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Abstract 42 

Causal mediation analysis aims to investigate the mechanism linking an exposure and an 43 

outcome. Dealing with the impact of unobserved confounders among the exposure, mediator 44 

and outcome has always been an issue of great concern. Moreover, when multiple mediators 45 

exist, this causal pathway intertwines with other causal pathways, making it more difficult to 46 

estimate of path-specific effects (PSEs). In this article, we propose a method (PSE-MR) to 47 

identify and estimate PSEs of an exposure on an outcome through multiple causally ordered 48 

and non-ordered mediators using Mendelian Randomization, when there are unmeasured 49 

confounders among the exposure, mediators and outcome. Additionally, PSE-MR can be used 50 

when pleiotropy exists, and can be implemented using only summarized genetic data. We also 51 

conducted simulations to evaluate the finite sample performances of our proposed estimators 52 

in different scenarios. The results show that the causal estimates of PSEs are almost unbiased 53 

with good coverage and Type I error properties. We illustrate the utility of our method 54 

through a study of exploring the mediation effects of lipids in the causal pathways from body 55 

mass index to cardiovascular disease. 56 

Key words: mediation analysis, multiple mediators, causally ordered mediators, causally 57 

non-ordered mediators, Mendelian randomization, summarized genetic data  58 
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Author summary 59 

A new method (PSE-MR) is proposed to identify and estimate PSEs of an exposure on an 60 

outcome through multiple causally ordered and non-ordered mediators using summarized 61 

genetic data, when there are unmeasured confounders among the exposure, mediators and 62 

outcome. Lipids play important roles in the causal pathways from body mass index to 63 

cardiovascular disease 64 

  65 
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1 Introduction 66 

Mediation analyses help to uncover the mechanisms underlying causal relationships between 67 

an exposure and an outcome by using mediator variables [1]. In mediation analyses, the total 68 

effect of an exposure on an outcome is partitioned into indirect and direct effects. Indirect 69 

effects act through mediators of interest, whereas direct effects are determined by fixing the 70 

mediator at a specified level. Estimating direct and indirect effects via existing methods 71 

typically requires a stringent sequential ignorability assumption [2] that no unmeasured 72 

confounders exist among the exposure, mediators and outcome [3]. However, this assumption 73 

may not hold in practice and omitting important confounders will necessarily bias results [4]. 74 

When multiple intermediate variables (M1 and M2) are involved in a study, three types of 75 

mediators with respect to M1 and M2 may arise, as shown in Figure 1. In Figure 1A, M1 is 76 

conditionally independent of M2 given the treatment (X) and measured covariates [5]. In 77 

Figure 1B, M1 and M2 are not causally ordered because they are independent of each other, 78 

conditional upon the treatment (X) and measured covariates [6]. In Figure 1C, mediators are 79 

causally ordered, and M1 is treated as a mediator-outcome confounder affected by the 80 

treatment. If we are interested in the mediator M2, we get a two-way decomposition into an 81 

indirect effect through M2 and a direct effect (not through M2). Imai and Yamamoto [7] 82 

proposed an approach for all the three types of mediators under a linear structural equation 83 

model. Daniel et al. [8] considered the finest possible decomposition of the total effect when 84 

there are two causally ordered mediators, and evaluated each path-specific effect (PSE) under 85 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.07.21249415doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.21249415
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

the counterfactual framework. Additionally, VanderWeele and Vansteelandt [9] regarded the 86 

multiple mediators simultaneously as joint mediators, and defined the “joint” natural direct 87 

and indirect effects as extensions of the usual two-way decomposition of the total effect using 88 

regression-based approach and weighting approach. Several methods [10-16] have been 89 

developed to relax the sequential ignorability assumption. However, none of them allowed for 90 

the simultaneous existence of unmeasured confounders among the exposure, mediators and 91 

the outcome. 92 

Mendelian randomization (MR) analyses [17] using summarized data have recently 93 

become popular due to the increase in public availability of suitable data in large sample sizes 94 

from recently published genome-wide association studies [18]. For instance, Tikkanen E et al. 95 

(2019) performed a two-sample MR to evaluate independent causal roles of body components 96 

(fat-free mass and fat mass) on atrial fibrillation (AF) [19]. Firstly, univariate MR was used to 97 

estimate the causal effect of fat-free mass on AF by leveraging genetic variants (instrumental 98 

variables). Some genetic variants may be associated with both fat-free mass and fat mass, 99 

which is problematic because fat mass is also associated with AF. These genetic variants are 100 

invalid because they violate the assumption of exclusion restriction, since – they unlock the 101 

pathway from genetic variants to AF not via fat-free mass. This phenomenon is called 102 

horizontal pleiotropy, and fat mass is considered a pleiotropic trait [20]. In order to eliminate 103 

the effect of pleiotropy on causal estimation, multivariable MR [21] was performed to 104 

evaluate the causal role of fat-free mass on AF independent of fat mass. Similarly, we can 105 
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obtain the causal effect of fat mass on AF independent of fat-free mass. 106 

Risk factors associated with genetic variants may not always be pleiotropic traits, rather 107 

they may be mediators in the causal pathway from the exposure to the outcome (Figure 1D). 108 

