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Abstract

We present a mathematical model for the simulation of the develop-
ment of an outbreak of COVID-19 in a slum area under di�erent inter-
ventions. Instead of representing interventions as modulations of the pa-
rameters of a free running epidemic we introduce a model structure that
accounts for the actions but does not assume the results. The disease
is modelled in terms of the progression of viremia reported in scienti�c
works. The emergence of symptoms in the model re�ects the statistics of a
nation-wide highly detailed database consisting of more than 62000 cases
(about a half of the con�rmed by RT-PCR tests) with recorded symptoms
in Argentina. The stochastic model displays several of the characteristics
of COVID-19 such as a high variability in the evolution of the outbreaks,
including long periods in which they run undetected, spontaneous ex-
tinction followed by a late outbreak and unimodal as well as bimodal
progressions of daily counts of cases (second waves without ad-hoc hy-
pothesis). We show how the relation between undetected cases (including
the �asymptomatic� cases) and detected cases changes as a function of
the public policies, the e�ciency of the implementation and the timing
with respect to the development of the outbreak. We show also that the
relation between detected cases and total cases strongly depends on the
implemented policies and that detected cases cannot be regarded as a
measure of the outbreak, being the dependency between total cases and
detected cases in general not monotonic as a function of the e�ciency in
the intervention method. According to the model, it is possible to control
an outbreak with interventions based on the detection of symptoms only
in the case when the presence of just one symptom prompts isolation and
the detection e�ciency reaches about 80% of the cases. Requesting two
symptoms to trigger intervention can be enough to fail in the goals.
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1 Introduction

Ever since the emergence of COVID-19 (China CDC, 2020), mathematical mod-
els have been proposed to examine, illustrate and forecast the possible evolution
of the pandemic, as well as recommending public measures for managing it.
Modelling epidemics has to deal with a variety of di�culties at di�erent levels
and the present pandemic is not an exception.

On the general level, there is the issue of what mathematical approach is
the most appropriate. A number of publications and even more preprints are
based on deterministic (i.e., based on ODE's) SIR approaches at di�erent levels
of sophistication. There even exists a web-page capable of doing the SIR-ODE
calculations, graphics, estimates, etc. 1 However, the relevance of such ap-
proaches is dubious, the issue of relying in ODE-models has been criticised
already 40-50 years ago (Kurtz, 1970, 1971, 1976; van Kampen, 1981). On the
other hand, stochastic approaches for population dynamics have developed over
the last century(McKendrick, 1914; Feller, 1940; Kendall, 1950; Bartlett, 1964)
proving to be better suited for the task, since their basic assumptions resemble
the actual problems more closely.

On the speci�c level, the amount of activity is (still) so large that the re-
viewing process cannot match its pace. Contributions are of varying quality,
and inhomogeneous, as is often the case in a new and growing subject. There is
no agreement around the basic concepts. For example, a good part of the liter-
ature has addressed the phenomena of asymptomatic carriers of SARS-CoV-2
(Bai et al, 2020; Cereda et al, 2020; Huang et al, 2020; Nishiura et al, 2020;
Sakurai et al, 2020; Mizumoto et al, 2020; Yang et al, 2020). Unfortunately, the
label �asymptomatic� has been used with di�erent meanings, going from 'not
presenting the expected symptoms at the moment of infecting someone else', as
in (Huang et al, 2020; Bai et al, 2020) to �never, in the course of the infection,
presenting symptoms� (Böhmer et al, 2020). In all cases, asymptomatic and
pre-symptomatic are considered as objective categories pertaining to the rela-
tion between the infected person and the infectious agent, thus excluding from
examination the actions of the public health system, and therefore preventing
any improvement of these actions.

In previous modelling work either asymptomatic carriers of SARS-CoV-2
have not been considered or they have been incorporated using an ad-hoc hy-
pothesis, such as that the ratio between asymptomatic and symptomatic cases
is constant (see e.g., Hao et al, 2020). In contrast, our model incorporates a
detection component based in what it is known of detection policies. Another
sharp di�erence with earlier work is that we model a variable contagiousness
and not only a variable contagious period, furthermore, intrinsic stochasticity

1https://gabgoh.github.io/COVID/index.html accessed 2020-08-24
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is included in contrast with the extrinsic stochasticity (added a-posteriori 2)
included in Hao et al, 2020 and few other works. A search in PubMed3 with
keywords covid-19, mathematical, model o�ered 540 articles. A re�nement with
keywords covid-19, model, asymptomatic, stochastic ends in 6 scienti�c publi-
cations (as of 2020-09-09) plus one news article (not a research article) for a
specialised magazine. Of the later 6, Hao et al, 2020 is the most closely related
to our work, hence our decision to indicate only the di�erences of the present
work with a related one among the pre-existing papers.

