The incremental value of computed tomography of COVID-19 pneumonia in predicting ICU admission ============================================================================================== * Maurizio Bartolucci * Matteo Benelli * Margherita Betti * Sara Bicchi * Luca Fedeli * Federico Giannelli * Donatella Aquilini * Alessio Baldini * Guglielmo Consales * Massimo Edoardo Di Natale * Pamela Lotti * Letizia Vannucchi * Michele Trezzi * Lorenzo Nicola Mazzoni * Sandro Santini * Roberto Carpi * Daniela Matarrese * Luca Bernardi * Mario Mascalchi * COVID Working Group USL Toscana Centro and Azienda Ospedaliero-Universitaria Careggi * members of the Working Group USL Toscana Centro and Azienda Ospedaliero-Universitaria Careggi * Germana Allescia * Simone Busoni * Alessandra Bindi * Edoardo Cavigli * Diletta Cozzi * Giovanni Luca Dedola * Silvia Mazzocchi * Vittorio Miele * Chiara Pozzessere * Adriana Taddeucci * Adriano Viviani * Chiara Zini ## Abstract **Rationale** Triage is crucial for patient’s management and estimation of the required Intensive Care Unit (ICU) beds is fundamental for Health Systems during the COVID-19 pandemic. **Objective** To assess whether chest Computed Tomography (CT) of COVID-19 pneumonia has an incremental role in predicting patient’s admission to ICU. **Methods** We performed volumetric and texture analysis of the areas of the affected lung in CT of 115 outpatients with COVID-19 infection presenting to the Emergency Room with dyspnea and unresponsive hypoxyemia. Admission blood laboratory including lymphocyte count, serum lactate dehydrogenase, D-dimer and C-Reactive Protein and the ratio between the arterial partial pressure of oxygen and inspired oxygen were collected. By calculating the areas under the receiver-operating characteristic curves (AUC), we compared the performance of blood laboratory-arterial gas analyses features alone and combined with the CT features in two hybrid models (Hybrid radiological and Hybrid radiomics)for predicting ICU admission. Following a machine learning approach, 63 patients were allocated to the training and 52 to the validation set. **Measurements and Main Results** Twenty-nine (25%) of patients were admitted to ICU. The Hybrid radiological model comprising the lung %consolidation performed significantly (p=0.04) better in predicting ICU admission in the validation (AUC=0.82; 95%Confidence Interval 0.68-0.95) set than the blood laboratory-arterial gas analyses features alone (AUC=0.71; 95%Confidence Interval 0.56-0.86). A risk calculator for ICU admission was derived and is available at:[https://github.com/cgplab/covidapp](https://github.com/cgplab/covidapp) **Conclusions** The volume of the consolidated lung in CT of patients with COVID-19 pneumonia has a mild but significant incremental value in predicting ICU admission. Keywords * computed tomography * COVID-19 * machine learning * pneumonia * SARS-CoV-2 ## Introduction In January 2020 the World Health Organization declared Coronavirus disease (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) a public health emergency of international concern. Until December 2020 it has caused more than 80 million of cases and more than 1.7 million of deaths worldwide (1). About 15% of patients with COVID-19 pneumonia show a severe disease course requiring hospitalization and 5% eventual admission to an Intensive Care Unit (ICU) (2,3). Prediction of ICU admission is crucial for patient’s management and forecasting the required number of ICU beds is fundamental for the resources allocation and organization of the health systems during the COVID-19 pandemic (4). Hence prediction of ICU admission has been frequently investigated in studies addressing diagnostic and prognostic models for COVID-19 (5). Among the variables potentially useful for such a purpose, clinical features yielded mixed results (6-12), while blood laboratory and arterial gas analysis features generally improved the overall prediction capacity (8,10,11,13-16). Due to the non-specificity of findings, chest radiographs and computed tomography (CT) have no diagnostic role in patients with SARS-CoV-2 (17,18). Moreover the American College of Radiology and Society of Thoracic Radiology in the United States cautioned against their widespread use for assessment and monitoring disease course (18). However several studies in Asia, Europe and United States have indicated that chest radiographs and CT may have a role in the prediction of clinical evolution including need of ICU admission (19-25). We hypothesized that CT-based quantitative analysis of the volume of the affected lung and its characterization in terms of texture analysis (26) might have an incremental role with respect to blood laboratory and arterial gas analysis results in predicting the patient’s admission to ICU. To explore this hypothesis following a machine learning approach we compared the predictive value of blood laboratory and arterial gas analysis features alone with those of two hyrbid models combining the same features with those derived from CT. ## Methods The study received ethical approval (Protocol Number: 17260_oss) on May 19, 2020 by The Ethical Committee for Clinical Studies of the Central Tuscany Region. The study was performed between March 7th and November 8th 2020 at the Prato and Pistoia community hospitals in the Tuscany region of Italy, where overall 3-12% of hospital beds were allocated to ICUs in the study time period. The study involved 208 outpatients with COVID-19 infection confirmed by positive nucleic acid test of real time-PCR in nasal-pharingeal swabs who presented to the Emergency Room (ER) and underwent immediate unenhanced chest CT because of dyspnea and non-responsive hypoxiemia. Laboratory data on admission included routine blood tests, serum lactate dehydrogenase (LDH), D-dimer and C-Reactive Protein (CRP) and lymphocytes count. Moreover in each patient the Horowitz (P/F) Index was calculated as the ratio between the arterial partial pressure of oxygen [PaO2] measured (in mmHg) by blood gas analysis and fraction of inspired oxygen [FiO2]. Patient’s age and gender and co-morbidities including history of arterial hypertension, diabetes, heart