In this case, these genetic variants are still valid instruments and MR can be used for 109 

mediation analysis. Burgess S et al. (2017) showed that total and direct effects in a single 110 

mediator setting can be estimated by univariate and multivariable MR analyses, respectively 111 

[22]. We will review this in Section 2.1. In Section 2.2, we extend the analysis from a single 112 

mediator setting to a multiple mediators setting (PSE-MR) for both causally ordered and 113 

non-ordered mediators. Then in Section 3, we apply our method to estimate PSEs from body 114 

mass index (BMI) to cardiovascular disease (CVD) through lipids mediators. In Section 4, we 115 

conduct simulations to compare the performance of PSE-MR in different scenarios. Finally, 116 

we discuss the methods and results of this study and its potential for application. R package 117 

PSEMR for implementing PSE-MR is provided in Github 118 

(https://github.com/hhoulei/PSEMR). 119 

2 Methods 120 

Throughout, we let X, Y, M and G denote the exposure, outcome, mediator and genetic 121 

variant, respectively. U denotes a set of baseline covariates and potential confounders of the 122 

mediators, exposure and outcome relationships. We also let θ0, α1 and δ1 denote the effect of 123 

X on Y, X on M and M on Y, respectively. The subscript j (j = 1,…, J), denotes the j-th genetic 124 

variant. Increasingly, MR analyses are implemented using summarized data on the 125 
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associations of each genetic variant with the exposure, mediator and outcome, obtained from 126 

linear regressions on non-overlapping data consortia. This included the beta-coefficients ( ˆ
Xjβ ,127 

ˆ
Mjβ , ˆ

Yjβ ) and their standard errors (se( ˆ
Xjβ ), se( ˆ

Mjβ ), se( ˆ
Yjβ )). If the exposure X or the 128 

outcome Y is binary, then these summarized association estimates may be replaced with 129 

association estimates (log(OR)) obtained from logistic regression. 130 

Initially, we consider the indirect (through M) and direct (not through the above 131 

mediators) effects of an exposure X on an outcome Y using genetic variants G. Then we 132 

declare several assumptions. We assume all genetic variants are uncorrelated (not in linkage 133 

disequilibrium). We also assume all variables are continuous, and relationships between 134 

variables (the genetic associations with the exposure X, mediator M, and outcome Y, and the 135 

causal effects of X and M on Y as well as X on the M) are linear with homogeneity across the 136 

population. In other words, interactions between the exposure (X) and mediator (M) are not 137 

allowed unless individual data is available. We also assume that the consistency and 138 

composition assumptions in causal mediation analyses hold [24] (see S1 Appendix, Section 139 

1). Note that we relax the assumption of no unmeasured confounders among the exposure X, 140 

mediator M, and outcome Y, which is required in most studies. 141 

2.1 PSE-MR in one mediator setting 142 

In a single mediator setting (Figure 1D), a valid instrumental variable jG  must satisfy the 143 

following three assumptions: 144 

Assumption Ⅰ. For each ( 1,..., )j j J= , the instrumental variable jG  is associated with the 145 
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exposure X.  146 

This assumption requires that jG  should be strongly associated with X, otherwise, 147 

weak instrumental variable bias will exist [25]. The “rule of thumb” advocates that the F 148 

statistic of each instrumental variable should be at least 10 to avoid this bias [26-27] (see S1 149 

Appendix, Section 2.3). 150 

Assumption Ⅱ. For each ( 1,..., )j j J= , jG U⊥ , and these three unmeasured confounders 151 

satisfy the following criteria:  152 

1) There is no additive X U−  interaction on M and Y. 153 

2) There is no additive M U−  interaction on Y. 154 

3) There is no confounders of M-Y relationship induced by X.. 155 

In this assumption, we posit that there is no confounders of M-Y relationship induced by 156 

X, nor any interactions between X (or M) and these confounders [17]. When the interactions 157 

between M and U exist, the direct effect of X on Y can be identified (see S1 Appendix, 158 

Section 4). Swanson S and VanderWeele T [28] suggested that the E-value can be used to 159 

examine the independence between jG  and U, that is, to evaluate the sensitivity of estimates 160 

to confounders between jG  and Y (see S1 Appendix, Section 5). 161 

Assumption Ⅲ. For each ( 1,..., )j j J= ,  | ( , ),  | ( , )j jG Y X U G M X U⊥ ⊥ . 162 

This assumption means that there is no pleiotropy. In other words, jG  must affect Y 163 

through X, and the pathways jG M Y→ →  or jG Y→  (not via X) are not allowed. We 164 

examine and relax this assumption in Section 2.1.2. 165 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.07.21249415doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.21249415
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

2.1.1 PSE-MR based on IVW (PSE-IVW) 166 

For each ( 1,..., )j j J= , we do not allow for direct effects between jG  and M ( 1 =0jγ ) as 167 

well as jG  and Y ( 0 =0jγ ) (Figure 1D). Based on above three assumptions, the 168 

inverse-variance weighting method (IVW)  can provide an estimate of the total effect Tθ  of 169 

