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Abstract

Early prediction of hemodynamic shock in the ICU can save lives. Several studies have

leveraged a combination of vitals, lab investigations, and clinical data to construct early

warning systems for shock. However, these have a limited potential of generalization to

diverse settings due to reliance on non-real-time data. Monitoring data from vitals can

provide an early real-time prediction of Hemodynamic shock which can precede the clinical

diagnosis to guide early therapy decisions. Generalization across age and geographical

context is an unaddressed challenge. In this retrospective observational study, we built

real-time shock prediction models generalized across age groups (adult and pediatric),

ICU-types, and geographies. We developed generalizable models on publicly available eICU

dataset, which is externally validated on cohorts derived from more than 0.23 million

patient-hours of vitals data from a pediatric ICU in New Delhi and 1 million patient-hours

vitals data from the adult ICU MIMIC-III database. Out of 208 hospitals data of eICU, we

found 156 eligible for cohort building and split this data hospital-wise in a 5 fold

training-validation-test set. Our model predicted hemodynamic shock 8 hours in advance
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with AUROC of 86 %( SD= 1.4) and AUPRC of 93% (SD =1.2). Our models identified 92% of all

the shock events more than 8 hours in advance. Upon external validation on the MIMIC-III

cohort, it achieved an AUROC of 87 %( SD =1.8), AUPRC 92 %( SD=1.6). External validation of

our models on New Delhi’s Pediatric SafeICU data achieved an AUROC of 87 %( SD =4)

AUPRC 91% (SD=3). Therefore, our models can guide early therapy decisions to save lives,

reduce false alarms and address the generalizability gap. Our data and algorithms are

publicly available as a pre-configured Docker environment at

https://github.com/SAFE-ICU/ShoQPred.

Keywords: Hemodynamic Shock, Intensive Care, Deep Learning, Predictive Modeling,

Software

Introduction

Shock is one of the most common complications in patients admitted to the ICUs with

incidence as high as 33%1. Hypovolemic, cardiogenic and septic shock are all characterized

by altered hemodynamics2, hence also referred as hemodynamic shock (HS). The mortality

rate in patients who develop shock in ICU is as high as 34% in developing countries3,

triggered by a cascade of poor blood perfusion, inadequate oxygen availability to vital organs

and multiple organ failure. Early identification is critical for aggressive management4,

improved patient outcomes and mortality reduction5,6,7,8 However a delay in early

identification can compound the risk of mortality and organ failure. These delays can be

attributed to a few observations as follows: firstly, there is a plethora of information being

generated inside an ICU. For physicians and nurses to observe the data on a real-time basis is

overwhelming. Information overload has worsened the physician’s workload, contributed

towards burnout and increased the chances of errors9. Studies have found an association

between burnout and jeopardised care10,11,12. Thus, removing the risk of informational

overload using Machine learning based assistive tailored models can prevent the risk of
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suboptimal care9. Patient care also gets compromised as a result of poor strength of nurses or

ICU staff. Studies have found lowering the bed-to-nurse ratio or ICU staffing can result in

poor patient outcomes13,14. Therefore, the artificial intelligence based algorithm can help in

monitoring and prioritizing the deteriorating patients. It's very important to reduce the

information burden by building high performance decision models which can recognise the

distinguishing patterns to assist the ICU staff with actionable and interpretable insights for

decision making. Hemodynamic instability is one of the initial signs related to manifestation

of further deterioration, therefore, we built a decision support system which can produce

early warning scores with high recall and precision.

Secondly, development of models for early warning monitoring support systems should have

feasibility of deployment to the same setting as well to other settings. Literature is full of

models relying upon information from various sources and tested retrospectively 15,16,17,18 ,

their prospective deployment to the same other settings seems to be suspicious. There is an

underlying hospital to hospital variability in data integration and collection which hinders the

deployability and hence the performance. Thus, feasibility of model deployment should be

taken care of well during the model development.

In this work, we developed real-time models for early identification of shock using high

resolution vitals time series data using hand-engineered time-series features, machine

learning and deep learning approaches. Vitals time-series are routinely generated at a much

higher resolution than hourly nursing notes, hence have the potential to forecast critical

outcomes19 20 21 . Our Safe-ICU data warehouse22 with more than 0.23 million hours of patient

physiological time-series vitals data allowed us to validate on pediatric age groups. 