diseases and malignancies were annotated. Subsequent admission to the ICU and patient’s death were recorded as of November 13th, 2020. Patients with CT images of low quality or incomplete blood laboratory or arterial blood gas analyses were excluded. Accordingly, data were analyzed in 115 of the initial 208 patients. Following a machine-learning approach and to avoid a “peeking” effect (27,28), 63 patients observed between March 7th and April 21st, 2020 during the first wave of COVID-19 pandemic in Italy constituted the training set and 52 patients observed between August 18th and November 8th 2020 during the second wave constituted the validation set. Fig 1. shows the study flow-chart.The chest CT examinations were performed in Prato (n=88) on a Siemens SOMATOM Sensation (Germany) 64-rows of detectors scanner or in Pistoia (n=27)on an Optima CT660 GE Medical System (USA) 16-rows of detectors scanner. The patients were examined in supine position during inspiratory breath-hold or spontaneous breathing. CT acquisition parameters are detailed in an online data supplement. The CT images were transferred to a workstation implemented with the MIM Maestro software (MIM Software Inc.). Three Regions of Interest (RoIs) were automatically created from both lungs: Well-Areated Lung (WAL), which comprises the entire healthy tissue, Ground Glass Opacities (GGO), which includes areas showing ground glass density, and Consolidation (Consolid), which corresponds to areas of consolidated tissue. For segmentation of WAL and GGO, we used the *Region Growing tool* and threshold intervals were set from −950 Hounsfield Units(HU) to −700HU for WAL (21) and from −700HU to −250HU for GGO (29). For ConsolidRoI, a single expert radiologist with 20 years of experience in lung CT (M.B.) blind to the patient’s clinical, blood laboratory and arterial gas analyses results performed a manual editing of the segmentation results. An example is shown in Supplementary figure 1. The fraction of each RoI with respect to total lung volume was calculated. For image texture analysis, 107 radiomic features listed in Supplementary material table 1 were extracted using the 3DSlicer software (30) and the module radiomic (31). Image texture features were processed and analyzed by RadAR (Radiomics Analysis with R) (32). Features with duplicated ids and shape features (n=21) were excluded from downstream analysis. View this table: [Table 1.](http://medrxiv.org/content/early/2021/01/09/2021.01.08.20249041/T1) Table 1. Clinical, blood laboratory, arterial gas analyses and CT results in patients with COVID-19 pneumonia. Continuous values are expressed as mean± standard deviation. ![Figure 1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/01/09/2021.01.08.20249041/F1.medium.gif) [Figure 1.](http://medrxiv.org/content/early/2021/01/09/2021.01.08.20249041/F1) Figure 1. Study flow-chart. Abbreviations: CT = Computed Tomography; ER = Emergency Room; ICU = Intensive Care Unit; SARS-Cov-2 = Severe Acute Respiratory Syndrome Coronavirus 2 ### Statistical Analysis and Model Construction We used two-sided Wilcoxon-Mann-Whitney test to assess statistical significance of the differences between the ICU and non-ICU patients groups for parametric variables and Fisher’s Exact test for age and gender. Since co-morbidities can determine distortions in the admission to the ICU, especially when there is a relative shortage of dedicated beds, they were not included in the models. Models to predict ICU admission were built using binomial regression with GLMNET (33) on continuous variables, considering ICU admission as response variable (0=no, 1=yes). We selected GLMNET because, differently from other methods as multivariate random forest, it enables simultaneous selection of relevant features and parameter estimation. We built 5 models using age, blood laboratory features, the P/F ratio, the radiological and the radiomics features. The description of each feature is reported in Supplementary Table 1. To select relevant features for each model (feature selection), predictors showing nonzero coefficient at lambda.min - corresponding to the value of the regularization parameter lambda that gives minimum mean cross-validated error - were considered. To facilitate the applicability of our approach, GLMNET models were then rebuilt considering only model-specific selected features. The performance of each model was assessed by calculating the area under the receiver operating characteristic curves (AUC) in the training and validation sets, using model probability as threshold parameter. All the analyses were performed using the R statistical programming language ([https://cran.r-project.org/](https://cran.r-project.org/)). The confidence intervals of AUCs and the statistical significance of pairwise difference between AUCs were estimated by De Long’s tests implemented in the pROC R package (34). ### Web application An interactive web application implementing the three best performing models (see below) was built using Shiny ([https://CRAN.R-project.org/package=shiny](https://CRAN.R-project.org/package=shiny)). ## Results Twenty-nine (19 of the training and10 of validation set) of the 115 included patients were admitted to ICU. The average interval between ER presentation and ICU admission was 1.9 days (range 1-22) in the training and 2.6 (range 1-5) in the validation set. Table 1 details the distribution of age, gender, number of co-morbidities, blood laboratory and arterial gas analyses results and of those of the CT in the patients of the training and validation sets. In both sets the P/F index and %WAL were significantly lower and the %Consolid significantly higher in patients admitted to ICU. Comparing the data in the training and validation sets, only LDH was significantly higher (p=0.004) and the age lower (p=0.01) in the patients of the validation set who were not admitted to ICU. Table 2 summarizes the considered features and those selected by the GLMNET. Age, LDH and the P/F ratio were selected as the best features both in the blood laboratory and arterial gas analyses model and in the Hybrid radiological model which also comprised %consolid. The Hybrid radiomics model