In this work we will take a complex systems view. We begin by acknowl-
edging that the COVID-19 epidemic is no longer a free-running epidemic but
rather one in which there is a strong interaction between the public health sys-
tem and the population dynamics of the outbreaks. Changes in the evolution
of an outbreak trigger changes in the consideration of which characteristics of
the COVID-19 cases should (or should not) trigger public action. This indi-
cates that there is a clear interaction between these systems and they cannot
be considered independent. To illustrate the point we will use the various crite-
ria of �COVID-19 case� used in our home country (HGS), Argentina, following
recommendations by the World Health Organization (WHO). We will produce
compartments that relate to the evolution of the case in medical or biological
terms as well as to the categories corresponding to the di�erent protocols to be
applied to the case.

The response to an epidemic requires not only the mobilisation of public
resources but the participation of the public as well. To organise the actions
required for each individual case COVID-hot-lines and web-servers have been
organised world wide. Such help services indicate which measures to take to
those that suspect they are developing COVID-19, and prompt o�cial actions
if needed. Hospitals and health centres, as well as help services, are coordinated
in their actions by protocols. A main tool of these protocols is the suspected-
case criterion. The suspected case criterion regulates state intervention and de-
pends on clinical symptoms of the (potential) patient and other circumstances.
The criterion constitutes a di�cult balance between the administration of re-
sources (for example use of Reverse transcription polymerase chain reaction
(RT-PCR) kits and laboratories), the developmental stage of the epidemic, the
mortality risk of the case and more. As in any decision taken under real cir-
cumstances (limited resources), establishing the suspected-case criterion implies
trade-o�s. When diagnostic resources �such as RT-PCR tests� are limited, a
con�ict emerges: should we reserve them for individual diagnosis or perhaps
use them in epidemiological surveillance (triggering actions) as well? In any
intermediate cases: in which proportions?

Should the general criterion depend on being a contact of a COVID-19 case?
Does it make sense to require weaker symptoms for the population which is aware
of having epidemiological contact with COVID-19 cases rather than for the com-
munitarian cases that cannot account for how they could have been infected?

2Extrinsic stochasticity is mostly decorative and misses the root of the stochastic phenom-
enavan Kampen, 1981; Kurtz, 1976; Ethier and Kurtz, 1986

3Pub Med's website accessed 2020-08-28
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Actually, it could make sense if by such measures we were able to achieve a
more e�cient use of a scarce resource to be reserved for diagnosing related to
treatment (a private/individual criteria contrasting to public/epidemic criteria).
The question must be put: is it correct to focus our attention in travellers and
their contacts at the beginning of the outbreak? Is e�ciency really boosted by
requiring two relevant symptoms of a list for potentially communitarian cases
and only one to people with epidemiological contacts? In the context of the
propagation of SARS-CoV-2, what are the consequences of such decisions? We
will address these questions implementing a model apt for answering them.

To set the grounds for our model, we analyse data collected by the Public
Health Ministry of Argentina, made available to us through the COVID-19 ini-
tiative under the Ministry of Science and Technology. The model incorporates
medical �ndings regarding the transmission of SARS-CoV-2 as well as actions
taken by the health authorities and to a certain extent the social behaviour of
the population. We apply the model to small slums (variously called in South-
America: villas miseria, villas de emergencia, cantegril, favelas, etc.) where the
conditions of homogeneous contact, frequently used to simplify the modelling
task, are closer to be ful�lled. We show how the model predicts epidemic circu-
lation below the detection level for surprisingly long periods of time. Also, we
illustrate that �average epidemics� are not good representatives to grasp the dy-
namics, and that the undetected (mild, unrecognised, presymptomatic, �asymp-
tomatic�) cases are in good proportion the result of public policies coupled to
the characteristics of the illness. The outcome of three forms of surveillance and
public action are comparatively analysed.

