to the clinical 
diagnostic criteria2–5 which have variable clinicopathological correlation.48,49 In particular, bvFTD is 
associated with either 3R or 4R tau or TDP-43 pathology, whereas PSP has a high 
clinicopathological correlation with 4R tau. Our cohort has limited pathological confirmation of the 
diagnosis but clinicopathological correlations in the PIPPIN study as whole match those found 
elsewhere.6,7 Therefore, while spectroscopy may be a valuable measure of early disease and/or 
disease progression it is unlikely to differentiate FTLD syndromes according to their underlying 
proteinopathies. Third, due to small numbers we grouped non-fluent, semantic and logopenic 
variants of PPA together, although these sub-groups have different clinical and neuropathological 
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features. Fourth, MRS accuracy can be affected by participant movement and other factors which 
may be greater in the FTLD cohort. To mitigate this we used a consensus guideline-recommended 
sequence and analysis pipeline47 and a within-participant control region in the occipital lobe. Finally, 
our findings are limited to the single brain regions we imaged. Advances in whole brain MRSI 
sequences may allow simultaneous measurement of metabolites in multiple regions, better 
accounting for the clinical and neuropathological heterogeneity in FTLD. 

In conclusion, N-acetyl aspartate and glutamate deficits in the prefrontal cortex are associated with 
loss of executive function and behavioral impairment in each of the major syndromes associated with 
frontotemporal lobar degeneration (bvFTD, PSP, CBS, PPA), even after correction for atrophy. 
Magnetic resonance spectroscopy can detect clinically relevant differences in metabolites in vivo and 
may be a valuable adjunct to multi-modal imaging for detecting disease in early stage disease, 
monitoring progression and response to disease-modifying treatment, and stratification for 
experimental studies of restorative pharmacology. 
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