comprised the P/F ratio, LDH, %consolid and 3 of the 86 considered texture features (see table 1 and supplementary table 1). View this table: [Table 2.](http://medrxiv.org/content/early/2021/01/09/2021.01.08.20249041/T2) Table 2. Features *a priori* considered and features selected by GLMNET for their relevance in predicting ICU admission in five models. Fig. 2 shows the AUC of the model based on blood laboratory and arterial gas analyses features alone and of the two Hybrid models. The Hybrid radiological model performed better in predicting admission to the ICU in both the training (AUC=0.87; 95%Confidence Interval 0.77-0.97) and validation (AUC=0.86; 95%Confidence Interval 0.73-0.97) set as compared to the blood laboratory-arterial blood gas analyses features alone (training AUC=0.82; 95%Confidence Interval 0.68-0.95) (validation AUC=0.71; 95%Confidence Interval 0.56-0.86). The difference was significant (p=0.04) in the validation set. Also the Hybrid radiomics model performed better than the blood laboratory-arterial blood gas analyses features alone in the two sets, but the differences were not significant. ![Figure 2.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/01/09/2021.01.08.20249041/F2.medium.gif) [Figure 2.](http://medrxiv.org/content/early/2021/01/09/2021.01.08.20249041/F2) Figure 2. Performance of 3 models in predicting ICU admission. Receiving Operating Characteristic (ROC) curve analysis of the blood laboratory-arterial gas analyses features (dotted line), Hybrid radiological features (solid line) and Hybrid radiomics features (dashed line) in the training (A) and validation (B) sets. The values reported in parentheses refer to Area Under the ROC curves. The models evaluating radiological and radiomics features alone selected two (%consolid and%WAL) and seven features(see supplementary table 1), respectively, but performed worse than the model evaluating blood laboratory and arterial gas analyses results in predicting ICU admission (see supplementary Fig. 2). The distribution of the probability of ICU admission in the validation set (Supplementary Fig.3) indicates that no patient required ICU admission below the threshold of 0.25, 0.15 and 0.05 for the blood laboratory-arterial gas analyses model, Hybrid radiological and Hybrid radiomic models, respectively. In particular, in the Hybrid radiological model all patients with estimated probability below 0.20, corresponding to 16 (30%) of 52 patients, were all correctly classified and identified as a low-risk population without need of ICU admission. The application to estimate the patient’s probability of ICU admission with the three best performing models is freely available at [https://github.com/cgplab/covidapp](https://github.com/cgplab/covidapp) under MIT license and allows users using the proposed models after insertion of the required model-specific features. Mortality rates were 14% (9/63) in the training and 21% (11/52) in the validation set. ## Discussion Admission to ICU, where the most invasive and sophisticated treatments are carried out, is associated with a number of variables, including the evaluation of the patient’s clinical severity and evolution and the availability of ICU beds, but generally implies a severe structural and functional lung compromise, worse prognosis and increasing costs. In this study we holistically combined blood laboratory, arterial gas analyses and CT results at ER presentation to predict ICU admission in patients with COVID-19 pneumonia. We demonstrated that the Hybrid radiological model combining CT estimation of volume of the consolidated lung with blood laboratory and arterial gas analyses features has a mild but significant incremental predictive value with respect to the model considering blood laboratory and arterial gas analyses features alone. This result is in line with and reinforces data from prior studies which evaluated the contribute of CT in predicting ICU admission in hybrid models (21,23-25). For comparison with CT we considered several established blood biomarkers of severity of COVID-19 pneumonia including serum LDH, D-dimer, CRP and lymphocyte counts that can predict ICU admission (10,12,13,15,16,23). As well, we considered the P/F ratio which is a marker of non-responsive hypoxiemia in these patients (10,14,16). Notably, in both our hybrid models the volume of consolidated lung, that is correlated with lung weight, was the best radiological biomarker instead than the volume of the well areated lung, that is the CT biomarker commonly used for Acute Respiratory Distress Syndrome (ARDS) (21,35,36).This is in line on the one hand with the observation that the pathological and radiological features of COVID-19 pneumonia are not typical of ARDS. In fact COVID-19 pneumonia along with diffuse alveolar damage and organizing pneumonia is characterized by a prominent vascular compromise justifying the observed disproportionate and non-responsive hypoxyemia (37,38) and the term “CARDS” (COVID-19 ARDS) (39) to label it. Moreover, according to Gattinoni et al. (40) consolidation and its extent characterizes two phenotypes of CARDS named type L (Low elastance, Low ventilation-to perfusion ratio, Low lung weight and Low recruitability) and type H(High elastance, High ventilation-to perfusion ratio, High lung weight and High recruitability) “which are best identified by CT”, involve different pathophysiological mechanisms and require different treatment options that, in case of type H, include intubation, positive end-expiratory pressure and extracorporeal membrane oxygenation that pertain to the ICU environment. In our study, the Hybrid radiomics model including image texture features of the affected lung slightly (and not significantly) improved prediction of ICU admission as compared with blood laboratory and arterial gas analyses features, but performed worse than the Hybrid radiological model. Two prior studies reported a marginal incremental value of Radiomics for prediction of ICU admission as compared to volume estimation of the affected lung (24,25). Notably, since the Hybrid radiomics was the best performing model in our training set, but showed mild and non-significant advantage