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Abstract 

Shock is a major killer in the ICU and Deep learning based early predictions can potentially save lives.                  

Generalization across age and geographical context is an unaddressed challenge. In this retrospective observational              

study, we built real-time shock prediction models generalized across age groups and continents. More than 1.5                

million patient-hours of novel data from a pediatric ICU in New Delhi and 5 million patient-hours from the adult                   

ICU MIMIC database were used to build models. We achieved model generalization through a novel fractal                

deep-learning approach and predicted shock up to 12 hours in advance. Our deep learning models showed a receiver                  

operating curve (AUROC) drop from 78% (95%CI, 73-83) on MIMIC data to 66% (95%CI, 54-78) on New Delhi                  

data, outperforming standard machine learning by nearly a 10% gap. Therefore, better representations and deep               

learning can partly address the generalizability-gap of ICU prediction models trained across geographies. Our data               

and algorithms are publicly available as a pre-configured docker environment at           

https://github.com/SAFE-ICU/ShoQPred. 
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Introduction: 

Shock is one of the most common complications in patients admitted to the ICUs with incidence as high as 33%.1                    

Hypovolemic, cardiogenic and septic shock are all characterized by altered hemodynamics 2, hence termed as              

hemodynamic shock (HS). The mortality rate in patients who develop shock in ICU is high as 34% in developing                   

countries 3, triggered by a cascade of poor blood perfusion, inadequate oxygen availability to vital organs and                

multiple organ failure. Early identification is critical for aggressive management4, improved patient outcomes and               

mortality reduction5,6,7,8 In this work, we developed real-time models for early identification of shock using high                

resolution vitals time series, deep learning and standard machine learning approaches. Vitals time-series are              

routinely generated at a much higher resolution than hourly nursing notes, hence have the potential to forecast                 

critical outcomes.9,10 However, their use in predicting shock is not yet explored. Our Safe-ICU data warehouse11 with                 

more than 1.5 million hours of patient physiological time-series vitals data, laboratory investigation records,              

treatment charts, doctors and nurse assessment charts allowed us to build and validate deep learning based shock                 
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prediction models which could generalize across continents. Representation learnt through deep neural networks             

have shown potential to improve the sepsis prediction model performance in ICU. 

Previous studies have built models that used laboratory data and blood reports. One of the studies in Pediatric                  

patients used 36 variables to predict the onset of hemodynamic shock and achieved an AUC of 82%12. Another study                   

on the adult population predicted septic shock with an AUC of 83% at a median lead time of 28.2 hours before the                      

onset using 54 EHR features 13. Hyland et al predicted circulatory shock using 112 variables in a full and 16 variables                    

in the lite model, the difference in performance is marginal and the performance of the models falls as the lead time                     

increases 14. Most of these models involved collecting a large set of data variables at high frequency, however,                 

multicentric model validation has been achieved by using a minimum set of vitals as the predictors for the sepsis                   

prediction14,. High resolution vitals time-series data has shown potential for multicenter generalization15 but a very               

few studies have been conducted to evaluate generalizability of AI models for ICU 13, 14,15. In our knowledge, none of                   

the studies evaluated the potential of models learnt on the adult population and generalized to pediatric one. One of                   

the key challenges to do so is the dependency on a large set of clinical measurements in both the populations at high                      

frequency, this challenge can be overcome by using high resolution physiological vitals time-series data generated               

through monitoring sensors. In this work, we reported machine learning based prediction models which take readily                

available time-series vitals data to forecast shock status 3 to 12 hour ahead of its onset. We do this by using                     

state-of-art- deep learning models and non-linear time-series features to build these models (Figure 1). There is a                 

high percentage of the patients who developed shock in ICU. We built cohorts around patients who developed shock                  

after spending a considerable amount of time in ICU. Artificial intelligence algorithms have potential to generalize                

and scale therefore we evaluated our models for their ability to generalize on our pediatric ICU data. We do this by                     

making a comparison between deep-learning algorithms which are capable of extracting features automatically and              

hand-engineered features based models. Thus, the aim of our work was to utilize readily available ICU time-series                 

data to build robust parsimonious predictive models for the onset of HS and evaluate the potential for generalization                  

of these models to another setting.  
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Figure 1:  Summary of the pipeline for generalizing the prediction of hemodynamic shock. Step 1 shows data 

resources from the USA and India. Step 2 shows the model building for the prediction of shock at 3, 4.5, 6, 7.5, 9 

and 12 hours and evaluation involving image, sequence and non-linear time-series feature based models. Step 3 

shows the generalization of learned models on Indian settings data at  3, 4.5, 6, 7.5, 9 and 12 hours. 
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Results: 