X on Y by the following weighted regression with the intercept set to zero 170 

( )2ˆ ˆ ˆ,   ~ 0, ( )Yj T Xj Tj Tj YjN seβ θ β ε ε β= + .                       (1) 171 

The total effect Tθ  between X and Y can be decomposed into a direct effect 172 

( 1 1 0=T I Dθ θ θ α δ θ+ = × + ) and an indirect effect via M. 173 

Under the framework of multivariable MR, the weighted regression model can be 174 

expanded by including genetic associations with the mediator 175 

( )2
0 1

ˆ ˆ ˆ ˆ,   ~ 0, ( )Yj Xj Mj Dj Dj YjN seβ θ β δ β ε ε β= + +                    (2) 176 

where 0̂θ  provides an estimate of the direct effect Dθ . The indirect effect Iθ  of exposure 177 

on the outcome can be calculated as =ID T Dθ θ θ−  (difference indirect effect). It is equivalent 178 

to 1 1=IPθ α δ×  (product indirect effect), where 1δ  can be estimated by equation (2) and 1α  179 

can be estimated by the following weighted regression with the intercept set to zero 180 

( )2
1

ˆ ˆ ˆ= ,   ~ 0, ( )Mj Xj Mj Mj MjN seβ α β ε ε β+ .                      (3)
 

181 

The standard error of the difference and product indirect e�ects are presented in S1 Appendix, 
182 

Section 5. The total effect can also be estimated from individual-level data using the 
183 

two-stage least squares (2SLS) method. The direct effect can also be estimated using 2SLS by 
184 

regressing the outcome on fitted values of the exposure, and further on fitted values of the 
185 
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mediator [22]. 
186 

2.1.2 PSE-MR of a single mediator based on MR-Egger (PSE-Egger) 187 

The method proposed by Burgess et al. (2017) has some limitations. This method cannot 188 

be used if Assumption Ⅲ is violated, that is, direct effects of jG
 on M (M simultaneously 189 

plays the role of a pleiotropic trait) or jG
 on Y (pleiotropic pathway) exist. Thus, we relax 190 

the Assumption Ⅲ by allowing for direct effects between jG  and M ( 1 0jγ ≠ ) as well as 191 

jG  and Y ( 0 0jγ ≠ ) (Figure 1D). Without the limitation of intercept set to zero, the causal 192 

effect of X on Y can be obtained by MR-Egger regression. To satisfy the InSIDE assumption 193 

[23] for MR-Egger, we require 194 

0 1Xj j jβ γ γ⊥ ⊥ .                              (4) 195 

The total effect Tθ  can be estimated by the following weighted linear regression 196 

( )2ˆ ˆ ˆ= ,   ~ 0, ( )Yj T T Xj Tj Tj YjN seβ γ θ β ε ε β+ + .                  (5) 197 

Tθ  can also be decomposed into the direct effect 0Dθ θ=  and the product indirect effect IPθ , 198 

where Dθ  can be obtained by multivariable MR-Egger regression: 199 

( )2
0 0 1

ˆ ˆ ˆ ˆ= ,   ~ 0, ( )Yj j Xj Mj Dj Dj YjN seβ γ θ β δ β ε ε β+ + +
.

              (6) 200 

The intercept term 0 jγ  that differs from zero is an indicator of direct effect between jG  and 201 

Y, which is called directional pleiotropy. For product indirect effect IPθ , 1δ  can be estimated 202 

by above equation (6), and 1α  can also be obtained by the following multivariable 203 

MR-Egger regression: 204 

( )2
1 1

ˆ ˆ ˆ= ,   ~ 0, ( )Mj j Xj Mj Mj MjN seβ γ α β ε ε β+ +                     (7) 205 
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where 1 jγ  that differs from zero is an indicator of direct effect between jG  and M. The 206 

estimation of standard error for difference and product indirect effect is presented in the S1 207 

Appendix. 208 

2.2 Extending PSE-MR to multiple mediators setting  209 

In this section, we extend the PSE-MR method to a multiple mediators setting. If there are n 210 

mediators 1 2, ,..., nM M M  in the causal pathway from X to Y, PSEs can be identified. In the 211 

multiple mediators setting, we consider two relationships among mediators: causally 212 

non-ordered and causally ordered, respectively. In both cases, a valid instrumental variable 213 

must satisfy Assumption Ⅰ mentioned in Section 2.1, and the following Assumption Ⅱ* and 214 

Ⅲ
*, which extend from the Assumption Ⅱ and Ⅲ. 215 

Assumption Ⅱ*. For each , ( 1,..., , 1,..., )i j i n j J= = , jG U⊥ . 216 

1) There is no additive X U−  interaction on Mi and Y. 217 

2) There is no additive iM U−  interaction on Y. 218 

3) There is no confounders of iM Y−  relationship induced by X. 219 

Assumption Ⅲ*. For each , ( 1,..., , 1,..., )i j i n j J= = ,  | ( , ),  | ( , )j j iG Y X U G M X U⊥ ⊥ . 220 