compared to blood laboratory and arterial gas features in the validation set, we speculate that Hybrid radiomics models might be more affected by overfitting as compared to the Hybrid radiological model. Overall, also considering that the pathological correlates of the CT texture features analysis are uncertain (26), we recommend estimation of the volume of lung consolidation and the Hybrid radiological model for triage of patients with COVID-19 pneumonia. We recognize the following limitations of our study. We performed a single centre study and assessment of the proposed models with data from other centres are required to verify their external validity. In our models we considered a large array of continuous variables in different domains, including D-dimer and P/F ratio which reflect the more characteristic physiopathological features of COVID-19 pneumonia(14,15,41) and are associated with worst prognosis (42), but discarded some potentially relevant categorical variables as gender, obesity and co-morbidities (43,44) which however are more closely linked with mortality than ICU admission. Moreover the recently described ABO blood-group system and genetic susceptibility loci (45) and some continuous variables as serum Interleukin-6 (23,46), ferritin and procalcitonin (16) were not available. Finally, we did not evaluate death as an outcome due to the small samples.However this would imply to consider treatments and other variables and was beyond the scope of the present investigation. In conclusion, the combination of the volume of lung consolidation on CT at ER presentation has a mild but significant incremental value as compared to blood laboratory and arterial gas analyses results in predicting ICU admission. Inclusion of CT in the triage of patients with symptomatic COVID-19 pneumonia may have a practical value for individual patient’s management (possibly using the free application we developed) and help planning and organizing the Health Systems response to COVID-19 pandemic. ## Supporting information Supplementary Table 1 [[supplements/249041_file02.xls]](pending:yes) ## Data Availability Requests can be forwarded to Maurizio Bartolucci maurizio.bartolucci{at}uslcentro.toscana.it or Matteo Benelli matteo.benelli{at}uslcentro.toscana.it [https://github.com/cgplab/covidapp](https://github.com/cgplab/covidapp) ## Figure Legends ![Supplementary Figure 1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/01/09/2021.01.08.20249041/F3.medium.gif) [Supplementary Figure 1.](http://medrxiv.org/content/early/2021/01/09/2021.01.08.20249041/F3) Supplementary Figure 1. Example of segmentation of CT images. Well-Areated Lung (WAL) area are depicted in purple (right lung) and orange (left lung), Ground Glass Opacities (GGO) area are depicted in blue (right lung) and light blue (left lung) and Consolidation area (Consolid) are depicted in green (right lung) and light green (left lung). ![Supplementary Figure 2.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/01/09/2021.01.08.20249041/F4.medium.gif) [Supplementary Figure 2.](http://medrxiv.org/content/early/2021/01/09/2021.01.08.20249041/F4) Supplementary Figure 2. Performance of 3 simple models in predicting ICU admission. Receiving Operating Characteristic (ROC) curve analysis of the blood laboratory-arterial gas analyses features (green line), radiological features (sky blue line) and radiomics features (red line) in the training (A) and validation (B) sets. The values reported in parentheses refer to Area Under the ROC curves. ![Supplementary Figure 3.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2021/01/09/2021.01.08.20249041/F5.medium.gif) [Supplementary Figure 3.](http://medrxiv.org/content/early/2021/01/09/2021.01.08.20249041/F5) Supplementary Figure 3. Box plots of the distribution of the probability of ICU admission estimated using the blood laboratory-arterial gas analyses (left), Hybrid radiological (middle) and Hybrid radiomics (right) models in the patients of the validation set who were not admitted (ICU=no) or required admission (ICU=yes) to ICU. No patient with estimated probability below 0.25 (laboratory-arterial gas analyses model), 0.15 (Hybrid radiology model) and 0.05 (Hybrid radiomic model) required ICU admission. ## On line repository material ### CT scanning parameters They were set as follows: tube voltage 120 kV, tube current modulation from CareDose4D technology with quality reference mAs 150, pitch 1.4, slice thickness 0.6 mm in the Siemens scanner and tube voltage 120 kV, tube current modulation Smart mA technology, pitch 1.0, slice thickness 0.6 mm, in the GE scanner. Reconstruction filter used was B30 medium smooth for both the scanners and reconstruction was performed with slice thickness ranging from 2.5 and 3 mm in order to allow segmentation software to manage the amount of data in an appropriate time frame. ## ACKNOWLEDGMENTS ## Footnotes * **Funding:** None * **Conflicts of interest/Competing interests:** None * **Ethics approval:** Yes. Ref. number 17260 * **Consent to participate (include appropriate statements):** not applicable * **Consent for publication (include appropriate statements):** not applicable * **Availability of data and material (data transparency):** Yes. Requests can be forwarded to Maurizio Bartolucci maurizio.bartolucci{at}uslcentro.toscana.it or Matteo Benelli matteo.benelli{at}uslcentro.toscana.it * **Code availability (software application or custom code):** yes. Requests can be forwarded to Matteo Benelli matteo.benelli{at}uslcentro.toscana.it * **Authors’ contributions:** All the authors read and discussed the content of the article. M Ba conceived and performed the study. M Ben performed all statistical analyses, developed and tested the predictive models and realized the web free APP. M Bet, SB, LF and LNM collected and preliminarily elaborated the data. FG performed literature review. DA, MT, GC, ME di N, PL had in charge COVID-19 patients in the Prato and Pistoia Hospitals, LV, SS and RC developed and shared the CT examinations protocol, acquisitions and elaboration strategies. LB supervised the elaboration and analyses pipeline. DM was the Guarantor of the study. M M contributed to the study design, wrote the manuscript draft and critically discussed it. All the authors critically revised the final draft and approved. * Received January 8, 2021. * Revision received January 8, 2021. * Accepted January 9, 2021. * © 2021, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at [http://creativecommons.org/licenses/by-nc-nd/4.0/](http://creativecommons.org/licenses/by-nc-nd/4.0/) ## References 1. 