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Abstract:  

Accurate epidemic prevalence measurement is a necessary condition for informed policy 

decision-making. In the Covid-19 pandemic especially, wrong prevalence measurement can 

lead to tremendous waste, be that in life years or economic output. A number of countries offer 

random Covid-19 tests to estimate the prevalence of the virus in the population, and report 

daily positivity rates. However, since virus testing has to be voluntary, all tests done in the 

field, even if supposedly random, suffer from selection bias. This bias, unlike standard biases 

in polling, is not limited to having a representative sample, and thus cannot be corrected by the 

usual methods (quota sampling etc). The issue is that people who feel they have symptoms (or 

other reasons to suspect they are carrying the virus), are up to 38 times more likely to volunteer 

to get tested, and testing stations cannot readily correct this by oversampling (i.e. selecting 

people without symptoms to test). Using controlled, incentivized online experiments with over 

500 subjects of all ages in a European country, we show that this difference in testing 

propensities leads to sizeable bias; “random” tests in the field inflate infection figures by up to 

five times. We suggest ways to correct the bias of the testing stations, but even better, a cleaner 

way to sample the population to avoid the bias altogether. Our methodology is relevant for 

covid-19, but also any other epidemic where carriers can have informative beliefs about their 

own carrier status. 
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1. Background 

Covid-19 has already caused over 1.7 million confirmed deaths globally (Johns Hopkins 2020). 

Apart from deaths directly attributed to Covid-19, there are reports of excess mortality over 

and above officially reported Covid-19 deaths,1 as well as indirect health effects and deaths. 

These include those suffering from other diseases not receiving medical attention or being 

undiagnosed2-3 and suicides.4-5 The pandemic has crippled economic activity, leading to 

increasing unemployment rates and shrinking national income worldwide6 – which in turn can 

lead to further deterioration of health.7-8  

Tackling the pandemic is of paramount importance for obvious health and financial 

reasons. Any suggested policy responses and their implementation (such as social distancing 

rules) will inevitably be inefficient if we are not aware of the real number of active cases, and 

in which areas and age groups these occur. Observing mortality rates or the number of 

hospitalisations and patients in ICU provides an estimate of how many people caught Covid-

19 weeks earlier (although estimating the fatality rate is also challenging).9 It is important to 

know the number actual cases at present, which, apart from designing policy responses, also 

provides an estimate of hospitalisations and mortality in the next weeks.  

Community testing, often conducted in the high street and in neighbourhoods, is widely 

considered a useful tool to monitor incidence and trends (e.g. the ECDC10 lists “[to] reliably 

monitor SARS-CoV-2 transmission rates and severity” among five objectives of testing). It 

also publishes weekly testing data and “positivity rates” by EU State.11 However, we show that 

such testing is highly unlikely to provide accurate estimates of Covid-19 prevalence, and the 

main problem is not related the typical issues that arise in population sampling, such as age 

group structure. Testing has to be voluntary, and we expect that people are more likely self-

select into testing if they have reasons to believe they have a good chance of having Covid-19 

(such as, e.g. if they have symptoms or if they are exposed to a high-risk environment). This 
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self-selection bias is likely to increase with waiting times and any other cost associated with 

testing. Furthermore, the bias is expected to be time-varying, because it depends non-linearly 

on time varying parameters. For example, when cases rise steeply, people might be more likely 

to want to test out of fear – but at the same time this will also affect their behaviour and thus 

the likelihood of catching Covid-19.  

The objective of this paper is to examine whether and to what extent bias occurs in 

Covid-19 testing; and to offer a debiasing solution to accurately estimate Covid-19 prevalence 

in the field. To measure the bias, we employ incentivised controlled experiments with more 

than 500 subjects in Greece, using standard experimental methods (such methods have been 

used, for example, to estimate the demand for HIV testing in an influential paper by R. 

Thornton.12 

 

2. Data and Methods  

Data collection took place over a week, from  11 till 18 December 2020. The majority of the 

responses were collected online, via the QualtricsTX platform. To enable greater 

representativeness of the sample, 94 responses (16%) from elder people (median age = 63) 

were collected using phone interviews. Out of 608 participants starting the online study, 24 

(4.7) dropped out mostly after the first few questions, resulting in the final sample of 578 

observations.  