The illustrations and examinations for Assumptions Ⅱ and Ⅲ can also be extended to the 221 

multiple mediators setting. 222 

2.2.1 PSE-MR for causally non-ordered mediators 223 

Firstly, we consider causally non-ordered mediators (Figure 2A, B), where n mediators are 224 

independent of each other, conditional on X. Total effect Tθ  can also be estimated by 225 
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equation (1). The direct effect ( 0=Dθ θ ) and product indirect effect 
1

=
n

IP i i
i

θ α δ
=
∑  can be 226 

estimated by the following weighted regressions with the intercept set to zero: 227 

1

2 2 2ˆ ˆ ˆ,  ~ ( , ),   ( ( ) , ( ) , , ( ) )
nYj M j M jN diag se se seβ β βΒ = ΨΑ + Σ Σ =0 Lε ε       (8) 228 

where 

1 1

2 2

00 1 2

11

2 2

ˆ ˆ

ˆ ˆ0 0 0
ˆ ˆ= , 0 0 0 , ,

0 0 0ˆ ˆ
n n

Yj Xj jn

M j M j j

M j jM j

n njM j M j

B A

β β εθ δ δ δ
β β εα
β α εβ

α εβ β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Ψ = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦

L

L

L

M M M L M MM L

L

ε . These estimations can 229 

also be obtained from individual-level data using 2SLS method. 230 

Similarly, we relax Assumption Ⅲ* by allowing for the direct effect between the 231 

instrumental variable jG  and mediators Mi ( 1 jγ , 2 jγ , …, njγ ), as well as jG  and Y ( 0 0jγ ≠ ) 232 

(Figure 2B). Under the InSIDE assumption 1 2 0...Xj j j nj jβ γ γ γ γ⊥ ⊥ ⊥ ⊥ ⊥ , the total effect 233 

Tθ  can also be estimated by equation (5). The direct effect ( 0=Dθ θ ) and product indirect 234 

effect ( IPθ ) can also be estimated by the following linear regression equations: 235 

1

2 2 2ˆ ˆ ˆ,  ~ ( , ),   ( ( ) , ( ) , , ( ) )
nYj M j M jN diag se se seβ β βΒ = + ΨΑ + Σ Σ =0 Lγ ε ε     (9) 236 

where 0 1 2

T

j j j njγ γ γ γ⎡ ⎤= ⎣ ⎦Lγ . Intercept terms 0 jγ  and ( 1,..., )ij i nγ =  that differ 237 

from zero are indicators of direct effect between jG  and Y, as well as jG  and iM , 238 

respectively. Detailed theoretical derivations are presented in S1 Appendix, section 3. 239 

2.2.2 PSE-MR for causally ordered mediators 240 

When all the mediators are causally ordered (Figure 2C, D), we let pqr  denote the direct 241 

effect of pM  on ( ), , 1,2,..., ,qM p q n p q∈ ≠ . The total effect Tθ  can also be estimated by 242 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.07.21249415doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.21249415
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

equation (5). The direct effect ( 0=Dθ θ ) and product indirect effect  243 

11 1

1 2 1 3 2 1

1 1

( 1) 21 1
1 2 1

=

... ... ... ...

jn n i n i

IP i i i ij j i ij jk k
i i j i j k

n i l

i ij lh h n n n
i n j n h

r r r

r r r r

θ α δ α δ α δ

α δ α δ

−− −

= = = = = =

− −

−
= − = − =

+ +

+ + +

∑ ∑∑ ∑∑∑

∑ ∑ ∑

                (10) 244 

can be estimated by the weighted regressions in equation (8) and (9) by substituting *Ψ  for 245 

Ψ , where 246 
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. 247 

The causal effect pqr  from pM  to ( ), , 1,2,..., ,qM p q n p q∈ ≠  can be identified. Details of 248 

theoretical derivation are presented in S1 Appendix, section 3. In practice, we can use 249 

Mendelian randomization to justify the causal direction of any two mediators. Then we 250 

combine the results of causal relationships of any two mediators to obtain the ordering of 251 

multiple mediators. 252 

3 Application 253 

We attempted to reveal the causal mechanism from body mass index (BMI) to cardiovascular 254 

disease (CVD) as an illustrative example. CVD, which includes coronary heart disease, stroke 255 

and heart failure, is the leading cause of death worldwide [29]. High BMI is an important risk 256 

factor of CVD [30]. Furthermore, dyslipidaemia in obesity is characterized by increased 257 

levels of very low density lipoprotein (VLDL) cholesterol, triacylglycerols (TG) and total 258 

cholesterol (TC), and lower high density lipoprotein (HDL) cholesterol levels levels [31]. 259 
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Previous studies suggested that a variety of alterations in cardiac structure and function occur 260 

in the individual as adipose tissue accumulates excessively [32]. However, Van Gaal LF et al. 261 

found little evidence that LDL cholesterol is enhanced in obesity [31]. Hence, we aim to 262 

examine whether BMI affects CVD through its influence on HDL and TG. 263 

    Genetic associations with BMI in 694,649 participants from European were obtained 264 

from the Genetic Investigation of ANthropometric Traits (GIANT) [33]. Genetic associations 265 

with TG and HDL in 188,577 participants were obtained from the Global Lipids Genetics 266 