1.Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020 May;20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1. |Epub 2020 Feb19. Erratum in: Lancet Infect Dis. 2020 Sep;20(9):e215. PMID: 32087114; PMCID: PMC7159018. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1473-3099(20)30120-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32087114&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 2. 2.Centers for Disease Control and revention. Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). 2020. [https://stacks.cdc.gov/view/cdc/88624](https://stacks.cdc.gov/view/cdc/88624). Accessed August 21, 2020. 3. 3.Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72?314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020 Apr 7;323(13):1239–1242. doi: 10.1001/jama.2020.2648. PMID: 32091533. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.2020.2648&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32091533&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 4. 4.Rosenbaum L. Facing Covid-19 in Italy - Ethics, Logistics, and Therapeutics on the Epidemic’s Front Line. N Engl J Med. 2020 May 14;382(20):1873–1875. doi:10.1056/NEJMp2005492. |Epub 2020 Mar 18. PMID: 32187459. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMp2005492&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32187459&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 5. 5.Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, Bonten MMJ, Damen JAA, Debray TPA, De Vos M, Dhiman P, Haller MC, Harhay MO, Henckaerts L, Kreuzberger N, Lohman A, Luijken K, Ma J, Andaur CL, Reitsma JB, Sergeant JC, Shi C, Skoetz N, Smits LJM, Snell KIE, Sperrin M, Spijker R, Steyerberg EW, Takada T, van Kuijk SMJ, van Royen FS, Wallisch C, Hooft L, Moons KGM, van Smeden M. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ. 2020 Apr 7;369:m1328. doi: 10.1136/bmj.m1328. Erratum in: BMJ. 2020 Jun 3;369:m2204. PMID: 32265220; PMCID: PMC7222643. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE3OiIzNjkvanVuMDNfOS9tMjIwNCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzAxLzA5LzIwMjEuMDEuMDguMjAyNDkwNDEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 6. 6.Kostakis I, Smith GB, Prytherch D, Meredith P, Price C, Chauhan A; Portsmouth Academic ConsortIum For Investigating COVID-19 (PACIFIC-19). The performance of the National Early Warning Score and National Early Warning Score 2 in hospitalised patients infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Resuscitation. 2020 Nov 8:S0300-9572(20)30548-7. doi:10.1016/j.resuscitation.2020.10.039. Epub ahead of print. PMID: 33176170; PMCID: PMC7648887. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.resuscitation.2020.10.039&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33176170&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 7. 7.Rodriguez-Nava G, Yanez-Bello MA, Trelles-Garcia DP, Chung CW, Friedman HJ, Hines DW. Performance of the Quick COVID-19 Severity Index and the Brescia-COVID Respiratory Severity Scale in hospitalized patients with COVID-19 in a community hospital setting. Int J Infect Dis. 2020 Nov 9:S1201-9712(20)32314-6. doi:10.1016/j.ijid.2020.11.003. |Epub ahead of print. PMID: 33181332. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2020.11.003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33181332&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 8. 8.Hashmi MD, Alnababteh M, Vedantam K, Alunikummannil J, Oweis ES, Shorr AF. Assessing the need for transfer to the intensive care unit for Coronavirus-19 disease: Epidemiology and risk factors. Respir Med. 2020 Nov-Dec;174:106203. doi:10.1016/j.rmed.2020.106203. |Epub 2020 Oct 27. PMID: 33147562; PMCID: PMC7588314. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.rmed.2020.106203&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33147562&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 9. 9.Al Hassan H, Cocks E, Jesani L, Lewis S, Szakmany T. Clinical Risk Prediction Scores in Coronavirus Disease 2019: Beware of Low Validity and Clinical Utility. Crit Care Explor. 2020 Oct 19;2(10):e0253. doi:10.1097/CCE.0000000000000253. PMID: 33134944; PMCID: PMC7581153. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/CCE.0000000000000253&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33134944&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 10. 10.Gude F, Riveiro V, Rodríguez-Núñez N, Ricoy J, Lado-Baleato Ó, Lourido T, Rábade C, Lama A, Casal A, Abelleira-París R, Ferreiro L, Suárez-Antelo J, Toubes ME, Pou C, Taboada-Muñiz M, Calle-Velles F, Mayán-Conesa P, Del Molino Mlp, Galbán-Rodríguez C, Álvarez-Escudero J, Beceiro-Abad C, Molinos-Castro S, Agra-Vázquez N, Pazo-Núñez M, Páez-Guillán E, Varela-García P, Martínez-Rey C, Pernas-Pardavila H, Domínguez-Santalla MJ, Vidal-Vázquez M, Marques-Afonso AT, González-Quintela A, González-Juanatey JR, Pose A, Valdés L. Development and validation of a clinical score to estimate progression to severe or critical state in COVID-19 pneumonia hospitalized patients. Sci Rep. 2020 Nov 13;10(1):19794. doi:10.1038/s41598-020-75651-z. PMID: 33188225; PMCID: PMC7666132. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-020-75651-z&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33188225&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 11. 11.Hao B, Sotudian S, Wang T, Xu T, Hu Y, Gaitanidis A, Breen K, Velmahos GC, Paschalidis IC. Early prediction of level-of-care requirements in patients with COVID-19. Elife. 2020 Oct 12;9:e60519. doi:10.7554/eLife.60519. PMID: 33044170; PMCID: PMC7595731. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7554/eLife.60519&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33044170&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 12. 