Median age for the sample was 39 years (median for Greece 45.6), and the age 

distribution is shown in Figure 1.  

 

[Insert Figure 1 here]  
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Subjects were invited to participate in a study on Covid-19 and related behaviours. 

Upon signing a consent form, the participant was first asked about general and Covid-19-

related health. We then elicited hypothetical willingness to wait (WTW) to take a rapid test for 

Covid-19, conditional on (i) feeling healthy, (ii) having flu-like symptoms, (iii) having Covid-

19 like symptoms. For all three hypothetical scenarios, the test was being offered by the 

national health authority (EODY) while the participant was walking down the street. This was 

done to reduce the (hypothetical) travel costs and reliability-related concerns. 

After eliciting the hypothetical WTW, we asked the subjects several control questions, 

including exposure to Covid-19 risky environments (e.g. taking public transport or working 

fate-to-face with many people) and socio-demographics. After completing the compulsory part 

of the study, the participants were offered an optional task for which they were randomly 

allocated to one of the two prize treatments. In treatment Book, the participant would enter a 

1/30 chance lottery for a voucher for the local large-scale bookshop chain (“Public”), worth 

€80. In treatment Test, the participant would enter the same 1/30 chance lottery for a voucher 

for a home-administered Covid-19 test. For both prizes, the delivery was guaranteed within 

next 36 hours. All 578 participants completed the hypothetical elicitation and the control 

questions (left part of Figure 2).  

 

[Insert Figure 2 here]  

 

As was partly expected, a substantial part of the sample (n=174) did not continue to the 

optional task. A major part of it (n=78) was the elder people subsample. We are not very 

concerned that the inconvenience of the waiting task over the phone was the issue, since the 

participants came from the sample that previously participated in a study involving a real effort 

task over the phone (Georganas, Laliotis and Velias 2020, working paper). For n=38 
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participants, a software glitch in Qualtrics, in the first five hours of the study resulted in missing 

recording of the treatment allocation, so we had to drop their data despite completion of the 

optional task. 

The participants then read the description of the optional task. They learned that it 

involved waiting in front of their screen for some time (target) that would be revealed in the 

next screen, and the lottery draw for the prize would take place right after the wait. They also 

learned that to ensure that they are waiting, a button would appear at random times and they 

would need to press it within 4 seconds to avoid being disqualified. Among the 303 participants 

who read the description of the optional task, 241 continued to the next screen which revealed 

the waiting target. At this stage, they were randomly allocated to one of the four waiting target 

conditions {300, 600, 900, 1200}. Upon learning the wait time, further 59 participants dropped 

out instantly (median target time 900 seconds). Among the 241 waiting, 69 dropped out before 

completing the full wait (median target time 900 seconds). In total, 172 participants completed 

the waiting target (median target 600 seconds).   

Upon completing the waiting task, each participant was randomly allocated to one of 

the four Cash conditions, {€20, €35, €50, €65}. The participant was offered a choice to enter 

the lottery for: (a) the original prize (Book, Test), or (b) the displayed Cash amount. Out of the 

172 participants, 112 chose to swap the original prize for the cash amount, whilst 60 chose to 

stay with the original prize (median cash value €35 for both). A total of 7 participants won the 

lottery.   

 

3. Results 

Table 1 shows the ratio of willingness to test between people with symptoms and those 

without. The figure ranges between 1.5 and 38, depending on the age group and waiting times. 

People under 30 with symptoms are 1.532 times more likely to test when there is no waiting 
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time, compared to those without symptoms. This figure increases to 2.882 when there is a short 

wait of 5-15 minutes; 4.423 with a 15-30 minute wait; 15.5 with a 30-60 minute wait and 38 

with a 1-2 hour wait. The ratio for 30-50 year-olds rages between 1.517 for no wait and 16 for 

a 1-2 hour wait. For over 50-year-olds, the ratio ranges between 1.708 and 11.333. Overall, 

there is a bias even for no waiting time at all, which increases steeply for long waiting times in 

all age groups. Note that the bias also varies by other observable characteristics, for example, 

for waiting times of two hours and more, it is 84% higher for men than for women. Also, the 

propensity bias is 50% higher for obese people than for people in the healthy range, which 

indicates that people at risk not only have higher propensity to test (as is to be expected) but 

also react stronger to symptoms.  