Consortium (GLGC) [34]. Genetic associations with CVD risk in 22,233 cases and 64,762 267 

controls of European descent were obtained from the CARDIoGRAMplusC4D Consortium 268 

[35]. We identified 285 single-nucleotide polymorphisms (SNPs) associated with BMI as a 269 

genetic instrument with F statistics greater than 10 (explaining 2.89% of exposure variance), 270 

by extracting the effect sizes for SNP associated with BMI ( 85 10P −≤ × ) from summary 271 

statistics. As the extracted SNPs for BMI might be correlated with each other, we pruned the 272 

variants by linkage disequilibrium (LD) ( 2 0.01r < , clumping window = 10000 kbp). Then 273 

we tested whether these SNPs violate the exclusion restriction assumption. Firstly we plotted 274 

funnel plot (Figure 3) and found three SNPs were outliers. After removing them, the funnel 275 

plots were more symmetric. The Egger test revealed no significant effects of the mediators, 276 

HDL (P = 0.204), TG (P = 0.349) and the outcome CVD (P = 0.071). These results indicate 277 

the absence of directional pleiotropy. Details of the SNPs are listed in S1 Appendix. 278 

Firstly, we performed a single mediator analysis for the mediators (HDL and TG) via 279 
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PSE-MR. Table 1 suggests TG and HDL are mediators in the causal pathway from BMI to 280 

CVD. Then we performed PSE-MR analysis with multiple mediators to test whether BMI has 281 

indirect effects on CVD risk through HDL and TG. Although a higher BMI increase the risk 282 

of CVD, no significant direct effect was obtained after adjusting for genetic associations with 283 

TG and HDL. Indirect effects through TG and HDL explained a large proportion of causal 284 

effect from BMI to CVD, and their total mediation proportion (MP) is 93.44%. In conclusion, 285 

three pathways exist from BMI to CVD: BMI→HDL→CVD (MP: 27.1% [17.1, 38.2]), BMI→286 

TG→CVD (MP: 24.9% [16.3, 34.7]) and BMI→TG→HDL→CVD (MP: 23.7% [2.5, 49.3]). 287 

These results (Figure 4) are consistent with results from a pooled analysis of 97 prospective 288 

cohorts with 1.8 million participants [37] and previously described biological mechanisms 289 

[36, 38]. 290 

4 Simulation 291 

4.1 Settings 292 

To validate the utility of the PSE-MR method for estimating PSEs, we designed six scenarios: 293 

when Assumption III is satisfied (PSE-IVW) or violated (PSE-Egger) for settings with one 294 

mediator (simulations A, B), multiple causally non-ordered (simulation C, D) and multiple 295 

causally ordered mediators (simulation E, F). 296 

    We generated data on 25 genetic variants, an exposure (X), mediators (M), and outcome 297 

(Y) for 20,000 individuals. Briefly, we specified different values of the parameters Dθ  (the 298 

direct effect of X on Y) and Iθ  (the indirect effect of X on M) to observe performances of 299 
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our methods. According to the specification of Dθ  and Iθ , simulations from A to F included 300 

four settings: no direct effect, no indirect effect, a direct effect along with a directionally 301 

concordant indirect effect, and a direct effect and a directionally discordant indirect effect. 302 

For PSE-Egger, the data were simulated to consider the following three cases: 303 

Case (a): Balanced pleiotropy, InSIDE assumption satisfied; 304 

Case (b): Directional pleiotropy, InSIDE assumption satisfied; 305 

Case (c): Directional pleiotropy, InSIDE assumption not satisfied. 306 

We also performed additional simulations for sensitivity analyses, where bidirectional 307 

causal effects between the exposure and mediators, population homogeneity assumption is 308 

violated, the causal order is misspecified and one of the mediators is missing. In addition, we 309 

also consider the performance of PSE-MR when the exposure and outcome are time varying. 310 

We also find the optimal number of genetic variants when we consider multiple mediators. 311 

Details of the simulation are presented in S2 Appendix. 312 

We used the following metrics to evaluate performance of our methods: mean bias, 313 

standard errors (SE), mean square error (MSE), type I error rate for a null causal effect and 314 

empirical power to detect a non-null effect (i.e., the proportion of confidence intervals 315 

excluding zero). 316 

4.2 Results 317 

We varied the sample size, the number of instrumental variables, and simulated four scenarios 318 

for different sets of parameter values. We found that causal estimates of direct and indirect 319 
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effects were unbiased with good Type I error properties. As the sample size increased, bias 320 

and standard errors decreased, while power improved. Higher power and lower bias were 321 

observed as the number of instrumental variables increased (see S2 Appendix, Section 1, 3 322 

and 5). 323 

For two non-ordered mediators, PSE-IVW showed good performance of in standard MR 324 

when estimating the total, direct and indirect effects as well as three PSEs (Table 2). As the 325 

sample size and the number of genetic variants increased, the bias was smaller and the type I 326 

error was more stable at approximately 0.05 (see S2 Appendix, Section 3). The performance 327 

of PSE-MR based on IVW and MR-Egger with two non-ordered mediators in Case (a) and 328 