In Section 2 we describe the model, from its basis �supported in both biology
and social behaviour� all the way to the algorithm implementing a Markov Jump
process (Feller, 1940; Kendall, 1950). Results are presented in Section 3 and
discussed in the following Section 4. Section 5 �nally sums up the Conclusions.

2 The Model

2.1 Biological and social input

2.1.1 What is a COVID-19 case?

We review the evolution of the de�nition of �case� along with the development
of the pandemic. In many countries this de�nition emerges from the national
Health authorities, following recommendations from WHO. By January 27 there
were comparatively few cases outside China. Apart from special considerations
for sanitary operators, the de�nition of suspected case from the Italian health
authorities4 considered two situations: (A) severe acute respiratory infection
(fever, cough and request for hospitalisation) and presence in risk zones a few
days before the onset (at that moment mainly Wuhan/Hubei), or (B) acute
respiratory infection and either recent presence at Wuhan live animal market

4January 27th resolution accessed 2020-08-26
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or recent close contact with a con�rmed (positive PCR test) or probable case
(a PCR-tested suspected case without a conclusive result). By February 22nd
5 severity and hospitalisation were no longer required for (A) and dyspnea was
recognised among possible symptoms. By March 9th 6, the considered situa-
tions were three: acute respiratory infection (with at least one among fever,
cough and di�culty in breathing) without other aetiology and either (A) recent
presence in areas of local transmission of the disease or (B) close contact with
probable or con�rmed cases. The third situation considered (C) cases presenting
severe acute respiratory infection (fever and at least one symptom of respira-
tory disease) requiring hospitalisation and without another aetiology that fully
explains the clinical presentation. This new item acknowledges the existence of
the illness regardless of any presence in risk zones or close contact with probable
or con�rmed cases.

Also the concept of close contact evolved during the period. By January 31st
�risk contacts�7 considered only recent (within 14 days) travel or cohabitation
with a COVID-19 patient (apart from special considerations for sanitary oper-
ators). The concept evolved to that of close contact, becoming highly detailed
in what regards social distance (2m, 15 min) and hygiene already by February
27th 8.

At the end of May, speci�c instructions for contact tracing9 (already opera-
tive, though) had been developed.

The criteria for identi�cation of cases shifts focus along the pandemic. At
the beginning, the focus is in the �virus import� from other regions where it is
active, while the local di�usion becomes relevant only some weeks/months later.
The trade-o� in the identi�cation generates �classes� of contagion depending on
the criterion.

Along with the case criteria, surveillance and control criteria are developed.
At the beginning of the pandemic, passive surveillance (i.e., to wait for the
spontaneous appearance of patients, except perhaps for travellers) was the most
common attitude, while soon after many countries developed di�erent degrees
of contact-tracing (with varying success), even revealing preexistent �aws in the
various national health and care systems.

In Appendix A we show the evolution of the criteria in Argentina and its
relation with Italy's case.

The decision of what to consider a suspected case, and when further actions
are to be taken, is a critical one. However, it is not clear which is the overall
criteria, meta-criteria, adopted by Italy or Argentina, presumably upon rec-
ommendations of OMS. It appears that the meta-criterion is to keep an even
level of certainty of being a COVID-19 case for each individual case. It is then
pertinent to explore whether this goal is achieved or not and if such goal is
epidemiologically sound.

5February 22nd resolution accessed 2020-08-26
6March 9th resolution accessed 2020-08-26
7January 31st resolution accessed 2020-08-26
8February 27th resolution accessed 2020-08-26
9May 29th resolution accessed 2020-08-26
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PCR
Health workers

≥ 1 s P1s(±) ≥ 2 s P2s(±) F+ PF+(±) H PH(±)
Pos 29465 0.9835 23688 0.7907 13415 0.4478 2814 0.0939

Neg 32290 0.9796 23347 0.7083 9015 0.2735 2299 0.0697

OR 1.0040 1.1163 1.6373 1.3467

Tot 61755 0.9815 47035 0.7475 22430 0.3565 5113 0.0813

Table 1: Health workers. Number of con�rmed PCR-positive and negative cases
displaying at least one or two symptoms (1s, 2s) from the set given in the text.
F+: Cases with fever plus another symptom. H: cases requiring hospitalisa-
tion. Positivity odds in data set are 0.9089. PX(±) stands for the probability
of having one symptom or more of SARS-CoV-2 being positive (negative) for
each category. Odds ratios OR are the ratio of the odds under the symptoms
condition to the odds in the full set.