Preprocessing, data characteristics and cohort building 

Upon pre-processing the MIMIC-III matched subset of 22247 numeric data files for 1 minute resolution               

summarization we obtained 10269 subject ids with vital time-series data. Further the merged files were separated for                 

ICU Stays. We obtained 17,294 ICU stays (Supplementary Figure S1). We then applied the exclusion criteria and                 

case-control cohort extraction. We excluded the patients which do not have length of stay equal to or less than the                    

sum of the observational period of 256 minutes, lead time according to cohort (3-12 hours) and a 30 minute outcome                    

epoch window (Supplementary Figure S2). 572 ICU stays were removed due to missing Shock Index. Since we are                  

predicting new shocks, only the first instance of the shock event was considered. While extracting cases and controls                  

we removed the cases in which observational windows or lead time have the Shock, later ICU-stays with                 

observation windows having more than 10% imputation were removed from the Shock and Non-shock patients. The                

list of Shock and Non-shock trainable samples as per the exclusion and inclusion criteria are listed in the Cohort                   

Characteristics table1. The mean and standard values of the features used in the modeling are listed in table1.                  

SafeICU resource contains data at 15 seconds resolution which was brought to 1 minute resolution. SafeICU data                 

resource AIIMS, New Delhi had 619 patients till July 2019, out of which we extracted the patients in case and                    

control with different lead time values as done for MIMIC data. Cohort characteristics for the SafeICU data resource                  

are listed in the table2.  

Machine learning on hand engineered features found heart-rate as the most important            

predictor 

With feature selection, we found heart-rate signals as the most important source of features selected by Boruta                 

(Supplementary Figure S3). Arterial blood pressure (ABP) Systolic is the second best source of important predictors.                

We also found 51 classes of features as important. We found a number of features in the frequency domain using                    

continuous wavelet transform (Cwt) coefficients, Fast Fourier Transform (fft). We also found features such as               

absolute energy, quantile, mean, autocorrelation, Sum of recurring values as important, complete list and cohort               

wise and vitals wise important feature list presented in the Supplementary Table S1 and Supplementary Table S2.                 

We then performed a random-forest model which achieved AUC of 84% (95%CI, 80-88) at 3 hour on the test set                    
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which declined to 78% (95%CI, 73-83) at 12 hour as shown in Figure 3. The hyperparameters such as number of                    

features and number of trees were optimized for AUC and OOB (out-of-bag error). The model generalized to                 

SafeICU cohorts for 3 to 12 hour prediction time which achieved an AUC of maximum 59% (95%CI, 45-73) 3                   

hours. These models could not cross the 60% generalization mark at any lead time.  

 

Performance of multivariate LSTM fully connected network and fractal deep-learning          

approach  

Densenet models with Hilbert time-series representation achieved a maximum AUC of 83% (95%CI, 77-85) at 4.5                

hours. These models when generalized to the across-site pediatric validation data, achieved an AUC of 70%                

(95%CI, 53-79) on Hilbert image representation when age-gender was not included. Sequence model MLSTM-FCN              

trained on mimic data-set for predicting shock at 3 hours achieved AUC of 83% (95%CI, 79-87) on mimic-cohort.                  

MLSTM-FCN model when generalized to SafeICU data cohort achieved AUC of 69% (95%CI, 57-81) best among                

all the other models when age, gender included as predictor. More model evaluation parameters i.e. Positive                

predictive value (PPV) and sensitivity along with NLTS-RF model comparison are shown in Figure 2. All models                 

performed consistently for PPV with exception to the snake-densenet model for sensitivity. Our models were able to                 

predict at the maximum PPV of 94% (95%CI, 91-97) at 9hr before the event.  

 

Figure 2: a.) Positive predictive value (PPV) and b.)  Sensitivity at 3-12 hours lead time before the onset of the 

hemodynamic shock. The Youden-Index threshold was chosen by optimizing the trade off between PPV and 

sensitivity as depicted in the figure above.   
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Comparison of different models used, deep learning models achieved better generalization           

over hand engineered feature based model 

Deep learning models as well nonlinear time-series feature based models were generalized to pediatric cohorts. The                

average AUC of generalizing deep-learning models is 63.2% and hand-engineered feature based models is 52.8%.               