(b), are listed in eTables 9 to12 (see S2 Appendix, section 4). In Case (a), we observed that 329 

the bias was close to zero and Type I error rates was around 0.05 in PSE-MR. PSE-Egger had 330 

less bias and more stable Type I error rates than IVW when directional pleiotropy existed in 331 

at least one pathway from G to Y (Case (b)). MR-Egger performed better than IVW in term of 332 

bias, even when the InSIDE assumption was not satisfied (Case (c)). When the pleiotropic 333 

effects through confounders (violating the InSIDE assumption) were 2.5 times larger than the 334 

direct pleiotropic effects (satisfying InSIDE), estimates from PSE-Egger were much less 335 

biased and rejection rates of the causal null hypothesis were much closer to the nominal 5% 336 

rate than those from PSE-IVW were. In all cases, PSE-Egger had smaller MSE and more 337 

stable Type I error rates (0.05) than PSE-IVW when the PSE was zero. Estimators of indirect 338 

effects based on product method had more stable Type I error rates (0.05) than those based on 339 
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the difference method. Results for the two ordered multiple mediators were similar to those of 340 

two non-ordered mediators (Table 3 and eTables 17-24 in S2 Appendix, section 6). In 341 

addition, the magnitude of qpr  does not influence the performances of PSE-MR. Details are 342 

presented in eTable 15 (see S2 Appendix, section 5). 343 

The estimation of direct effect is unbiased regardless of whether bidirectional causal 344 

effects between exposure and mediators exist, or the causal order is misspecified, though the 345 

estimation of PSEs is biased. Heterogeneous populations sometimes introduce bias of causal 346 

estimation for non-ordered and ordered mediators. Note that if we are missing upstream 347 

mediators (e.g. M1), M1 is the confounder of M2 and Y and it is affected by X (i.e. X–induced 348 

unmeasured confounder of M2 and Y). Thus the assumption of cross-world independence is 349 

violated. In addition, if we can obtain the information in each time points, PSE-MR can be 350 

applied into time varying exposure and mediators and it can also deal with the bi-directional 351 

relationship between exposure and mediators (see S1 Appendix, section 7-13). Performance 352 

of PSE-MR with different number of SNPs and mediators are listed in the eTable 41-42 and 353 

eFigure 9-10. 354 

5 Discussion 355 

In this paper, we develop a method PSE-MR to identify and estimate PSEs from an exposure 356 

on an outcome through the mediator(s) using MR when there are unmeasured confounders 357 

among the exposure, mediators and the outcome. We extend PSE-MR from a single mediator 358 

setting to the multiple mediator setting for both causally ordered and non-ordered mediators, 359 
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and outline the assumptions required to obtain causal effect. PSE-IVW can be used to explore 360 

the role of multiple mediators in the causal pathways between the exposure and outcome. The 361 

PSE-Egger can be viewed as a sensitivity analysis to provide robustness against both 362 

measured and unmeasured pleiotropy and to strengthen the evidence from the PSE-IVW 363 

analysis. 364 

PSE-MR can estimate the direct effects between the exposure and outcome and indirect 365 

effects through mediators when the sequential ignorability assumption [39] in mediation 366 

analyses is relaxed. We compared the assumptions of PSE-MR with traditional mediation 367 

analysis methods in Table 4. Our method requires other independent assumptions. While 368 

Assumptions Ⅰ and Ⅲ are testable, there is no accepted method to test for the Assumption Ⅱ. 369 

Several sensitivity analyses can be performed to examine this assumption, such as the 370 

E-value [28] and heterogeneity test. The validity of multiple mediators PSE-Egger and its 371 

ability to estimate consistent causal effects rely on the InSIDE assumption [21] being 372 

satisfied. When the direct genetic associations with the exposure are independent of the direct 373 

genetic associations with mediators and outcome, the InSIDE assumption is satisfied. 374 

Whereas the InSIDE assumption is plausible in some cases, it sometimes will not always be 375 

valid. For example, heterogeneous populations and misspecification of the multiple mediators 376 

would bias the mediation effect estimation. When kjγ  is not independent from each other or 377 

0 jγ  is not independent with kjγ  for k = 1,...,n (e.g. we are missing one of multiple 378 

mediators), the direct effect is downward-biased and the indirect effect is upward-biased. 379 
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According to our simulation, we find that PSE-IVW is more robust in estimating causal effect 380 

than PSE-Egger for heterogeneous populations and misspecified multiple mediators. 381 

However, PSE-Egger can be applied to test directional pleiotropy, and it can give less biased 382 

estimates when the InSIDE assumption is violated. 383 

For the multiple causally ordered mediator settings, PSE-MR can be widely used in 384 

time-varying exposure and mediators. Labrecque and Swanson (2019) [40] suggested that if 385 

the genetic associations of the exposure and mediators were time-varying, the lifetime effect 386 

estimate could be biased if we obtained the information of the exposure and mediators only at 387 

one time point. However, if we can obtain the information of the exposure and mediators at 388 

different time points, PSE-MR can provide unbiased estimates of the lifetime effects of the 389 

exposure and mediators on the outcome and other PSEs (see S2 Appendix, section 9). Thus 390 