High resolution vitals time-series data has shown potential for multicenter generalization21

but a very few studies have been conducted to evaluate generalizability of AI models for the

ICU15,21,23. In our knowledge, none of the studies evaluated the potential of models learnt on
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the adult population and generalized to pediatric one. One of the key challenges to do so is

the dependency on a large set of clinical measurements and difference in age based criteria.

These challenges can be overcome by using high resolution physiological vitals time-series

data generated through monitoring sensors and transfer learning21, 24 .

In this work, we reported machine learning based prediction models which take readily

available time-series vitals data to forecast shock status 0 to 8 hour ahead of its onset. We do

this by using hand engineered time-series features derived from the raw signals to build these

models (Figure 1). There is a high percentage of patients who developed shock in the ICU.

We built cohorts around patients who developed shock after 7 hours of ICU admission.

Artificial intelligence algorithms have the potential to generalize and scale therefore we

evaluated our models for their ability to generalize on MIMIC-III adult ICU and SafeICU

pediatric ICU data using transfer learning approach. Thus, the aim of our work was to utilize

readily available ICU time-series data to build robust parsimonious predictive models for the

onset of Hemodynamic shock and evaluate the potential for generalization of these models to

another setting.  
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Figure 1: Summary of the pipeline for generalizing the prediction of hemodynamic shock.

Step 1 shows Cohort Building. Step 2 shows the model building for the prediction of shock 

0-8 hours in advance and evaluation. Step 3 shows the generalization of learned models on

MIMIC-III data and Indian settings's SafeICU data.
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Results

The vitals periodic data of eICU data was pre-processed according to inclusion and exclusion

criteria, resulting in 16,246 admissions (Supplementary figure 1a). The median length of stay

of patients in the extracted cohort was 3.1 days. The median length of stay with

hemodynamic shock was found to be 15 hours. As expected, our data show that mortality is

positively correlated with the fraction of length of stay with hemodynamic shock (pearson’s

correlation r = 0.89, p = 4.8*10-4) (Supplementary figure 2). MIMIC-III and SafeICU (New

Delhi) data served as external validation sets for adult and pediatric settings respectively.

MIMIC-III matched subset contains 22,247 numeric data files corresponding to 10,269

subject ids with vital time-series data. Subject-wise data is segregated for 17,294 ICU stays

using ICU in-time and out-time information from the ICUSTAY table (Supplementary figure

1b). Inclusion and exclusion criteria and case-control cohort extraction criteria were the same

as eICU (Supplementary figure 1b, 1c). The mean and standard deviation values of the

physiological variables used in the modeling are listed in table1.

Model development and performance on eICU data.

We trained and tested models on the eICU's hospital ID-wise 5 fold data splits. We found the

Gradient boosting classifier model as the best performing model (Supplementary figure 2).

We termed our final model hemodynamic shock early warning system (hsEWS), which

generates prediction every 5 minutes and interpretable SHAP values for the observational

time window. Depending upon the presence and absence of arterial blood pressure, we

created two types of models, called hsEWS-invasive and hsEWS-non-invasive, respectively.

The hsEWS-invasive model utilizes Arterial blood pressures (Systolic and Diastolic)

achieved an AUROC of 86% and AUPRC of 93% (figure2 a. b.). hsEWS was found to

identify 92% of all the hemodynamic shock events with an overall precision of 81% (figure2
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b). The hsEWS-non-invasive model achieved an AUPRC of 90% and AUROC of 80%, and

the overall recall was 90% with a precision of 79%. Therefore, for the subjects for whom

arterial blood pressure is not being measured, a high recall hsEWS-non-invasive model can

be applied. The model's performance declined with increasing lead-time; however, the recall

remained above 89% for all lead times.

Figure2: a.) AUROC for the prediction of Hemodynamic shock in the next 5 min to 8 hours.

b.) AUPRC for the prediction of Hemodynamic shock in the next 5min to 8 hours. c.) Model

performance for different lead time or time before the event. d.) Model performance for

different age groups, eICU data contain adult age groups. e.) Model performance in different

unit stay types (CCU – Coronary care unit, CSICU- Cardiac surgery ICU, CTICU-

Cardiothoracic ICU, MICU-Medical ICU, SICU- Surgical ICU). f.) Recall of the model for

each time-interval shown on the x-axis for the prediction made during different lengths of

stays in the ICU.
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Model performance for different age groups, unit types and time-since

admission.