Hand engineered features based models were found to be poorly generalizable when compared to deep-learning               

models as shown in (Figure 3, Table 3). This might be due to complexity of the hand engineered features model                    

compared to deep-learning models. High complexity can result in poor generalization.  

 

 

Figure 3: Time point-wise Area under the receiver operating characteristic curve on Mimic and SafeICU data and                 

the percentage generalization error for SafeICU, for different models i.e. a.) Hand engineered features-               

Randomforest model (NLTS-RF) b.)  LFCN model c.)  Hilbert-Densenet model d.) Snake-Densenet model  

6 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2021. ; https://doi.org/10.1101/2021.01.07.21249121doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.07.21249121
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Discussion:  

In this work, we predicted hemodynamic shock using deep-learning and hand-engineered features. Every hour of               

delays in the detection of shock contributes to the increased risk of mortality in patients admitted to the ICU 6,8. This                    

delay gets compounded by the amount of the predictors required. To look for the model performance over vitals                  

time-series data based we added features such as Lactate and Anion gap from the EHR data. The model AUC didn’t                    

improve from AUC 77% when lactate was used as a feature in the random-forest model. The sample size also                   

reduced due to the addition of features, we compared the performance on the reduced set only. Similarly adding                  

anion gap as a feature, results in no change in AUC from 84% at 3hr. The use of as many as 36 variables to predict                         

the onset of shock with an AUC of 82% have been previously reported12. For us adding new features didn’t help.                    

These models have limitations of collecting a large number of inputs which is not feasible for every minute                  

resolution. We in this work used the readily available data to combat the issues related to large numbers of inputs.                    

Our model uses the 5 vitals signals data which is routinely monitored electronically. We have also made use of                   

longitudinal time-series of the patient, which ensure to supply patterns in the patients physiology over a window of                  

time unlike a single time-point value. The Non-linear time-series features were computed to represent the dynamics                

of the patient physiology in terms of various hand-engineered time-series patterns described in Supplementary Table               

S2.  

In recent years we have seen advancement in artificial intelligence algorithms most prominent of which is deep                 

learning. In our work, we used two important deep-learning approaches: Image classification and sequence              

classification. We used the State of art deep-learning model Densenet which was shown to produce the state-of art                  

performance on the object recognition task 16. Secondly in deep-learning models we used the multivariate time-series                

classification model MLSTM-FCN 17. This model uses an attention mechanism to look after the variables responsible               

for prediction. The idea to use these approaches was to explore the deep learning methods for the prediction of                   

hemodynamic shock. Non-linear time-series models performed comparably better than MLSTM-FCN and Densenet            

models for the adult ICU. But the MLSTM-FCN model found to generalize well over hand-engineered time-series                

features based models with an average 10% higher AUC. Also the Densenet model generalizes with an average 8%                  

higher AUC than hand engineer features model.  
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The generalization of the models was tested on a cross-continent pediatric ICU. We used 50% of pediatric cohort                  

data to capture the population based probability thresholds for the models called Youdon-Index18. These threshold               

computation was done to account the population prevalence. Our model can be generalized by learning new                

population based probability thresholds. However the performance on adult ICU could be better given our models                

are trained on an adult population, the performance can be further increased by using our models and re-train them                   

on the new settings.  

There are few limitations of our study. Our models are developed and tested on the retrospective data and there is a                     

need for testing the models prospectively. All the data was taken from a running ICU therefore almost all of the                    

patients were receiving some form of medication and might have come with a history of shock which is not taken                    

into account. However, this does not affect the prediction potential of our model since we made sure to include only                    

subjects who developed shock at least after total length of observation and prediction time. Also the training window                  

or observational and lead-time data are free from any incidence of shock.  

Methods: 

1. Dataset description & preprocessing 

We used “Medical Information Mart for Intensive Care (MIMIC)” data19 and SafeICU data resource11. MIMIC               

dataset hosted by physionet.org website as a publicly available data resource. Datasets are de-identified and               

available for analysis as per the approval by MIT institutional review boards (IRBs) documented on the website.                 

These data were collected between 2001 to 2012 at Beth Israel Deaconess Medical Center (BIDMC). We have used                  

MIMIC III v1.4 which was released on September 2nd 2016. 22,247 numeric records that have been time aligned                  

and matched with 10,282 MIMIC III clinical database records, were used for generating the Mimic Shock cohort.                 