PSE-MR can estimate each PSEs, including the causal relationships (which may potentially 391 

be bi-directional) in a non-experimental setting. 392 

    In conclusion, we propose a method of causal mediation analysis with causally ordered 393 

and non-ordered mediators based on summarized genetic data and provides a new perspective 394 

for mediation analysis.  395 
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Table 1. Causal effect of each pathway between BMI and CVD 

 

IVW MR-Egger 

OR[95% CI] Power OR[95% CI] Power 

Total effect 1.216[1.034,1.431] 1 1.772[1.208,2.600] 1 

Direct effect 1.013[0.850,1.208] - 1.391[0.945,2.048] - 

BMI→HDL→CVD 1.054[1.034,1.101] 0.97 1.097[1.040,1.125] 1 

BMI→TG→CVD 1.050[1.033,1.096] 0.97 1.068[1.027,1.137] 1 

BMI→TG→HDL→CVD 1.047[1.005,1.101] 0.7 1.052[1.000,1.125] 0.8 

BMI: body mass index; CVD: cardiovascular disease; TG: triacylglycerols; HDL: high density lipoprotein; LDL: low density lipoprotein. 
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Table 2. Simulation of PSE-IVW with two non-ordered mediators in standard MR 

True Estimates MSE Power/Type I error 

TE DE IE IE1 IE2 TE DE IE_d IE_p IE1 IE2 TE DE IE_d IE_p IE1 IE2 TE DE IE_d IE_p IE1 IE2 

1.6 0.8 0.8 0.5 0.3 1.61 0.75 0.85 0.85 0.53 0.32 0.00 0.00 0.01 0.01 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.6 0.8 -0.2 -0.5 0.3 0.60 0.75 -0.15 -0.15 -0.47 0.32 0.00 0.00 0.01 0.01 0.00 0.00 1.00 1.00 0.26 0.29 1.00 1.00 

0.7 0.5 0.2 0.5 -0.3 0.70 0.45 0.25 0.25 0.54 -0.29 0.00 0.00 0.01 0.01 0.00 0.00 1.00 1.00 0.74 0.75 1.00 1.00 

-0.3 0.5 -0.8 -0.5 -0.3 -0.30 0.46 -0.76 -0.76 -0.47 -0.28 0.00 0.00 0.01 0.01 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

0 -0.8 0.8 0.5 0.3 0.01 -0.84 0.85 0.85 0.53 0.32 0.01 0.00 0.01 0.01 0.00 0.00 0.07 1.00 1.00 1.00 1.00 1.00 

-1.6 -0.8 -0.8 -0.5 -0.3 -1.60 -0.85 -0.76 -0.76 -0.47 -0.29 0.00 0.00 0.01 0.01 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.8 0 0.8 0.5 0.3 0.81 -0.04 0.85 0.85 0.53 0.32 0.00 0.00 0.01 0.01 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 

1.3 0.8 0.5 0.5 0 1.31 0.75 0.55 0.55 0.54 0.02 0.00 0.00 0.01 0.01 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 

1.3 0.8 0.5 0.5 0 1.31 0.77 0.54 0.54 0.54 0.00 0.00 0.00 0.01 0.01 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.07 

0.8 0.8 0 0 0 0.80 0.75 0.05 0.05 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.01 0.02 0.01 0.01 

TE: total effect; DE: direct effect; IE: indirect effect; IE1: X→M1→Y; IE2: X→M2→Y; IE_d: indirect effect calculated by difference method; IE_p: indirect effect calculated by product 

method. 
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Table 3. Simulation of PSE-IVW with two ordered mediators in standard MR 

True Estimates MSE Power/Type I error 

TE DE IE IE1 IE2 IE3 TE DE IE_d IE_p IE1 IE2 IE3 TE DE IE_d IE_p IE1 IE2 IE3 TE DE IE_d IE_p IE1 IE2 IE3 

1.8 0.8 1 0.5 0.3 0.2 1.81 0.75 1.06 1.06 0.52 0.28 0.25 0.01 0.00 0.01 0.01 0.00 0.02 0.02 1.00 1.00 1.00 1.00 0.97 0.64 0.62 

0.8 0.8 0 -0.5 0.3 0.2 0.81 0.75 0.05 0.05 -0.48 0.29 0.24 0.00 0.00 0.01 0.01 0.00 0.02 0.02 1.00 1.00 0.01 0.00 1.00 0.70 0.60 

1.2 0.8 0.4 0.5 -0.3 0.2 1.20 0.75 0.45 0.45 0.54 -0.26 0.16 0.01 0.00 0.01 0.01 0.01 0.01 0.01 1.00 1.00 0.98 0.72 1.00 0.69 0.41 

0.2 0.8 -0.6 -0.5 -0.3 0.2 0.20 0.76 -0.56 -0.56 -0.46 -0.25 0.16 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.97 1.00 1.00 1.00 1.00 0.68 0.38 

0.2 -0.8 1 0.5 0.3 0.2 0.21 -0.84 1.05 1.06 0.52 0.29 0.25 0.01 0.00 0.01 0.01 0.00 0.02 0.02 0.71 1.00 1.00 1.00 1.00 0.67 0.62 