We discuss this issue with data from Argentina10. In Table 1 we report PCR
results for health workers after June 6th, from the data set of October 5th,
2020 with 62920 cases with symptoms information (29958 positive and 32962
negative)11. Health workers can be assumed to be more accurately monitored
than other patient groups. At June 6th, the criterion for suspicious case for
health workers was changed to presenting one symptom belonging to the set:
fever, cough, anosmia, dysgeusia, dyspnea, odynophagia (see Appendix A). In
August 4th, the set of symptoms was extended to headache, diarrhoea and
vomits.

For health workers, 98% of the cases that reported symptoms 12 presented
at least one symptom in the extended set. Among them, 48% were diagnosed
as COVID-19 cases using RT-PCR. Considering cases reporting at least two
symptoms, the number of cases falls by 23% but the positive cases within the
group move up only to 50%. If the criterion is �fever and one symptom�, the
case fall is 64% while the positivity within this smaller set raises to 60%. Similar
trends are found for the whole patient data set.

The data indicates that requiring more symptoms results in missing positive
cases. The improvement in positivity rates is outnumbered by the large or
very large fall in detected cases, with no signi�cant improvement in the use
of resources. At the early stages of the epidemic only hospitalised patients
with pneumonia were considered as possible COVID-19 cases, in such case the
detection ability drops to less than 10% of the cases showing symptoms.

10The Argentine Ministry of Health provides on a daily basis an anonymised copy of the
data set corresponding to the nation-wide reported cases in epidemic outbreak for the National
Science Council (CONICET).

11There are 493 cases with reported symptoms where none of the symptoms match the HS
expectation.

12Report of symptoms is not an obligation for the sanitary units
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2.1.2 Viremia, symptoms and contagiousness

An important ingredient of any model concerning the evolution of the disease
requires the description of a contagion mechanism at the individual level. It is
important to relate when, how much and how long a person is in a contagious
condition to the evolution of the disease in the agent.

Upon contagion, the infected individual gradually develops larger and larger
levels of virus, in pace with the viral reproduction capabilities in the infected
patient. Eventually, a maximum level is reached and the viremic load subse-
quently declines along with a recovery from infection. This process may be
interrupted at any time because of complications, be them virus-based or any
other.

We assume therefore that the viremic load is the biological origin of both
the severity of illness for an average infected individual and the capability to
transmit the virus. In simpler words, the quantity of virus in each individual
regulates how ill she/he is and with which e�ciency the infection can be passed
along.

Symptoms, severity and contagiousness are di�erent from person to person,
but they follow an approximate sequence from zero up to a maximum value,
subsequently decaying towards zero again. From the day of clear symptom
onset we adopt a model for the viremic load, based in early �ndings (Woelfel
et al, 2020; Böhmer et al, 2020) from the initial period of the pandemic where
individual cases could be traced in detail. We model the viremia from day
5th to 11th using a gamma distribution. The presymptomatic period (a period
usually of weak symptoms) is modelled in three stages, a �rst non contagious
compartment lasting a day in average, followed by a low contagion compartment,
lasting on average two days, with the same viremic level than the last day of
contagion and �nally followed by a compartment with higher contagiousness
lasting on average one day.

The duration and distribution of the presymptomatic days, from contagion
to symptoms, described in this form is supported by the distribution of the
times between the appearance of earlier symptoms and the day of diagnostic for
the data collected in Argentina (see Figure 2). In fact, the observed mean for
the data points is 3.86±0.5 days, plus one day without any symptoms, yielding
slightly less than �ve days before the onset of recognised symptoms and the
decision of swabbing.

After the presymptomatic period, symptoms usually appear clearly until
they gradually decline. We assume the symptomatic compartments to last in
average one day each, with viremic levels as in the �nal part of Fig. 1.

For the sake of dealing with a pandemic, symptoms in themselves are only
an ingredient. They facilitate the possibility of detecting infected patients, es-
pecially when the pandemic constrains the sanitary authorities to keep a passive
attitude. In any case, the appearance of symptoms on each individual depends
not only on the viremic load but also on the individual condition of each patient.

