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Abstract        

Rationale. Triage is crucial for patient’s management and estimation of the required  Intensive Care 

Unit (ICU) beds is fundamental for Health Systems during the COVID-19 pandemic.  

Objective. To assess whether chest Computed Tomography (CT) of COVID-19 pneumonia has an 

incremental role in predicting patient’s admission to ICU.  

Methods. We performed volumetric and texture analysis of the areas of the affected lung in CT of 

115 outpatients with COVID-19 infection presenting to the Emergency Room with dyspnea and 

unresponsive hypoxyemia. Admission blood laboratory including lymphocyte count, serum lactate 

dehydrogenase, D-dimer and C-Reactive Protein and the ratio between the arterial partial pressure 

of oxygen and inspired oxygen were collected. By calculating the areas under the receiver-operating 

characteristic curves (AUC), we compared the performance of blood laboratory-arterial gas 

analyses features alone and combined with the CT features in two hybrid models (Hybrid 

radiological and Hybrid radiomics)for predicting ICU admission. Following a machine learning 

approach, 63 patients were allocated to the training and 52 to the validation set.  

Measurements and Main Results. Twenty-nine (25%) of patients were admitted to ICU. The Hybrid 

radiological model comprising the lung %consolidation performed significantly (p=0.04) better in 

predicting ICU admission in the validation (AUC=0.82; 95%Confidence Interval 0.68-0.95) set 

than the blood laboratory-arterial gas analyses features alone (AUC=0.71; 95%Confidence Interval 

0.56-0.86). A risk calculator for ICU admission was derived and is available 

at:https://github.com/cgplab/covidapp  

Conclusions. The volume of the consolidated lung in CT of patients with COVID-19 pneumonia 

has a mild but significant incremental value in predicting ICU admission. 
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Introduction 

In January 2020 the World Health Organization declared Coronavirus disease (COVID-19) 

due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) a public health emergency 

of international concern. Until December 2020 it has caused more than 80 million of cases and 

more than 1.7 million of deaths worldwide (1). 

About 15% of patients with COVID-19 pneumonia show a severe disease course requiring 

hospitalization and  5% eventual admission to an Intensive Care Unit (ICU) (2,3). 

Prediction of ICU admission is crucial for patient’s management and forecasting the required 

number of ICU beds is fundamental for the resources allocation and organization of the health 

systems during the COVID-19 pandemic (4). Hence prediction of ICU admission has been 

frequently investigated in studies addressing diagnostic and prognostic models for COVID-19 (5). 

Among the variables potentially useful for such a purpose, clinical features yielded mixed results 

(6-12), while blood laboratory and arterial gas analysis features generally improved the overall 

prediction capacity (8,10,11,13-16).   

Due to the non-specificity of findings, chest radiographs and computed tomography (CT) have no 

diagnostic role in patients with SARS-CoV-2 (17,18). Moreover the American College of 

Radiology and Society of Thoracic Radiology in the United States cautioned against their 

widespread use for assessment and monitoring disease course (18). However several studies in Asia, 

Europe and United States have indicated that chest radiographs and CT may have a role in the 

prediction of clinical evolution including need of ICU admission (19-25).  

We hypothesized that CT-based quantitative analysis of the volume of the affected lung and 

its characterization in terms of texture analysis (26) might have an incremental role with respect to 

blood laboratory and arterial gas analysis results in predicting the patient’s admission to ICU. To 

explore this hypothesis following a machine learning approach we compared the predictive value of 

blood  laboratory and arterial gas analysis features alone with those of two hyrbid models 

combining the same features with those derived from CT. 
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Methods  

The study received ethical approval (Protocol Number: 17260_oss) on May 19, 2020 by The Ethical 

Committee for Clinical Studies of the Central Tuscany Region. The study was performed between 

March 7th and November 8th 2020 at the Prato and Pistoia community hospitals in the Tuscany 

region of Italy, where overall 3-12% of hospital beds were allocated to ICUs in the study time 

period. 