-1.8 -0.8 -1 -0.5 -0.3 -0.2 -1.80 -0.85 -0.96 -0.96 -0.48 -0.25 -0.23 0.01 0.00 0.01 0.01 0.00 0.02 0.01 1.00 1.00 1.00 1.00 1.00 0.66 0.64 

1 0 1 0.5 0.3 0.2 1.01 -0.05 1.05 1.05 0.52 0.29 0.25 0.01 0.00 0.01 0.01 0.00 0.02 0.02 1.00 0.00 1.00 1.00 0.99 0.67 0.61 

1.3 0.8 0.5 0 0.3 0.2 1.31 0.75 0.56 0.56 0.02 0.29 0.25 0.00 0.00 0.01 0.01 0.00 0.02 0.02 1.00 1.00 1.00 0.89 0.00 0.67 0.62 

1.5 0.8 0.7 0.5 0 0.2 1.51 0.77 0.74 0.74 0.52 -0.03 0.25 0.01 0.00 0.01 0.01 0.00 0.02 0.02 1.00 1.00 1.00 0.97 0.99 0.07 0.61 

1 0.8 0.2 0 0 0.2 1.01 0.77 0.24 0.24 0.02 -0.03 0.25 0.00 0.00 0.01 0.01 0.00 0.02 0.02 1.00 1.00 0.41 0.01 0.00 0.08 0.61 

0 -1 1 0.5 0.3 0.2 0.01 -1.05 1.06 1.06 0.52 0.29 0.25 0.01 0.00 0.01 0.01 0.00 0.02 0.02 0.05 1.00 1.00 1.00 1.00 0.69 0.62 

TE: total effect; DE: direct effect; IE: indirect effect; IE1: X→M1→Y; IE2: X→M2→Y; IE3: X→M1→M2→Y; IE_d: indirect effect calculated by difference method; IE_p: indirect effect 

calculated by product method. 
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Table 4. Comparison of the assumption in PSE-MR and typical causal mediation analysis 

Methods PSE-MR Typical causal mediation analysis Solution for violating assumptions 

Common 

(1) Consistency assumption: M(x)=M and Y(x)=Y if X=x; Y(x,m)=Y if X=x, M=m.  

(2) Composition assumption: Y(x)=Y(x,M(x)) if X=x.  

(3) A cross-world independence assumption: ( , ) ( *) |Y x m M x C⊥  for all (x, x*, m). [10] [44] [45] [51] 

(4) There is no additive interaction of the exposure and the mediators on the outcome (Y). [10] [46] [48] [49] 

(5) Linearity. [10] [47] 

Different 

(1) The IV jG  is associated with the 

exposure X but independent of all the 

unmeasured confounders. 

(1) No-unmeasured confounders of the X-Y 

relation, that is, ( , ) |Y x m X C⊥  for all (x,m). 

[10] [15] 

(2) The Exclusion restriction assumption 

or the InSIDE assumption. 

(2) No-unmeasured confounders of the M-Y 

relation, that is, ( , ) ( ) | ,Y x m M x X x C⊥ =  

for all (x,m). 

[10] [11] [12] [13] [14] [15][16] 

(3) There is no additive interaction of the 

exposure or the mediators and confounders 

on the mediator (M) and the outcome (Y). 

(3) No-unmeasured confounders of the X-M 

relation, that is, ( ) |M x X C⊥  for all x. 

[10] [15] 

(4) Data for exposure, mediators and 

outcome can from different datasets with 

homogeneous population. 

(4) Data for exposure, mediators and outcome 

must from the same dataset. 

 

 (5) Exposure, mediators and confounders not 

vary with time. 

[51] [52] [53] 
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Figure legends 

Figure 1. Three types of settings with two mediators, M1 and M2 are shown in (A) where M1 

is independent of M2; (B) where M1 is related to M2, but not causally; and (C) where M1 is 

causally related to M2 (causally-ordered mediators). Graphical diagrams for PSE-MR are 

given in settings with one mediator (D), two non-ordered mediators (E), and two ordered 

mediators (F). X: the exposure, M1 and M2: two mediators, Y: outcome, G: instrumental 

variables (genetic variants). 

Figure 2. Graphical diagrams of relationships between the exposure (X), causally 

non-ordered mediators (M1, …, Mn), outcome (Y), and instrumental variables (G), which 

omits the confounders among X, M and Y, are shown as analyzed with (A) PSE-IVW and (B) 

PSE-Egger. Graphical diagrams of relationships between exposure (X), causally ordered 

mediators (M1, …, Mn), outcome (Y), and instrumental variables (G), which omits the 

confounders (U) among X, M1, …, Mn and Y are shown, as analyzed with (C) PSE-IVW and 

(D) PSE-Egger. 

Figure 3. Funnel plots before (A-D) and after (E-H) removing outliers. 

Figure 4. Diagrams of the causal pathway from BMI to CVD. BMI, body mass index; CVD, 

cardiovascular disease; TG, triacylglycerol; HDL, high-density lipoprotein. 

Supplementary Digital Content 

S1 Appendix. Supplemental methods. 

S2 Appendix. Supplemental simulations. 
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