The model performance remained consistent for different age groups with a slight decline in

higher age groups above 60. However, AUROC increased for age groups above 60, and the

model recall remained above 90% with precision above 79% for all age groups (figure 2d.).

We also evaluated performance for different types of ICU stays unit types. All the ICU types

were found to have recall above 90% except for Cardiac Surgery ICU and Neurological ICU,

the precision among these ICUs also declined below overall precision(figure 2e.). We also

observed that recall of the model increases with length of stay, and the model started

predicting the event with 90% recall after the 13th hour of stay.

Interpreting the Feature Contribution in the Model Performance on test sets.

A total of 3,970 hand-engineered time-series features were narrowed down to 2,120

important predictors using Boruta. This includes 51 classes of features listed in

Supplementary Table S1. After developing the models, we computed SHAP values for

interpreting the feature contribution on test predictions. We plotted the summary SHAP

values of the top 15 contributors among all in figure 3a. The heart rate minimum and arterial

systolic blood pressure minimum were found as the top predictors. The heart-rate minimum is

positively correlated to its SHAP values (figure3.b). While the arterial systolic blood pressure

minimum is negatively correlated to its SHAP values (figure 3c), we also found that

aggregated linear trend was positively correlated to SHAP values, indicating an increased

respiratory rate has an influence on the prediction of future hemodynamic shock. We also

found features in the frequency domain using continuous wavelet transform (Cwt)

coefficients, absolute energy, quintiles, mean, autocorrelation, sum of recurring values, as

important, complete list of selected features is presented in the Supplementary Table S1.
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Figure3 a.) SHAP values of top 15 hand engineered time-series features (in descending

order) derived from the 5 fold test set on eICU data. Violin plot shows the distribution of

SHAP values, color map represents the feature value from low to high b.) A scatter plot of

Heart rate minimum and corresponding SHAP values, showing positive correlation between

the two. c.) A scatter plot of Arterial Systolic Blood pressure minimum and corresponding

SHAP values, showing negative correlation d.) A scatter plot of Patient age and

corresponding SHAP values, showing negative correlation.

Performance of external validation of hsEWS model.

For external validation, we used two datasets, MIMIC-III (adult age groups) and SafeICU

data (pediatric age group). We found that with retraining on the new settings data, both in the

case of MIMIC and SafeICU results improved over standalone performance and direct

testing. With retraining hsEWS achieved an AUPRC of 93% on MIMIC (figure 4.a) and 91%

on SafeICU (figure 4.b) and an AUROC of 87% both on MIMC and SafeICU (figure4 c, d).
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With direct testing (without retraining), hsEWS achieved an AUC of 78% and AUROC of

89% on MIMIC data. However, it performed poorly for direct testing on SafeICU pediatric

data (figure 3b, 3d). As criteria for the pediatric hemodynamic shock is based on the

age-specific cutoff, which differs from the adult population criteria which could be one of the

reasons for the poor performance. However, retraining of hsEWS on SafeICU pediatric

training data resulted in an AUROC of 87% and AUPRC of 91% on 5 fold test-set (figure

3d). Overall, model recall remained consistent for all the lead-time, except for retraining on

MIMIC, in which a decline in the recall is seen with lead-time (figure 4e). However, the

retraining improved the precision on both MIMIC and SafeICU data cohorts by 10-15%, as

shown in figure 4f.
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Figure 4 a.) AUPRC on MIMIC data for standalone, retraining and without retraining (w/o

retrain) of hsEWS model. b.) AUPRC on SafeICU data for standalone, retraining and without

retraining (w/o retrain) of hsEWS model. c.) AUROC on MIMIC data for standalone,

retraining and without retraining (w/o retrain) of hsEWS model. d.) AUPRC on SafeICU data
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for standalone, retraining and without retraining (w/o retrain) of hsEWS model e.) Recall of

retrained and without retrained hsEWS model on SafeICU and MIMIC data. e.) Precision of

retrained and without retrained hsEWS model on SafeICU and MIMIC data.