The study involved 208 outpatients with COVID-19 infection confirmed by positive nucleic acid 

test of  real time-PCR in nasal-pharingeal swabs who presented to the Emergency Room (ER) and 

underwent immediate unenhanced chest CT because of dyspnea and  non-responsive hypoxiemia. 

Laboratory data on admission included routine blood tests, serum lactate dehydrogenase (LDH), D-

dimer and C-Reactive Protein (CRP) and lymphocytes count. Moreover in each patient the 

Horowitz (P/F) Index was calculated as the ratio between the arterial partial pressure of oxygen 

[PaO2] measured (in mmHg) by blood gas analysis and fraction of inspired oxygen [FiO2]. 

Patient’s age and gender and co-morbidities including history of arterial hypertension, diabetes, 

heart diseases and malignancies were annotated. Subsequent admission to the ICU and patient’s 

death were recorded as of  November 13th, 2020.  

Patients with CT images of low quality or  incomplete blood laboratory or arterial blood gas 

analyses were excluded. Accordingly, data were analyzed in 115 of the initial 208 patients. 

Following a machine-learning approach and to avoid a “peeking” effect (27,28), 63 patients 

observed between March 7th and April 21st, 2020 during the first wave of COVID-19 pandemic in 

Italy constituted the training set and 52 patients observed between August 18th  and November 8th  

2020 during the second wave constituted the validation set. Fig 1. shows the study flow-chart.  

The chest CT examinations were performed in Prato (n=88) on a Siemens SOMATOM Sensation 

(Germany) 64-rows of detectors scanner or in Pistoia (n=27)on an Optima CT660 GE Medical 

System (USA) 16-rows of detectors scanner. The patients were examined in supine position during 

inspiratory breath-hold or spontaneous breathing. CT acquisition parameters are detailed in an 
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online data supplement. The CT images were transferred to a workstation implemented with the 

MIM Maestro software (MIM Software Inc.). Three Regions of Interest (RoIs) were automatically 

created from both lungs: Well-Areated Lung (WAL), which comprises the entire healthy tissue, 

Ground Glass Opacities (GGO), which includes areas showing  ground glass density,  and 

Consolidation (Consolid), which corresponds to areas of consolidated tissue. For segmentation of 

WAL and GGO, we used the Region Growing tool and threshold intervals were set from -950 

Hounsfield Units(HU) to -700HU for WAL  (21) and from -700HU to -250HU for GGO (29). For 

ConsolidRoI, a single expert radiologist with 20 years of experience in lung CT (M.B.) blind to the 

patient's clinical, blood laboratory and arterial gas analyses results performed a manual editing of 

the segmentation results. An example is shown in Supplementary figure 1. The fraction of each RoI 

with respect to total lung volume was calculated. For image texture analysis, 107 radiomic features 

listed in Supplementary material table 1 were extracted using the 3DSlicer software (30) and the 

module radiomic (31). Image texture features were processed and analyzed by RadAR (Radiomics 

Analysis with R) (32). Features with duplicated ids and shape features (n=21) were excluded from 

downstream analysis.  

Statistical Analysis and Model Construction 

We used two-sided Wilcoxon-Mann-Whitney test to assess statistical significance of the differences 

between the ICU and non-ICU patients groups for parametric variables and Fisher’s Exact test for 

age and gender. Since co-morbidities can determine distortions in the admission to the ICU, 

especially when there is a relative shortage of dedicated beds, they were not included in the models.  