These data are summarized at 1 minute resolutions and merged using subject Ids. Further subject records were                 

splitted into respective ICU stays based on the in-time and out-time given in the ICU STAYS table of the clinical                    

data of MIMIC-III database.  

SafeICU (Sepsis advanced forecasting engine ICU Database) is an in-house ICU data resource built at Pediatric ICU                 

of All India Institute of Medical Science, New Delhi11, ethical permission were approved by the Institutional review                 

board (IEC/NP-211/08.05.2015) was used for constructing a final validation across continent cohorts. SafeICU data              

collected between February 2016 to July 2019 were used to construct the Shock prediction cohort.  
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1.1 Imputation - Preprocessed matched subset ICU stays recordings and SafeICU ICU stays data were imputed                

using univariate “singular spectrum analysis (SSA)” using R package “Rssa20. Time-series are firstly embedded into               

a trajectory matrix, which is then decomposed into components. The components were grouped and the final                

time-series was reconstructed. The reconstruction process fills the gaps in the time-series 21. Try and Catch Error                

codes were written in R programming language to construct a trajectory matrix at different window length so as to                   

facilitate the decomposition. Often in the absence of arterial blood pressure (ABP). Non-invasive blood pressure               

(NIBP) is present. We used Unmatched dataset given in the MIMIC database to construct a linear mixed effects                  

model to predict ABP from NIBP. The Matched subset data were imputed for ABP (Systolic and Diastolic) with the                   

corresponding predicted value from NIBP in case of missing values. The SafeICU ICU-stays were also imputed                

using SSA. Finally NIBP data was used to impute the missing ABP data with predicted values along with SSA.  

1.2 Epoch and Cohort Generation: 

We created 30 minute epochs for dense labeling of the time-interval as shock or no-shock. The labels for shock were                    

derived using shock-index (SI). A time of onset of Shock (t(shock) ) is defined as the starting time of an epoch where                     

the median shock-index was greater than 0.7. We took time-series data of 256 minutes of the five signals; heart-rate                   

(HR), systolic arterial blood pressure (Sys-Abp), diastolic arterial blood pressure (Dia-Abp), respiratory rate, oxygen              

saturation (SpO2). Lead time of 3, 4.5, 6, 7.5, 9 and 12 hour prior to the first occurrence of a 30-minute shock                      

window was taken (Supplementary Figure S2). Training data is further filtered based on 10% or less imputation.                 

These scores can be computed for every-timestamp present in the numeric data, thus precisely labels the onset of the                   

condition.  

Nonlinear times-series (NLTS) feature extraction and selection 

Non-linear time-series features were extracted using the tsfresh python package22. This includes Wavelet transform              

coefficients, Fourier transform coefficients, discriminative power etc. Python library “tsfresh” was used to calculate              

the features on the time-series data of the cohort. A total of 3970 features were extracted using tsfresh python                   

package. Further variable selection was performed using Boruta which is a feature selection algorithm, implemented               

through R package “Boruta”23. Hyperparameters such as Number of trees and number of features were optimized                

using Out-of-bag error, validation AUPRC and validation AUROC using grid search.. Boruta was run for each                

n-features and n-tree combination. OOB, validation set’s AUPRC and AUROC were recorded for each run. Finally a                 
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n-tree and n-features combination was selected. Boruta selected features are listed in Supplementary Table S1. The                

table of the description and variables found to be important were added to the Supplementary Table S2.  

Modeling on Nonlinear times-series (NLTS) features (hand-engineered features):  

Random-Forest models 24 were trained on the non-linear time-series features selected after running feature selection              

algorithm Boruta. Hyperparameters tuning was performed using grid search over number of trees and number of                

features for optimizing AUROC, AUPRC and out-of bag error.  

Sequence models based approach: 

LSTM (long short term memory) network is a type of recurrent neural network (RNN) which is capable of learning                   

sequence information for temporal prediction problems 25. As there will be lags of unknown duration between               

important events in a time series, LSTM are useful in time series data to process, classify and predict.  

We used a state of the art MLSTM-FCN architecture17 consisting of two branches first a LSTM/Attention block and                  

fully connected CNN block of 128, 256 and 128 filters. The output of the two branches were concatenated which                   

inputs a Dense layer of 2 neurons which returns probability upon application of Softmax activation function. Age                 

and gender were added to the last layer feature extract to produce the final model using a logistic regression with L1                     

penalty to predict the future shock status.  