Performance of hsEWS retrained model on different age groups, new setting’s

ICU types, and with time since admission.

hsEWS retrained on MIMIC is tested on MIMIC’s test-sets and hsEWS retrained on

SafeICU is tested on SafeICU test-sets. Models showed a consistent recall above 90% on all

age groups with a precision greater than 81% except for the 30-40 age group. Models showed

a consistently higher performance recall across all ICU types (figure 5b.), where precision

remained 80% and above across all ICU types. In the MIMIC cohort, performance with time

since admission reached an interval recall above 90% from the 9th hour of stay, while in

SafeICU, it remained consistently high with a recall of 100% from the beginning.
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Figure5: a.) Model performance parameters for different age groups (SafeICU -pediatric age

group is embedded along with MIMIC-III (Adult age groups) data) b.) Performance of

retrained hsEWS model in different first care units. c.) hsEWS retrained on MIMIC data,

model Recall for “time since admission” d.) hsEWS retrained on SafeICU data, model Recall

for “time since admission”

Discussion  

Development of machine learning based early warning systems for ICUs is not new15,16,17,18.

However, a majority of these models have not made their way to successful deployments in

the ICUs due to challenges of generalizability, interpretability and workflow integration25 26.

Further, it is generally expected that deep learning will outperform handcrafted features given

sufficiently large data. Our research addresses these two challenges and shows for the first

time that hemodynamic shock can be predicted in ICUs with models trained on patients with

completely different demographic, sociocultural and geographic factors. Further our research

opens the way to building interpretable models using handcrafted features which

outperformed state of the art deep learning models in predicting shock.

Clinically, the correlation between increased mortality in late onset shock is indicative of a

global under-recognition of this major killer in the ICUs despite reports suggesting a higher

odds of mortality for late onset of shock27,28. We also found that a 10% increase in the time

fraction of ICU stay spent in hemodynamic shock led to an estimated 6% increase in

mortality rate. Our model Recall was found to increase for the late onset of shock (Figure 2e,

5c, 5d), so our model can reduce the mortality rate associated with late onset of

hemodynamic shock.

In this work, we predicted hemodynamic shock using hand-engineered time-series features

derived from 5 physiological time-series. The choice of these time-series was made due to

their availability at bedside across different age groups, geographies and resource limiting
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settings. It is often seen that many subjects are not monitored for arterial blood pressure,

therefore many models are not generalizable to those subjects. We therefore also trained a

non-invasive hsEWS model which does not require invasive blood pressure measurements.

Every hour of delays in the detection of shock contributes to the increased risk of mortality in

patients admitted to the ICU6, 8. A reliance on a large number of variables required to produce

results hinders the model transfer for generalizability. In literature, a model with 36 variables

to predict the onset of shock with an AUC of 82% has been previously reported17. Our model

on pediatric ICU surpassed the performance reported in literature by 5% with a reduced

number of variables required. These models have limitations of collecting a large number of

inputs which is not feasible for every minute resolution. We in this work used the readily

available data to combat the issues related to large numbers of inputs. Our model uses the 5

vitals signals data which is routinely monitored electronically. We have made use of

time-series of the patient, which ensures to supply patterns in the patient's physiology over a

window of time unlike a single time-point value. The hand-engineered time-series features

were computed to represent the dynamics of the patient physiology described in

Supplementary Table1. 

We tested our model across age-groups, ICU-types for different hospitals across the USA and

a pediatric ICU in India. Our assessment showed a consistent performance across these

groups. We observed that with increase in the lead time the performance decreases, however

our overall recall is 92% at prevalence of 83%.

In recent years, transfer learning has assumed an increasing importance especially in the low

data regimes29, 21, 30. We transferred the hsEWS model to MIMIC-3 setting and SafeICU

setting and show that transferring models trained on eICU data to MIMIC and SafeICU

helped improve the overall AUC and precision while maintaining an overall higher recall

above 90% (figure 5e and 5f).
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Threshold computation was done to account the population prevalence. Our model can be

generalized by learning new population based probability thresholds.

There are few limitations of our study. Our models are developed and tested on the

retrospective data and there is a need for testing the models prospectively. We have created an

easy to use docker container which works well with streaming real-time data from

monitoring. All the data were taken from a running ICU therefore almost all of the patients

were receiving some form of medication and might have come with a history of shock which

is not taken into account. However, this does not affect the prediction potential of our model

since we made sure to include only subjects who developed shock in the unit. Also the

training window or observational and lead-time data are free from any incidence of

hemodynamic shock.