12.Allenbach Y, Saadoun D, Maalouf G, Vieira M, Hellio A, Boddaert J, Gros H, Salem JE, Resche Rigon M, Menyssa C, Biard L, Benveniste O, Cacoub P; DIMICOVID. Development of a multivariate prediction model of intensive care unit transfer or death: A French prospective cohort study of hospitalized COVID-19 patients. PLoS One. 2020 Oct 19;15(10):e0240711. doi:10.1371/journal.pone.0240711. PMID: 33075088; PMCID: PMC7571674. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0240711&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33075088&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 13. 13.Kiss S, Gede N, Hegyi P, Németh D, Földi M, Dembrovszky F, Nagy B, Juhász MF, Ocskay K, Zádori N, Molnár Z, Párniczky A, Hegyi PJ, Szakács Z, Pár G, Erőss B, Alizadeh H. Early changes in laboratory parameters are predictors of mortality and ICU admission in patients with COVID-19: a systematic review and meta-analysis. Med Microbiol Immunol. 2020 Nov 21:1–15. doi:10.1007/s00430-020-00696-w. Epub ahead of print. PMID: 33219397; PMCID: PMC7679241. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00430-020-00696-w&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33219397&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 14. 14.Kostakis I, Smith GB, Prytherch D, Meredith P, Price C, Chauhan A; Portsmouth Academic ConsortIum For Investigating COVID-19 (PACIFIC-19). The performance of the National Early Warning Score and National Early Warning Score 2 in hospitalised patients infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Resuscitation. 2020 Nov 8:S0300-9572(20)30548-7. doi:10.1016/j.resuscitation.2020.10.039. Epub ahead of print. PMID: 33176170; PMCID: PMC7648887. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.resuscitation.2020.10.039&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33176170&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 15. 15.Bansal A, Singh AD, Jain V, Aggarwal M, Gupta S, Padappayil RP, Nadeem M, Joshi S, Mian A, Greathouse T, Wells D, Gupta M, Khan MZ. The association of D-dimers with mortality, intensive care unit admission or acute respiratory distress syndrome in patients hospitalized with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Heart Lung. 2021 Jan-Feb;50(1):9–12. doi:10.1016/j.hrtlng.2020.08.024. Epub 2020 Sep 18. PMID: 33041057; PMCID: PMC7500895. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.hrtlng.2020.08.024&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33041057&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 16. 16.Li X, Ge P, Zhu J, Li H, Graham J, Singer A, Richman PS, Duong TQ. Deep learning prediction of likelihood of ICU admission and mortality in COVID-19 patients using clinical variables. PeerJ. 2020 Nov 6;8:e10337. doi:10.7717/peerj.10337. PMID: 33194455; PMCID: PMC7651477. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7717/peerj.10337&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33194455&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 17. 17.Jamil S, Mark N, Carlos G, Cruz CSD, Gross JE, Pasnick S. Diagnosis and Management of COVID-19 Disease. Am J Respir Crit Care Med. 2020 May 15;201(10):P19–P20. doi:10.1164/rccm.2020C1. PMID: 32223716. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1164/rccm.2020C1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32223716&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 18. 18.ACR recommendations for the use of chest radiography and computed tomography (CT) for suspected COVID-19 infection. 2020. Available at:[https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection](https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection).) 19. 19.Schalekamp S, Huisman M, van Dijk RA, Boomsma MF, Freire Jorge PJ, de Boer WS, Herder GJM, Bonarius M, Groot OA, Jong E, Schreuder A, Schaefer-Prokop CM. Model-based Prediction of Critical Illness in Hospitalized Patients with COVID-19. Radiology. 2021 Jan;298(1):E46–E54. doi:10.1148/radiol.2020202723. Epub 2020 Aug 13. PMID: 32787701; PMCID: PMC7427120. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1148/radiol.2020202723&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32787701&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 20. 20.Balbi M, Caroli A, Corsi A, Milanese G, Surace A, Di Marco F, Novelli L, Silva M, Lorini FL, Duca A, Cosentini R, Sverzellati N, Bonaffini PA, Sironi S. Chest X-ray for predicting mortality and the need for ventilatory support in COVID-19 patients presenting to the emergency department. Eur Radiol. 2020 Oct 8:1–14. doi:10.1007/s00330-020-07270-1. Epub ahead of print. PMID: 33033861; PMCID: PMC7543667. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00330-020-07270-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33033861&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 21. 21.Colombi D, Bodini FC, Petrini M, Maffi G, Morelli N, Milanese G, Silva M, Sverzellati N, Michieletti E. Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia. Radiology. 2020 Aug;296(2):E86–E96. doi:10.1148/radiol.2020201433. Epub 2020 Apr 17. PMID: 32301647; PMCID: PMC7233411. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1148/radiol.2020201433&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32301647&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 22. 22.Lee KS. Pneumonia Associated with 2019 Novel Coronavirus: Can Computed Tomographic Findings Help Predict the Prognosis of the Disease? Korean J Radiol. 2020 Mar;21(3):257–258. doi:10.3348/kjr.2020.0096. Epub 2020 Feb 11. PMID: 32056396; PMCID: PMC7039716. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3348/kjr.2020.0096&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32056396&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 23. 23.Burian E, Jungmann F, Kaissis GA, Lohöfer FK, Spinner CD, Lahmer T, Treiber M, Dommasch M, Schneider G, Geisler F, Huber W, Protzer U, Schmid RM, Schwaiger M, Makowski MR, Braren RF. Intensive Care Risk Estimation in COVID-19 Pneumonia Based on Clinical and Imaging Parameters: Experiences from the Munich Cohort. J Clin Med. 2020 May 18;9(5):1514. doi:10.3390/jcm9051514. PMID: 32443442; PMCID: PMC7291055. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/jcm9051514&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32443442&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 24. 24.Cai W, Liu T, Xue X, Luo G, Wang X, Shen Y, Fang Q, Sheng J, Chen F, Liang T. CT Quantification and Machine-learning Models for Assessment of Disease Severity and Prognosis of COVID-19 Patients. Acad Radiol. 2020 Dec;27(12):1665–1678. doi:10.1016/j.acra.2020.09.004. Epub 2020 Sep 21. PMID: 33046370; PMCID: PMC7505599. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.acra.2020.09.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33046370&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 25. 25.Chao H, Fang X, Zhang J, Homayounieh F, Arru CD, Digumarthy SR, Babaei R, Mobin HK, Mohseni I, Saba L, Carriero A, Falaschi Z, Pasche A, Wang G, Kalra MK, Yan P. Integrative analysis for COVID-19 patient outcome prediction. Med Image Anal. 2021 Jan;67:101844. doi:10.1016/j.media.2020.101844. Epub 2020 Oct 13. PMID: 33091743; PMCID: PMC7553063. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.media.2020.101844&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33091743&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 26. 26.Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics. 2017 Sep- Oct;37(5):1483–1503. doi:10.1148/rg.2017170056. PMID: 28898189. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1148/rg.2017170056&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28898189&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 27. 27.Smialowski P, Frishman D, Kramer S. Pitfalls of supervised feature selection. Bioinformatics. 2010 Feb 1;26(3):440–3. doi:10.1093/bioinformatics/btp621. Epub 2009 Oct 29. PMID: 19880370; PMCID: PMC2815655. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/bioinformatics/btp621&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19880370&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000274342800031&link_type=ISI) 28. 28.Diciotti S, Ciulli S, Mascalchi M, Giannelli M, Toschi N. The “peeking” effect in supervised feature selection on diffusion tensor imaging data. AJNR Am J Neuroradiol. 2013 Sep;34(9):E107. doi:10.3174/ajnr.A3685. Epub 2013 Jul 18. PMID: 23868167. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo5OiIzNC85L0UxMDciO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wMS8wOS8yMDIxLjAxLjA4LjIwMjQ5MDQxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 29. 29.Lederer DJ, Enright PL, Kawut SM, Hoffman EA, Hunninghake G, van Beek EJ, Austin JH, Jiang R, Lovasi GS, Barr RG. Cigarette smoking is associated with subclinical parenchymal lung disease: the Multi-Ethnic Study of Atherosclerosis (MESA)-lung study. Am J Respir Crit Care Med. 2009 Sep 1;180(5):407–14. doi:10.1164/rccm.200812-1966OC. Epub 2009 Jun 19. PMID: 19542480; PMCID: PMC2742759. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1164/rccm.200812-1966OC&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19542480&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000269467100006&link_type=ISI) 30. 30.Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012 Nov;30(9):1323–41. doi:10.1016/j.mri.2012.05.001. Epub 2012 Jul 6. PMID: 22770690; PMCID: PMC3466397. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.mri.2012.05.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22770690&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000309946000013&link_type=ISI) 31. 31.van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts HJWL. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017 Nov 1;77(21):e104–e107. doi:10.1158/0008-5472.CAN-17-0339. PMID: 29092951; PMCID: PMC5672828. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI3Ny8yMS9lMTA0IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDEvMDkvMjAyMS4wMS4wOC4yMDI0OTA0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 32. 32.Benelli M, Barucci A, Zoppetti N, Calusi S, Redapi L, Della Gala G, Piffer S, Bernardi L, Fusi F, Pallotta S. Comprehensive Analysis of Radiomic Datasets by RadAR. Cancer Res. 2020 Aug 1;80(15):3170–3174. doi:10.1158/0008-5472.CAN-20-0332. Epub 2020 Jun 15. PMID: 32540962. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI4MC8xNS8zMTcwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDEvMDkvMjAyMS4wMS4wOC4yMDI0OTA0MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 33. 33.Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010;33(1):1–22. PMID: 20808728; PMCID: PMC2929880. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1467-9868.2005.00503.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20808728&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000275203200001&link_type=ISI) 34. 34.Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011 Mar 17;12:77. doi:10.1186/1471-2105-12-77. PMID: 21414208; PMCID: PMC3068975. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2105-12-77&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21414208&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 35. 35.Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006 Apr 27;354(17):1775–86. doi:10.1056/NEJMoa052052. PMID: 16641394. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMoa052052&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16641394&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000237077100003&link_type=ISI) 36. 36.Nishiyama A, Kawata N, Yokota H, Sugiura T, Matsumura Y, Higashide T, Horikoshi T, Oda S, Tatsumi K, Uno T. A predictive factor for patients with acute respiratory distress syndrome: CT lung volumetry of the well-aerated region as an automated method. Eur J Radiol. 2020 Jan;122:108748. doi:10.1016/j.ejrad.2019.108748. Epub 2019 Nov 14. PMID: 31775082. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ejrad.2019.108748&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31775082&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 37. 37.Patel BV, Arachchillage DJ, Ridge CA, Bianchi P, Doyle JF, Garfield B, Ledot S, Morgan C, Passariello M, Price S, Singh S, Thakuria L, Trenfield S, Trimlett R, Weaver C, Wort SJ, Xu T, Padley SPG, Devaraj A, Desai SR. Pulmonary Angiopathy in Severe COVID-19: Physiologic, Imaging, and Hematologic Observations. Am J Respir Crit Care Med. 2020 Sep 1;202(5):690–699. doi:10.1164/rccm.202004-1412OC. PMID: 32667207; PMCID: PMC7462405. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1164/rccm.202004-1412OC&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32667207&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 38. 38.Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D. COVID-19 Does Not Lead to a “Typical” Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2020 May 15;201(10):1299–1300. doi:10.1164/rccm.202003-0817LE. PMID: 32228035; PMCID: PMC7233352. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1164/rccm.202003-0817LE&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32228035&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 39. 39.Marini JJ, Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA. 2020 Jun 9;323(22):2329–2330. doi:10.1001/jama.2020.6825. PMID: 32329799. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.2020.6825&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32329799&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 40. 40.Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020 Jun;46(6):1099–1102. doi:10.1007/s00134-020-06033-2. Epub 2020 Apr 14. PMID: 32291463; PMCID: PMC7154064. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00134-020-06033-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32291463&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 41. 41.Tobin MJ, Laghi F, Jubran A. Why COVID-19 Silent Hypoxemia Is Baffling to Physicians. Am J Respir Crit Care Med. 2020 Aug 1;202(3):356–360. doi:10.1164/rccm.202006-2157CP. PMID: 32539537; PMCID: PMC7397783. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1164/rccm.202006-2157CP&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32539537&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 42. 42.Grasselli G, Tonetti T, Protti A, Langer T, Girardis M, Bellani G, Laffey J, Carrafiello G, Carsana L, Rizzuto C, Zanella A, Scaravilli V, Pizzilli G, Grieco DL, Di Meglio L, de Pascale G, Lanza E, Monteduro F, Zompatori M, Filippini C, Locatelli F, Cecconi M, Fumagalli R, Nava S, Vincent JL, Antonelli M, Slutsky AS, Pesenti A, Ranieri VM; collaborators. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020 Dec;8(12):1201–1208. doi:10.1016/S2213-2600(20)30370-2. Epub 2020 Aug 27. PMID: 32861276. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S2213-2600(20)30370-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32861276&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 43. 43.Yang J, Tian C, Chen Y, Zhu C, Chi H, Li J. Obesity aggravates COVID-19: An updated systematic review and meta-analysis. J Med Virol. 2020 Nov 17:10.1002/jmv.26677. doi:10.1002/jmv.26677. Epub ahead of print. PMID: 33200825; PMCID: PMC7753795. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.26677&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33200825&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 44. 44.Iaccarino G, Grassi G, Borghi C, Carugo S, Fallo F, Ferri C, Giannattasio C, Grassi D, Letizia C, Mancusi C, Minuz P, Perlini S, Pucci G, Rizzoni D, Salvetti M, Sarzani R, Sechi L, Veglio F, Volpe M, Muiesan ML; SARS-RAS Investigators. Gender differences in predictors of intensive care units admission among COVID-19 patients: The results of the SARS-RAS study of the Italian Society of Hypertension. PLoS One. 2020 Oct 6;15(10):e0237297. doi:10.1371/journal.pone.0237297. PMID: 33022004; PMCID: PMC7537902. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0237297&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33022004&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 45. 45.Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, Fernández J, Prati D, Baselli G, Asselta R, Grimsrud MM, Milani C, Aziz F, Kässens J, May S, Wendorff M, Wienbrandt L, Uellendahl-Werth F, Zheng T, Yi X, de Pablo R, Chercoles AG, Palom A, Garcia-Fernandez AE, Rodriguez-Frias F, Zanella A, Bandera A, Protti A, Aghemo A, Lleo A, Biondi A, Caballero-Garralda A, Gori A, Tanck A, Carreras Nolla A, Latiano A, Fracanzani AL, Peschuck A, Julià A, Pesenti A, Voza A, Jiménez D, Mateos B, Nafria Jimenez B, Quereda C, Paccapelo C, Gassner C, Angelini C, Cea C, Solier A, Pestaña D, Muñiz-Diaz E, Sandoval E, Paraboschi EM, Navas E, García Sánchez F, Ceriotti F, Martinelli-Boneschi F, Peyvandi F, Blasi F, Téllez L, Blanco-Grau A, Hemmrich-Stanisak G, Grasselli G, Costantino G, Cardamone G, Foti G, Aneli S, Kurihara H, ElAbd H, My I, Galván-Femenia I, Martín J, Erdmann J, Ferrusquía-Acosta J, Garcia-Etxebarria K, Izquierdo-Sanchez L, Bettini LR, Sumoy L, Terranova L, Moreira L, Santoro L, Scudeller L, Mesonero F, Roade L, Rühlemann MC, Schaefer M, Carrabba M, Riveiro-Barciela M, Figuera Basso ME, Valsecchi MG, Hernandez-Tejero M, Acosta-Herrera M, D’Angiò M, Baldini M, Cazzaniga M, Schulzky M, Cecconi M, Wittig M, Ciccarelli M, Rodríguez-Gandía M, Bocciolone M, Miozzo M, Montano N, Braun N, Sacchi N, Martínez N, Özer O, Palmieri O, Faverio P, Preatoni P, Bonfanti P, Omodei P, Tentorio P, Castro P, Rodrigues PM, Blandino Ortiz A, de Cid R, Ferrer R, Gualtierotti R, Nieto R, Goerg S, Badalamenti S, Marsal S, Matullo G, Pelusi S, Juzenas S, Aliberti S, Monzani V, Moreno V, Wesse T, Lenz TL, Pumarola T, Rimoldi V, Bosari S, Albrecht W, Peter W, Romero-Gómez M, D’Amato M, Duga S, Banales JM, Hov JR, Folseraas T, Valenti L, Franke A, Karlsen TH. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020 Oct 15;383(16):1522–1534. doi:10.1056/NEJMoa2020283. Epub 2020 Jun 17.PMID: 32558485; PMCID: PMC7315890. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMoa2020283&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32558485&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom) 46. 46.Nagant C, Ponthieux F, Smet J, Dauby N, Doyen V, Besse-Hammer T, De Bels D, Maillart E, Corazza F. A score combining early detection of cytokines accurately predicts COVID-19 severity and intensive care unit transfer. Int J Infect Dis. 2020 Dec;101:342–345. doi:10.1016/j.ijid.2020.10.003. Epub 2020 Oct 9. PMID: 33039609; PMCID: PMC7544772. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2020.10.003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33039609&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F09%2F2021.01.08.20249041.atom)