Image based prediction model approach: 

The times-series data can be converted to Hilbert26 and Snake image representations. Since our data is in a form of                    

multivariate time-series, individual time-series representations were aligned sample-wise into a volume to be             

directly fed to CNN. We used state-of-the-art Densenet architecture to build the Shock prediction model. Dense                

Convolutional Network works in feed forward fashion to connect each layer to every other layer in the network. A L                    

number of layer networks has L(L+1)/2 connections. Each layer takes feature maps of all the former layers as its                   

inputs and it uses its own feature maps as input for all succeeding layers 16. Reuse of features is another characteristic                    

of Densenets, in addition it significantly reduces the number of parameters in usage and it can achieve                 

state-of-the-art performance with less computation. DenseNets can scale naturally upto hundreds of layers, without              

causing any difficulties of optimization.  

Densenet output features were extracted from the last layer and concatenated with age and gender. Concatenated                

features were transferred to a logistic regression model with L1 penalty to predict the next 3 to 12 hour shock status.  
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Model Development and Evaluation: 

Mimic data cohort was used to train models to predict the next 3, 4.5, 6, 7.5, 9 and 12 hour shock status. From the                        

Mimic cohort, raw signal data and non-linear time-series features were zero centered using global mean. The cohort                 

was split into 60% training, 20% cross-validation, and 20% test sets. Same splits were used for all the models. To                    

overcome the class-imbalance, only the training set was oversampled for the minority class. All the hyperparameters                

such as epoch numbers, batch size, number of trees and Youden-index were optimized on the validation set. Final                  

results were reported on the test set.  

Model generalization evaluation: 

The SafeICU data was split into 50% training and 50% test sets. The SafeICU train set was used to learn                    

Youden-index18 specific to Pediatric Setting. The learned Youden-Index was used to compute model evaluation              

parameters on the SafeICU test-set.  
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Table1 | Mimic-III cohort characteristics 
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Variables 3 Hours 4.5 Hours 6 Hours 7.5 Hours 9 Hours 12 Hours 

  

  

  

Non-Shock 
(n = 814) 

Shock 
(n = 1258) 

Non-Shock 
(n =797) 

Shock 
(n =1218) 

Non-Shock 
(n =789) 

Shock 
(n =1202) 

Non-Shock 
(n =773) 

Shock 
(n =1159) 

Non-Shock 
(n =776) 

Shock 
(n =1123) 

Non-Shock 
(n =730) 

Shock 
(n =1033) 

Arterial 
Systolic 
Blood 

pressure, 
mm Hg 

 127.39 
(7.94) 

 122.18 
(8.8) 

  127.37 
(8.2) 

  122.37 
(8.98) 

127.37 
(8.06) 

122.28 
(8.95) 

127.2 
(8.12) 

 122.67 
(9.12) 

 127.73 
(8.22) 

 122.74 
(9.27) 

  127.6 
(8.43) 

   122.71 
(9.39) 

Arterial 
Diastolic 

Blood 
pressure, 
mm Hg 

  62.77 
(3.57) 

 62.25 
(4.61) 

 62.6 
(3.7) 

62.1 
(4.69) 

  62.55 
(3.49) 

62.04 
(4.69) 

62.09 
(3.62) 

62.11 
(4.76) 

  62.22 
(3.59) 

62.06 
(4.81) 

  62.05 
(3.78) 

  61.9 
(4.81) 

Heart 
rate, per 

min 

  67.53 
(4.03) 

 82.97 
(4.67) 

67.65 
(4.11) 

82.53 
(4.6) 

67.69 
(4.07) 

82.46 
(4.6) 

67.66 
(4.06) 

82.44 
(4.59) 

68.11 
(4.15) 

82.76 
(4.64) 

68.63 
(4.16) 

82.77 
(4.58) 

Respirator
y rate, per 

min 

 17.63 
(2.61) 

18.77 
(2.82) 

 17.59 
(2.61) 

  18.63 
(2.8) 

 17.53 
(2.59) 

  18.6 
(2.81) 

 17.39 
(2.62) 

  18.62 
(2.82) 

 17.42 
(2.63) 

  18.67 
(2.82) 

 17.56 
(2.56) 

  18.67 
(2.84) 

Shock 
Index 

    0.54 
(0.07) 

0.7 
(0.08) 

    0.54 
(0.06) 

0.69 
(0.08) 

    0.54 
(0.06) 

0.69 
(0.07) 

    0.54 
(0.05) 

     0.69 
(0.07) 