 

[Insert Table 1 here]  

 

The propensity to test bias translates to a biased virus prevalence estimate (β) which is 

also time varying. Crucially it depends on symptom prevalence, which, given the exponential 

spread of Covid-19, can change massively in a short period of time. This means that the 

estimate depends on symptom prevalence, but the bias itself also depends on it – so the bias is 

time variant.  

Apart from waiting times, self-selecting into testing also depends on the cost associated 

with it (if applicable – costs can vary from time to monetary value, travel etc). We found that 

the bias is associated with willingness to pay for the test (Table A2 in Online Appendix A). Of 

those who won a test voucher, 83.8% swapped it for cash, as opposed to 48.9% of those who 

won the book voucher, indicating that the majority of subjects would not be willing to pay to 

receive a test. However, the scope of this article is to correct bias for free tests subject to 
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different waiting times, and further experiments are needed to reach concrete conclusions on 

willingness to pay.   

We have launched an online calculator that provides estimates on the testing bias 

(available at http://georgana.net/sotiris/task/atten/covid.php ). The bias calculations that lead 

to the formula on which the calculator is based is provided in Online Appendix B. The estimates 

on the testing bias depend on (a) the percentage of tests yielding positive results; (b) the 

percentage of the general population that reports symptoms; (c) the relative likelihood of 

having Covid-19 for those with symptoms compared to those without symptoms; and (d) how 

more likely are people with symptoms to self-select into testing than those without symptoms. 

According to our methodology, it is possible to calculate these figures and thus estimate the 

bias. (a) is provided by the results of community testing; (b) is provided by surveying; (c) can 

be obtained by asking people a simple question before testing them for Covid-19; and (d) is 

provided by surveying.  

A simple example is the following: Assume community testing led to 10% positive 

results, and 5% of the population reported symptoms. Without waiting time, if those with 

symptoms are 5 times more likely to have the virus than those without symptoms, then the 

results of community testing exaggerate by 27.71%, and the true prevalence in the population 

is 7.83% (instead of the reported 10%). At a 30-60 minute waiting time, the bias increases to 

106.95%, meaning that the true prevalence in the population is 4.83%.  

To further illustrate our results, Figure 1 depicts our best estimate of the virus 

prevalence bias, i.e. the ratio between reported prevalence and actual, depending on symptoms 

prevalence and waiting time, for the three age groups. 

Based on these estimates, we can simulate how different demographic structures would 

affect the prevalence bias. In the following graph we depict the results from 3 million draws 

from the plausible parameter space (we assume symptoms prevalence of 5%, and allow the 

http://georgana.net/sotiris/task/atten/covid.php
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testing bias parameter to vary uniformly within the 95% confidence interval gained from the 

experiments in Greece) applied to three countries, with different demographic structures: 

Nigeria (with one of the youngest populations globally), Italy (heavily ageing population) and 

the USA (between the two extremes). 

The simulation shows that demography matters: a young country like Nigeria could 

have a substantially higher prevalence bias than Italy. However, it is also clear that the waiting 

times are more important. Lowering waiting times would result in a low bias for all countries. 

 

4. Discussion  

Using a survey-based experiment, we found that the probability of taking a Covid-19 

test for those who have symptoms (or believe they are more likely to have caught the virus) is 

many times higher than those who do not. Our results show that people who feel they have 

symptoms (or other reasons to suspect they are carrying the virus), are up to 38 times more 

likely to volunteer to get tested. In our sample, this testing propensity bias ranged from 1.5 

times (for people under 30 years with no waiting time) to 38 times (for people under 30 and a 

2-hour waiting time). The bias becomes larger with longer waiting times, and any cost 

associated with taking the test. Testing stations cannot readily correct this by oversampling (i.e. 

selecting people without symptoms to test).   

As demonstrated in our results, demographics influence the testing propensity bias, 

which means that different areas (or countries) will have different biases depending on the age 

composition. Furthermore, there have been reports of very long waiting times in community 

testing, which further exacerbate the bias. It is important to note that the bias is time variant, 

and is likely to depend on the actual virus prevalence.  