Finally, we believe that the future directions should synergize hand-engineered and deep

learning based predictions for improving patient outcomes. This will especially hold true for

multimodal data including signals, text, tabular and imaging data. While many handcrafted

features in our work are straightforward to interpret, others may still need research for

clinical interpretation. Here, we have offset this limitation by using Shapley Additive

exPlanation (SHAP) value based model interpretation where we have computed SHAP values

corresponding to each feature. These values can represent the influence of the feature on the

prediction.
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Methods

Dataset description & preprocessing

This study utilized two datasets available in the public domain along with our pediatric data

resource (SAFE-ICU). The eICU data31 is a publicly available data containing more than 800

million observations for 1,92,751 patient admissions to 208 hospitals across the USA. It

contains 12.2 million patient hours of vitals periodic data at the 5-minute resolution. Our

inclusion criteria specified ICU stay >= 7.5 hours, absence of shock within the first seven

hours of ICU admission, less than 10% missingness of data and presence of arterial blood

pressure measurements. The second dataset “Medical Information Mart for Intensive Care

(MIMIC)”32. MIMIC dataset hosted by physionet.org website as a publicly available data

resource. Datasets are de-identified and available for analysis as per the approval by MIT

institutional review boards (IRBs) documented on the website. These data were collected

between 2001 to 2012 at Beth Israel Deaconess Medical Center (BIDMC). We have used

MIMIC III v1.4 which was released on September 2nd 2016. 22,247 numeric records that

have been time aligned and matched with 10,282 MIMIC III clinical database records, were

used for generating the Mimic Shock cohort. These data are summarized at 1 minute

resolutions and merged using subject Ids. Further subject records were splitted into respective

ICU stays based on the in-time and out-time given in the “ICUSTAYS” table of the clinical

data of MIMIC-III database. 

Third dataset, SafeICU data resource22(Sepsis advanced forecasting engine ICU Database) is

an in-house ICU data resource built at Pediatric ICU of All India Institute of Medical

Science, New Delhi. Ethical permission was sought and was approved by the Institutional

review board (IEC/NP-211/08.05.2015). SafeICU data collected between February, 2016 to

January 2020 were used for constructing a final validation across the continent cohort.
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Imputation - All the time-series data was imputed using Kalman filter imputation33 up to

80% missingness, however in the final training observation windows were selected based on

the “not more than 10% imputation criteria”. Shock index was not imputed.

Epoch and Cohort Generation.

We created 30 minute epochs for dense labelling of the time-interval as shock or no-shock.

The labels for shock were derived using shock-index (SI). A time of onset of Shock (t(shock)) is

defined as the starting time of an epoch where the median shock-index was greater than 0.7.

We took time-series data of 420 minutes of the five signals; heart-rate (HR), systolic arterial

blood pressure (Sys-Abp), diastolic arterial blood pressure (Dia-Abp), respiratory rate,

oxygen saturation (SpO2). Lead time of 0 to 8 hour at 1 hour interval prior to the first

occurrence of a 30-minute shock window was taken. Training data is further filtered based on

10% or less imputation.  These scores can be computed for every-timestamp present in the

numeric data, thus precisely labels the onset of the condition.  For the pediatric ICU data we

labelled the data using age adjusted cutoff for shock index34.

Model Development and Evaluation.

eICU data cohort was used to train models to predict the next 0-8 hour shock status.  Hospital

IDs were randomly divided in 5 fold cross validation sets. Further train-validation and tests

were chosen according to hospital ID. So every time the model was tested on new 20%

hospitals data. This was done in order to optimize models for generalization on external

settings. Further the Hand-engineered time-series features and raw signals data were

transformed to z-scores for rescaling in order to facilitate model fitting. All the

hyperparameters such as number of estimators, max features, epoch numbers, batch size,

number of trees, and F1 threshold were optimized on the validation set. Final results were

reported as the median and Standard deviation on 5 fold test sets. 
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Hand engineered times-series features extraction and selection.

Five time-series signals; heart-rate (HR), systolic arterial blood pressure (Sys-Abp), diastolic

arterial blood pressure (Dia-Abp), respiratory rate, oxygen saturation (SpO2) were used to

extract hand engineered features. These features, also termed as hand-engineered time-series

(HETS) features were extracted using the tsfresh python package35. This includes wavelet

transform coefficients, Fourier transform coefficients, discriminative power, linear trends,

recurrent value based features etc. Python library “tsfresh” was used to calculate the features

on the time-series data of the cohort. A total of 3970 features were extracted using tsfresh

python package. Further variable selection was performed using Boruta which is a feature

selection algorithm, implemented through R package “Boruta”36. Boruta selected features are

listed in Supplementary Table S1. 