    0.54 
(0.06) 

0.69 
(0.07) 

    0.55 
(0.05) 

0.69 
(0.07) 

Oxygen 
Saturation 

96.46 
(1.48) 

96.75 
(1.46) 

96.64 
(1.45) 

96.75 
(1.46) 

 96.68 
(1.37) 

96.73 
(1.5) 

96.69 
(1.35) 

96.77 
(1.48) 

96.74 
(1.38) 

96.76 
(1.47) 

96.74 
(1.42) 

96.76 
(1.47) 

Gender 
(Female 

%) 

43% 40% 41% 43% 40% 43% 41% 43% 40% 43% 40% 42% 
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Table2 | Safe-ICU cohort characteristics 

Values are mean (SD) unless indicated 

16 

Variables 3 Hours 4.5 Hours 6 Hours 7.5 Hours 9 Hours 12 Hours 

  Non-Shock 
(n = 117) 

Shock 
(n = 47) 

Non-Shoc
k (n =48) 

Shock 
(n=123) 

Non-Shock
(n =45) 

Shock 
 (n=127) 

Non-Shock 
(n =43) 

Shock 
(n =115) 

Non-Shock 
(n =115) 

Shock 
(n =43) 

Non-Shock 
(n =116) 

Shock 
(n =50) 

Age 
(months) 

63.59 
(60.17) 

60.13 
(56.35) 

64.39 
(59.41) 

60.31 
(54.75) 

59.56 
(57.6) 

59.84 
(54.02) 

66.26 
(60.3) 

50.12 
(50.67) 

71.32 
(61.62) 

48.73 
(49.16) 

67.05 
(58.82) 

53.09 
(50.78) 

Arterial 
Systolic 
Blood 

pressure, 
mm Hg 

 99.34 
(8.47) 

   93.1 
(8.28) 

54.8 
(6.89) 

55.66 
(7.81) 

101.9 
(8.02) 

93.07 
(9.15) 

101.39 
(8.49) 

90 
(9.31) 

101.5 
(8.18) 

89.13 
(8.89) 

101.66 
(8.48) 

91.01 
(8.74) 

Arterial 
Diastolic 

Blood 
pressure, 
mm Hg 

56.37 
(6) 

54.2 
(5.57) 

99.62 
(8.74) 

92.95 
(9.91) 

57.54 
(6.18) 

56.03 
(7.27) 

57.8 
(6.53) 

53.45 
(7.07) 

58.25 
(6.76) 

52.52 
(6.63) 

57.17 
(5.96) 

52.77 
(6.19) 

Heart 
rate, per 

min 

125.51 
(8.14) 

136.79 
(8.51) 

128.29 
(7.77) 

136.47 
(8.37) 

123.03 
(7.96) 

135.5 
(8.28) 

126.33 
(6.98) 

136.52 
(7.76) 

126.37 
(8.29) 

137.03 
(7.95) 

126.58 
(7.99) 

135.65 
(7.81) 

Respirato
ry rate, 
per min 

30.82 
(5.39) 

32.69 
(5.37) 

30.18 
(4.63) 

31.54 
(4.89) 

30.6 
(5.36) 

32.48 
(6.07) 

30.69 
(4.75) 

33.02 
(5.49) 

29.5 
(4.84) 

33.75 
(5.58) 

29.93 
(4.55) 

33.09 
(5.46) 

Shock 
Index 

2.52 
(0.28) 

1.63 
(0.22) 

1.37 
(0.15) 

1.62 
(0.32) 

1.41 
(0.62) 

1.58 
(0.31) 

1.34 
(0.15) 

1.64 
(0.32) 

1.36 
(0.17) 

1.65 
(0.28) 

1.34 
(0.17) 

1.65 
(0.21) 

Oxygen 
Saturatio

n 

94.29 
(2.7) 

93.59 
(3.6) 

94.87 
(2.83) 

94.2 
(3.45) 

95.19 
(2.45) 

93.69 
(3.53) 

94.75 
(2.65) 

94.08 
(3.07) 

94.82 
(2.66) 

93.24 
(3.2) 

94.36 
(2.34) 

93.1 
(2.84) 

Gender 
(Female%

) 

32%  54%  38% 52% 33% 53% 35% 51% 34% 49% 39% 44% 
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Table 3- Comparison of Generalization drop in AUC between deep-learning and non-deep learning models, when 

models trained on MIMIC (USA) data were tested on Safe-ICU (India) data.  
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