Our findings suggest that results from community testing sites are heavily biased, and 

the bias goes beyond the usual issues of age groups etc. Rather, it relates to self-selection into 
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testing for those who are more likely to have Covid-19. This makes the aggregate results of 

community testing unreliable, when it comes to drawing conclusions on the prevalence of 

Covid-19 in the population.  

We recognise the importance of giving people the opportunity to test, as this identifies 

positive cases, thus allowing them to self-isolate and stop spreading the disease. If the goal of 

testing sites is to allow random people to have a quick and free test, then this possibly meets 

its goal. Note, however, that random testing is not the economically or epidemiologically most 

efficient solution: subsidising tests specifically for populations with a high risk of getting 

infected and infecting others would probably save more lives at lower costs (say, tests for 

young people working in service industries and living with their parents). Such questions 

remain open for future research. However, we have shown that “random” voluntary testing is 

not really random. As such, it does not provide accurate information on disease prevalence, 

which is important to design and implement urgent policy responses to the pandemic, in terms 

of type, intensity and geographic area. Since voluntary testing is always biased, aggregate 

results on prevalence should be corrected. Debiasing can be performed using our methodology, 

as long as there are good estimates for some parameters, namely (a) the percentage of tests 

yielding positive results; (b) the percentage of the general population that reports symptoms; 

(c) the relative likelihood of having Covid-19 for those with symptoms compared to those 

without symptoms; and (d) how more likely are people with symptoms to self-select into testing 

than those without symptoms. If the probability of having covid given that one has symptoms 

is known (e.g. from asking a simple question at testing sites) then all that is needed is regularly 

polling a representative sample to get symptoms prevalence, which is much simpler and cost 

effective than random street testing. 

Our methodology is not limited to correcting the results of community testing. The 

confirmed cases reported daily is also biased, as some people might not test because of costs, 
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or the inconvenience of going to a testing site, or even due to being afraid of losing income. 

According to our results, even at no monetary cost and no wait, 3.98% of people with symptoms 

would not get tested – which increases to 9.51% even for the slightest waiting time, rising even 

further when tests have a non-negligible cost to the citizen. Using polling results from a 

representative sample can correct this error.  

Mass testing, extending to a very large part of the population is extremely useful as it 

can provide more accurate figures, and also identifies positive cases. It has been used, among 

others, in Liverpool, Slovakia and South Korea.13-15 However, mass testing is very expensive, 

and might not possible, especially at frequent intervals, due to capacity or other technical 

reasons. In those cases, debiasing the estimates is of paramount importance for health and the 

economy. Underestimating disease prevalence can trigger inadequate measures and further 

spread of disease, while overestimating can be detrimental to economic activity. We thus urge 

policy makers to redesign “random” testing as a matter of priority in the effort to tackle the 

pandemic. 

As a final note, our methodology can be applied to the prevalence measurement of any 

epidemic, when carriers have informative private information about their health status. 

Fighting disease is hard, even without the added complication of not knowing the location and 

magnitude of the fight. Our work offers tools to be able to measure prevalence in real time. 

Further work is needed though, to estimate specific selection-bias parameters for every disease, 

as they are necessarily related to the health burden and life expectancy reduction caused by the 

specific pathogen. 
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Table 1. Bias (‘survival’ ratio of people with covid-19 symptoms to people with no symptoms) by waiting time 

for rapid test, N=510 

Age 

group 

No wait/ 

Immediate 5-15 min 15-30 min 30-60min 1-2h over 2h N 

Under 30 1.532 2.882 4.423 15.5 38 38 + 181 

30-50 1.517 3.102 5.8 8.857 16 16 + 199 

50+ 1.708 2.706 3.571 11 11.333 11.333 + 130 

Total 1.564 2.918 4.567 11.2 17.143 17.143 + 510 

 

 

 

Figure 1. Best estimate of the virus prevalence bias: The ratio between reported prevalence and 

actual, depending on symptoms prevalence and waiting time, for the three age groups. 
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Figure 2. Simulation: How different demographic structures would affect the prevalence bias  
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APPENDIX A 
 

 

 

 

 

 

Figure A1. Age distribution of the experiment date, n=578. 
 