Modeling on hand engineered time-series features.

We built three models on hand-engineered time-series features, 1. Gradient boosting

classifiers37 , 2. Random-Forest models38 using sklearn (version 2.1.0) library in python 3.6.

3. Multilayer-perceptrons were trained on the hand-engineered time-series features selected

after running feature selection algorithm Boruta. Hyperparameters tuning was performed

using grid search for optimizing model performance parameters on the validation set.   

Modeling on raw signals.

LSTM (long short term memory) network is a type of recurrent neural network (RNN) which

is capable of learning sequence information for temporal prediction problems39. As there will

be lags of unknown duration between important events in a time series, LSTM are useful in

time series data to process, classify and predict.  

We tested two LSTM based architecture, first CNN-LSTM, it contains convolutional neural

networks followed by LSTM which is connected to a two dense layer perceptron to produce

probability scores. Second, we used Bi-Directional LSTM40 model, the model uses a
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time-distributed layer followed by Bi-Directional LSTM layer which is further connected to

three dense layers with tanh as activation function on first two layer of dense and softmax at

last layer to get probabilities. The models were fitted in python 3.6 using Keras (version

2.3.1), Tensorflow (version 2.1.0). For static features age and gender, we used a single layer

perceptron in parallel to the LSTM model, the weights of the last layer of LSTM model and

single layer perceptron were concatenated. Finally, a multilayer perceptron with softmax

activation was used to generate probability scores on the concatenated time-series and

weighted static variable features.

hsEWS and hsEWS-non-invasive model.

The best model is selected from different classifiers mentioned above using AUROC and

AUPRC. Selected model was used for further evaluation; this model generates a score

between 0 and 1 if found greater than a threshold attributed to future Shock and non-shock

risk, the model termed as hsEWS We computed this threshold on the validation set. The test

is kept untouched.

SHAP value computation for model interpretability.

SHAP (SHapley Additive exPlanations) is a method which assigns each feature an

importance value based on game theoretic principles41. The SHAP values represent the

influence of features on model prediction. We computed SHAP value distribution of each

feature for all the testsets. All the testsets were combined to plot the model explanation in

terms of top 15 important features and their relationship with SHAP values.

Model generalization.

We evaluated our models on two external validation sets. For this, we used MIMIC-III and

SafeICU (Pediatric) data. We performed similar pre-processing with slight data specific

variation and cohort building as done for eICU. The higher resolution MIMIC Data and

safeICU data were brought to 5 minute resolution to match eICU resolution. We tested three
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scenarios of external validation. First, a standalone model, where the Model is trained on the

new setting’s data itself. Second, in which model was retrained on new setting’s training data

and tested on the 5 fold test sets. Third, we tested the hsEWS model directly on external

validation data. For data specific prevalence based probability threshold, we used the

validation set of the external validation setting. We choose the threshold over the precision

recall curve which gives the maximum F1 score, in order to optimize precision and recall.
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.Table1 | Cohort characteristics

Variables Median(sd) Statistical Test

Non-Shock Shock                 
           

Negative log10
P-value

Age (years) 67.5(13.4) 64.29 (14.62) 29.53(w)*

Arterial Systolic Blood
pressure, mm Hg

139.74 (11.97) 135.15 (10.98) 32.8(w)*

Arterial Diastolic Blood
pressure, mm Hg

59.8 (6.36) 60.55 (5.78) 4(w)*

Heart rate, per min 67.42 (4.6) 74.31 (4.4) 216.82(w)*

Respiratory rate, per min 16.58 (3) 18.4 (2.98) 88.31(w)*

Oxygen Saturation 97.53 (1.31) 97.41 (1.25) 0.22(w)

Gender (Female %) 40% 37% 2.15(c)*

Length of stay (days) 1.18(3.05) 4.29(7.8)

length of stay with
hemodynamic shock

0 15hr

Mortality rate 1% 11%
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Values are median (SD) unless indicated, *significance level at negative log10 p-value >=

1.3, Wilcoxon (W) rank sum test (non-parametric) or Student’s t-test (t) (parametric) were

used after testing for the normality assumption. c - Chi-squared test of proportions.
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