Models to predict ICU admission were built using binomial regression with GLMNET (33) on 

continuous variables, considering ICU admission as response variable (0=no, 1=yes). We 

selected GLMNET because, differently from other methods as multivariate random forest, it 

enables simultaneous selection of relevant features and parameter estimation. We built 5 models 

using age, blood laboratory features, the P/F ratio, the radiological and the radiomics features. The 

description of each feature is reported in Supplementary Table 1. To select relevant features for each 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.20249041doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.08.20249041
http://creativecommons.org/licenses/by-nc-nd/4.0/


model (feature selection), predictors showing nonzero coefficient at lambda.min - corresponding to 

the value of the regularization parameter lambda that gives minimum mean cross-validated error - 

were considered. To facilitate the applicability of our approach, GLMNET models were then rebuilt 

considering only model-specific selected features.  

The performance of each model was assessed by calculating the area under the receiver operating 

characteristic curves (AUC) in the training and validation sets, using model probability as threshold 

parameter. All the analyses were performed using the R statistical programming language 

(https://cran.r-project.org/).  

The confidence intervals of AUCs and the statistical significance of pairwise difference between 

AUCs were estimated by De Long’s tests implemented in the pROC R package (34).   

Web application 

An interactive web application implementing the three best performing models (see below) was 

built using Shiny (https://CRAN.R-project.org/package=shiny).  

 

Results 

Twenty-nine (19 of the training and10 of validation set) of the 115 included patients were admitted 

to ICU. The average interval between ER presentation and ICU admission was 1.9 days (range 1-

22) in the training and 2.6 (range 1-5) in the validation set. 

Table 1 details the distribution of  age, gender, number of co-morbidities, blood laboratory and 

arterial gas analyses results and of those of the CT in the patients of the training and validation sets. 

In both sets the P/F index and %WAL were significantly lower and the %Consolid significantly 

higher in patients admitted to ICU. Comparing the data in the training and validation sets, only 

LDH was significantly higher (p=0.004) and the age lower (p=0.01) in the patients of the validation 

set who were not admitted to ICU. 

Table 2 summarizes the considered features and those selected by the GLMNET. Age, LDH and the 

P/F ratio were selected as the best features both in the blood laboratory and arterial gas analyses 
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model and in the Hybrid radiological model which also comprised %consolid. The Hybrid 

radiomics model comprised the P/F ratio, LDH, %consolid and 3 of the 86 considered texture 

features (see table 1 and supplementary table 1). 

Fig. 2 shows the AUC of the model based on blood laboratory and arterial gas analyses features 

alone and of the two Hybrid models. The Hybrid radiological model performed better in predicting 

admission to the ICU in both the training (AUC=0.87; 95%Confidence Interval 0.77-0.97) and 

validation (AUC=0.86; 95%Confidence Interval 0.73-0.97) set as compared to the blood laboratory-

arterial blood gas analyses features alone (training AUC=0.82; 95%Confidence Interval 0.68-0.95) 

(validation AUC=0.71; 95%Confidence Interval 0.56-0.86). The difference was significant (p=0.04) 

in the validation set. Also the Hybrid radiomics model performed better than the  blood laboratory-

arterial blood gas analyses features alone in the two sets, but the differences were not significant.  

The models evaluating radiological and radiomics features alone selected two (%consolid and 

%WAL) and seven features(see supplementary table 1), respectively, but performed worse than the 

model evaluating blood laboratory and arterial gas analyses results in predicting ICU admission (see 

supplementary Fig. 2).  

The distribution of the probability of ICU admission in the validation set (Supplementary Fig.3) 

indicates that no patient required ICU admission below the threshold of 0.25, 0.15 and 0.05 for the  

blood laboratory-arterial gas analyses model, Hybrid radiological and Hybrid radiomic models, 

respectively. In particular, in the Hybrid radiological model all patients with estimated probability 

below 0.20, corresponding to 16 (30%) of 52 patients, were all correctly classified and identified as 

a low-risk population without need of ICU admission. 

The application to estimate the patient’s probability of ICU admission with the three best 

performing models is freely available at  https://github.com/cgplab/covidapp  under MIT license 

and allows users using the proposed models after insertion of  the required model-specific features.  