 

 

 

 

Figure A2. Flow of the experiment. 
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Table A1. Summary Statistics  

Hypothetical willingness to test (N=578) 

By symptoms  By waiting time  

No Symptoms  No Symptoms  

Mean (SD) 2.96 (1.48) Mean (SD) 2.39 (2.04) 

Median [Min, 

Max] 

3.00 [1.00, 

5.00] Median [Min, Max] 2.00 [0, 8.00] 

Flu Symptoms  Flu Symptoms  

Mean (SD) 2.00 (1.20) Mean (SD) 3.81 (2.26) 

Median [Min, 

Max] 

2.00 [1.00, 

5.00] Median [Min, Max] 4.00 [0, 8.00] 

Covid Symptoms  Covid Symptoms  

Mean (SD) 1.46 (0.951) Mean (SD) 5.19 (2.35) 

Median [Min, 

Max] 

1.00 [1.00, 

5.00] Median [Min, Max] 5.00 [0, 8.00] 

1: certainly yes; 2: probably yes; 

3: maybe; 4: probably no; 5: 

certainly no.  

0: would not wait at all; 1 would only take it if available 

immediately; 3: 5-15 minutes; 4: 15-30 minutes; 5: 30-45 

minutes; 6: up to an hour; 7: 1-2 hours; 8 over 2 hours 
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APPENDIX B 

Bias calculations for “Accurate Covid-19 prevalence measurement in the field“ 
 

The aim is to infer the percentage of sick people in the population from the “random” testing in the field figures, 

as released by several Health Agencies worldwide. The problem is that testing is voluntary, which leads to 

selection bias. How large is this bias? 

 

To start, some people believe they have symptoms, some don’t: call them S(ymptomatic) and H(ealthy). Note that 

the discussion below has to do with what people believe, not what they actually have. Also, we distinguish 

between people believing they have symptoms and those who do not, but the analysis readily extends to people 

having strong beliefs that they might be carrying the virus and those who do not. 

 

Let the frequency of people who believe they have symptoms be ps, or just p, with 1-p being the frequency of 

people who do not think they have symptoms. 

 

Of each group, some percentage turns out having the virus. Let vs be the virus prevalence for those who believe 

they have symptoms, vh for those who do not. 

 

Of each group, some percentage are willing to take the test (for a given waiting time to take the test). 

Assume this only depends on symptoms, but not on actually having the virus (this assumption is mostly innocuous, 

unless there is a very large number of people in hospital). Let then ts be the percentage of people who believe they 

have symptoms who actually take the test, and th for those who do not. 

 

True prevalence is then 

τ =  ps vs + (1-ps) vh     (1) 

 

Given parameters, what number shows up positive in the sample (assuming that the test itself is perfect) 

π= ps ts vs + (1-ps) th vh  (2) 

 

Divide by the total sampling rate  

m =  ps ts + (1-ps) th    (3) 

to get the sample prevalence (or virus frequency in the sample population) φ 

 

Note that if ts=th=t, then π = t (ps vs + (1-ps) vh) and φ = t (ps vs + (1-ps) vh)/t = ps vs + (1-ps) vh =τ 

which makes sense; if testing propensities are equal, there is no bias. 

 

If on the other hand the testing propensities t are not the same, then the sample is selected leading to bias. 

Before we calculate the bias, express the propensities to test and be virus positive, for the people who believe they 

have symptoms, as a multiple of the propensities of those who do not: vs = a vh, ts = b th .  

Then, using these equations, rewrite (1), (2) and (3). 