Mortality rates were 14% (9/63) in the training and 21% (11/52) in the validation set. 
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Discussion  

Admission to ICU, where the most invasive and sophisticated treatments are carried out, is 

associated with a number of variables, including the evaluation of the patient’s clinical severity and 

evolution and the availability of ICU beds, but generally implies a severe structural and functional 

lung compromise, worse prognosis and increasing costs. 

In this study we holistically combined blood laboratory, arterial gas analyses and CT results 

at ER presentation to predict ICU admission in patients with COVID-19 pneumonia. We 

demonstrated that the Hybrid radiological model combining CT estimation of volume of the 

consolidated lung with blood laboratory and arterial gas analyses features has a mild but significant 

incremental predictive value with respect to the model considering blood laboratory and arterial gas 

analyses features alone. This result is in line with and reinforces data from prior studies which 

evaluated the contribute of CT in predicting ICU admission in hybrid models (21,23-25). 

For comparison with CT we considered several established blood biomarkers of severity of 

COVID-19 pneumonia including serum LDH, D-dimer, CRP and lymphocyte counts that can 

predict ICU admission (10,12,13,15,16,23). As well, we considered the P/F ratio which is a marker 

of  non-responsive hypoxiemia in these patients (10,14,16).  

Notably, in both our hybrid models the volume of consolidated lung, that is correlated with lung 

weight, was the best radiological biomarker instead than the volume of the well areated lung, that is 

the CT biomarker commonly used for Acute Respiratory Distress Syndrome (ARDS) 

(21,35,36).This is in line on the one hand with the observation that the pathological and radiological 

features of COVID-19 pneumonia are not typical of ARDS. In fact COVID-19 pneumonia along 

with diffuse alveolar damage and organizing pneumonia is characterized by a prominent vascular 

compromise justifying the observed disproportionate and non-responsive hypoxyemia (37,38) and 

the term “CARDS” (COVID-19 ARDS) (39) to label it.  Moreover, according to Gattinoni et al. 

(40) consolidation and its extent characterizes two phenotypes of CARDS named type L (Low 

elastance, Low ventilation-to perfusion ratio, Low lung weight and Low recruitability) and type H 
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(High elastance, High ventilation-to perfusion ratio, High lung weight and High recruitability) 

“which are best identified by CT”, involve different pathophysiological mechanisms and require 

different treatment options that, in case of type H, include intubation, positive end-expiratory 

pressure and extracorporeal membrane oxygenation that pertain to the ICU environment.  

In our study, the Hybrid radiomics model including image texture features of the affected 

lung slightly (and not significantly) improved prediction of ICU admission as compared with blood 

laboratory and arterial gas analyses features, but performed worse than the Hybrid radiological 

model. Two prior studies reported a marginal incremental value of Radiomics for prediction of ICU 

admission as compared to volume estimation of the affected lung (24,25). Notably, since the Hybrid 

radiomics was the best performing model in our training set, but showed mild and non-significant 

advantage compared to blood laboratory and arterial gas features in the validation set, we speculate 

that Hybrid radiomics models might be more affected by overfitting as compared to the Hybrid 

radiological model. Overall, also considering that the pathological correlates of the CT texture 

features analysis are uncertain (26), we recommend estimation of the volume of lung consolidation 

and the Hybrid radiological model for triage of patients with COVID-19 pneumonia. 

We recognize the following limitations of our study.  

We performed a single centre study and assessment of the proposed models with data from other 

centres are required to verify their external validity. In our models we considered a large array of 

continuous variables in different domains, including D-dimer and P/F ratio which reflect the more 

characteristic physiopathological features of COVID-19 pneumonia(14,15,41) and are associated 

with worst prognosis (42), but discarded some potentially relevant categorical variables as gender, 

obesity and co-morbidities (43,44) which however are more closely linked with mortality than ICU 

admission. Moreover the recently described ABO blood-group system and  genetic susceptibility 

loci (45) and some continuous variables as serum Interleukin-6 (23,46), ferritin and procalcitonin 

(16) were not available. Finally, we did not evaluate death as an outcome due to the small samples. 
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However this would imply to consider treatments and other variables and was beyond the scope of 

the present investigation. 

In conclusion, the combination of the volume of lung consolidation on CT at ER 

presentation has a mild but significant incremental value as compared to blood laboratory and 

arterial gas analyses results in predicting ICU admission. Inclusion of CT in the triage of patients 

with symptomatic COVID-19 pneumonia may have a practical value for individual patient’s 

management (possibly using the free application we developed) and help planning and organizing 

the Health Systems response to COVID-19 pandemic.   
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Figure Legends 
 
 
Figure 1. Study flow-chart. Abbreviations: CT = Computed Tomography;  ER = Emergency Room; 
ICU = Intensive Care Unit ; SARS-Cov-2 = Severe Acute Respiratory Syndrome Coronavirus 2  
 
Figure 2. Performance of 3 models in predicting ICU admission. Receiving Operating 
Characteristic (ROC) curve analysis of the blood laboratory-arterial gas analyses features (dotted 
line), Hybrid radiological features (solid line) and Hybrid radiomics features (dashed line) in the 
training (A) and validation (B) sets. The values reported in parentheses refer to Area Under the 
ROC curves. 
 
Supplementary Figure 1. Example of segmentation of CT images. Well-Areated Lung (WAL) area 
are depicted in purple (right lung) and orange (left lung), Ground Glass Opacities (GGO) area are 
depicted in blue (right lung) and light blue (left lung) and Consolidation area (Consolid) are 
depicted in green (right lung) and light green (left lung). 
 
Supplementary Figure 2.  Performance of 3 simple models in predicting ICU admission. 
Receiving Operating Characteristic (ROC) curve analysis of the blood laboratory-arterial gas 
analyses features (green line),  radiological features (sky blue line) and radiomics features (red line) 
in the training (A) and validation (B) sets. The values reported in parentheses refer to Area Under 
the ROC curves. 
 
Supplementary Figure 3. Box plots of the distribution of the probability of ICU admission 
estimated using the  blood laboratory-arterial gas analyses (left), Hybrid radiological (middle) and 
Hybrid radiomics (right) models in the patients of the validation set who were not admitted 
(ICU=no) or required admission (ICU=yes) to ICU. No patient with estimated probability below 
0.25 (laboratory-arterial gas analyses model), 0.15 (Hybrid radiology model) and 0.05 (Hybrid 
radiomic model) required ICU admission. 
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Tables 
 

Training  (March 7- April 21, 2020 ) set Validation (August 18 – November 8, 2020 ) set  

 
No ICU 

admission 
(n = 44) 

ICU 
admission 

(n = 19) 

P-value  
 

No ICU 
admission 

(n = 42) 

ICU 
admission 

(n = 10) 

P-value  
 

Age, years 68 + 12 66 + 10 0.27 61+ 3 72+ 7 0.006 

Gender   0.55   1 

   Male n = 32 (73%) n= 12 (63%)  n = 23 (58%) n = 7 (58%)  

   Female n=12 (27%) n = 7 (37%)  n = 17 (42%) n = 5 (42%)  

Comorbodities   0.58   0.59 

   0 n = 4 (11%) n = 4 (27%)  n = 11 (30%) n = 2 (20%)  

   1 n = 19 (51%) n = 7 (47%)  n = 15 (41%) n = 6 (60%)  

   2 n= 10 (27%) n = 3 (20%)  n = 6 (16%)  n = 2 (20%)  

   >2 n = 4 (11%) n = 1 (7%)   n = 5 (14%)  n = 0 (0%)  