 

τ =  ps vs + (1-ps) vh = a ps vh + (1-ps) vh = vh (ap+1-p) 

π  = ps ts vs + (1-ps) th vh = ab p th vh +(1-p) th vh = th vh (abp + 1-p) 

m = ps ts + (1-ps) th  = b ps th + (1-ps) th   = th (bp+1-p) 

 

Simlify notation by writing p for ps and calculate φ=π/m= th vh (abp + 1-p) / th (bp+1-p) = vh (abp + 1-p) / (bp+1-

p) 

 

Now, to find the size of the bias, divide φ/τ 

vh (abp + 1-p) / (bp+1-p) / vh (ap+1-p) 

 

 The bias in estimates β= (abp + 1-p)/ (bp +1 -p)/ ( ap + 1 – p) 

 

Examples  
Suppose a=1 

(bp+1-p) /(bp1-p) )/( a p + 1 – p)= 1/(p+1–p)=1 

So, both a and b are necessary for the bias to exist, which makes sense. 
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Suppose a=b>1  

(conceptually it is not unlikely that the two propensities be of similar magnitude, since the higher the risk when I 

have symptoms, the more likely it should be that I seek testing) 

 

The bias is then (a2 p + 1-p )/ (ap +1-p)2   

 

Let a=b=3  

9 p+1-p / (3p + 1 – p)2 

In this case, the p leading to the worst bias is around 0.3, β becomes 1.35. 

 

Now suppose a=b=10 

100p+1-p / (10p+1p)2 

β=3 at p 0.1, αt p 0.05 it still is 2.7. 

 

Suppose p=0.1 

Then β=(0.1ab +0.9) / (0.1b+0.9) /(0.1a+0.9) 

This function is plotted in the next graph, with a in the x axis, and b in the y axis. 

 

 
Meaning for a=b=20, street testing is overestimating the virus prevalence about 5 times. 

 

Getting ps from φ 
 

While we suggest to get ps through random (unbiased) polling of people about their perceived symptoms, it is also 

possible to calculate it using a, b, vh and φ as follows. 

 

Start with the definition of φ=vh (abp + 1-p) / (bp+1-p)  

 

 φ(bp+1-p)=v(abp + 1-p)  

 φbp+φ-φp= vabp+v-pv 

 φbp-φp+pv-vabp =v-φ 

 p(φb-φ+v-vab)=(v-φ) 

 p=(v-φ)/(φb-φ+v-vab) 

 

Note:  

The denominator is negative 

φb-φ+v-vab<0  

=> φ(b-1)>v(1-ab)  (since v(1-ab) is negative) 
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=> φ>v(1-ab)/(b-1)  

Which is true since b-1 is positive. 

 

For v<φ the numerator is also negative, meaning p is positive. 

If φ= vh then symptoms prevalence is 0, all people in the sample have no symptoms, and vh show positive in 

the test. 

If φ= vs =avh then (v-av)/(avb-av+v-vab)=1, meaning everyone has symptoms, p=1. 

 

Obviously φ cannot be above vs (sample prevalence is highest if you only have people with symptoms in the 

sample, in which case not more than vs can be positive)!  

 

 

So we can debias the health agencies’ numbers without knowing ps 

Again, it is easier not to do street testing, but to use vh and vs and poll about p. 

 

Examples 
Suppose a=10, b=3 and vh=0.01 

 p=(0.01-φ)/(3φ-φ+0.01-0.3) = (0.01-φ)/(2φ-0.29)   

 

 
 

So, for example φ=0.1 yields p=-0.09/-0.09=1. 

This makes sense. Everyone had symptoms, and vs=0.1 means that 10% had the virus, which is the proportion 

you will find in any sample. The interpretation is that with such a low true virus prevalence, the only way to get 

a relatively high φ is if there are only symptomatic people. 

 
Suppose a=10, b=3 and vh=0.1 

P=(0.1-φ)/(3φ-φ+0.1-3)= (0.1-φ)/(2φ-2.9) 

So, in this case, p is about half φ for many values.  

 

 
 

Now, let a=3 b=10 and vh=0.1 

The effect of a and b is not symmetric. 

p=(0.1-φ)/(10φ-φ-2.9) 
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Suppose that some national agency is asking about (perceived) symptoms before testing. It is then easier to find 

the symptom prevalence in the general population ps 

 

Symptom prevalence in the test would be  

χ= pts  / (pts  + (1-p)th  )=  bpth  / (bpth  + (1-p)th )  

=>  χ=bp/(bp  + 1-p)  =>χ = bp/(bp +1-p) 

 

So true symptom prevalence is 

p=χ / (b+χ-bχ) 

 

For a relatively low b=3 
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