LDH (UI/L) 288 + 127 371 + 100 0.002 363 + 135 400 + 83 0.18 

D-dimer (µg/mL FEU) 1.6 + 2.6 2.2 + 2.1 0.25 1.1+ 1.0 2.0+ 2.2 0.10 

CRP (mg/dL) 9 + 8 11+ 9 0.35 6 + 5 16 + 10 0.0002 

Lymphocytes(103/uL) 1.1+ 0.6 1.2 + 1.2 0.63 1.2 + 1.9 0.8 + 0.4 0.21 

P/F (mmHg) 236 + 97 153+ 66 0.001 243 + 92 126 + 47 0.00009 

% Consolidation 5 + 4 13 + 10 0.0007 4 + 4 8 + 6 0.017 

% Ground Glass 19 + 16 29 + 16 0.008 20 + 15 26 + 10 0.06 

% Normal Lung 76+ 18 58 + 20 0.0009 76 + 17 66 + 11 0.026 

Abbreviations: CRP= serum C-Reactive Protein; ICU= Intensive Care Unit; LDH= serum Lactate Dehydrogenase =; 
P/F= ratio between the arterial partial pressure of oxygen [PaO2] measured (in mmHg) by blood gas analysis and 
fraction of inspired oxygen [FiO2] 
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Table 1 (previous page). Clinical, blood laboratory, arterial gas analyses and CT results in patients 
with COVID-19 pneumonia. Continuous values are expressed as mean+ standard deviation.   
 

 

 

 

 
 
Model Features Selected features (ICU admission) 
Blood 
laboratory 
and arterial 
gas analyses 

Age, LDH, D-dimer, PCR, 
Lymphocytes, P/F 

Age, LDH, P/F  

Radiological %consolid, %ground glass, 
%normal lung 

%consolid, %normal lung 

Radiomics 86 radiomic features (see 
Supplementary Table 1) 

Dependence Non Uniformity, Small 
Dependence High Gray Level Emphasis, 
Large Dependence Low Gray Level 
Emphasis, Correlation, Interquartile Range, 
Total Energy, Run Variance, Large Area 
Low Gray Level Emphasis, Small Area 
Low Gray Level Emphasis 

Hybrid 
radiological 

Age, LDH, D-dimer, PCR, 
Lymphocytes, P/F,,%consolid, 
%ground glass, %normal lung 

Age, P/F, LDH, %consolid 

Hybrid 
radiomics 

Age, LDH, D-dimer, PCR, 
Lymphocytes, P/F, %consolid, 
%ground glass, %normal lung,86 
radiomic features 

P/F, LDH, %consolid, Large Dependence 
Low Gray Level Emphasis, Run Length 
Non Uniformity, Low Gray Level Zone 
Emphasis 

 
Abbreviations: CRP= serum C-Reactive Protein; ICU= Intensive Care Unit; LDH= serum Lactate Dehydrogenase =; 
P/F= ratio between the arterial partial pressure of oxygen [PaO2] measured (in mmHg) by blood gas analysis and 
fraction of inspired oxygen [FiO2]; %consolid = percentage of consolidated lung;  %ground glass = percentage of  lung 
exhibiting ground glass opacities density; %normal lung = percentage of lung with normal density. 
 
 

Table 2. Features a priori considered and features selected by GLMNET for their relevance in 
predicting ICU admission in five models. 
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On line repository material 

CT scanning parameters 

They were set as follows: tube voltage 120 kV, tube current modulation from CareDose4D 

technology with quality reference mAs 150, pitch 1.4, slice thickness 0.6 mm in the Siemens 

scanner and tube voltage 120 kV, tube current modulation Smart mA technology, pitch 1.0, slice 

thickness 0.6 mm, in the GE scanner. Reconstruction filter used was B30 medium smooth for both 

the scanners and reconstruction was performed with slice thickness ranging from 2.5 and 3 mm in 

order to allow segmentation software to manage the amount of data in an appropriate time frame. 
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Figure 1 
 
 
 

 
 
 
 
 
 
Figure 2 
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Supplementary Figure 1 
 
 

 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 2 
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Supplementary Figure 3 
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