On the other hand, regardless of if and when symptoms appear, the two
processes driving the evolution of the pandemic are contagiousness and detec-
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Figure 1: Viremic levels displaying a two-day stage with low virus levels, followed
by a stage with higher viremic levels but still no detection symptoms. Bars
represent days, not stages.

tion. The �rst one is of course mandatory since there is no pandemic without
infections. Both these processes have a social component and a biological com-
ponent. The biological component was discussed above: We assume both the
probability of detection and the probability of contagion to be proportional to
the viremic levels of infected individuals, modelled according to Figures 1 and 2.
The modelling pro�le is summarised in Table 2. The social component re�ects
the ability of the sanitary authorities to enforce measures in order to (a) detect
infected individuals and reduce the chances of contagion (by isolation, hospi-
talisation, etc.) and (b) e�ectively in�uence social behaviour, aiming to reduce
the chances that infected, undetected individuals may transmit the disease.

2.1.3 The detection of cases as a function of the surveillance protocol

The decision of admitting a case as a probable case of COVID-19 depends not
only on the biological/health condition of the case (i.e., the viremic level, pres-
ence of symptoms, etc.) but also on the expectations of the health services, HS,
as we have discussed in Section 2.1.1 and Appendix A. Since the chances for a
contagious person to produce new cases depends on a-priori expectations, the
expectations change the removal rate of contagious people (e.g., by isolating the
person). Furthermore, the condition of being suspected a-priori is mostly hered-
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Figure 2: Distribution of time between initial symptoms and swabbing cal-
culated using 121223 entries corresponding to the cases during the month of
August 2020 (dots) and curve �t y(x) = 421627( (histogram). The observed
average time in Argentina is of ∼ 3.86 ± 0.5 days. The �tted curve is the
composition of two exponentially distributed stages, 2.10 and 1.86 days long in
average. It is important to understand that the data re�ects not only a biological
matter but it is also a�ected by public health decisions, the information of the
population and self diagnosing of the patient concerning the initial symptoms.
As such, the statistical error is not the most relevant error. At the beginning of
the outbreak the average time was longer than 5 days.
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Stage Duration (Days) Normalised viremic level

0 1 0
1 2.10 0.0406
2 1.86 0.1201
3 1 0.1695
4 1 0.1713
5 1 0.1413
6 1 0.1019
7 1 0.0667
8 1 0.0406

Table 2: Normalised viremic levels describing an average evolution of the disease.
The probability of contagion is assumed to be proportional to the viremic levels
along the di�erent stages. The levels enter the modelling of the probability
of detection as well (along with other important in�uences such as sanitary
policies). The levels are normalised so that

∑
i viti = 1, where ti is duration

and viviremic levels.

itary. The suspicion increases the probability of detection and the detection of a
case makes those infected by the case more likely to be detected. Let us call T ,
traceable, those with larger probabilities of detection a-priori, and U,untraceable,
those with smaller probabilities of detection. Let us further consider the limit
situation where all T are traced and detected with certainty and no U is ever
detected. Such an idealised, limit situation will result in two independent epi-
demics, for no T can ever produce a U case and reciprocally, no U can produce
a D case. No real situation is expected to reach this limit case, hence, in a
more accurate description U cases are detected with lesser probability and later
than T cases. Also, some T may escape tracing and detection when still conta-
gious. The inheritance of the tracing classes is then imperfect and there is only
one, mixed-type, epidemic. We represent this situation by a probability table
(written in matrix form)(

P (T by T ) P (T by U)
P (U by T ) P (U by U)

)
=

(
1− ε s
ε 1− s

)
The probabilities, P (X by Y ) indicate the probability for a susceptible person
infected by a contagious case of type Y of becoming a case of type X assuming it
was e�ectively infected. The non-negative quantities ε, s are not new parameters
since we have to satisfy that P (T by T ) is exactly equal to the probability of
a T case being e�ectively detected. The same can be said of P (U by U) with
respect to the undetectable cases U .

Since all health systems have limited resources and su�er di�erent epidemic
impacts, di�erent strategies are likely to appear. One of the goals of this
manuscript is to explore the impact of di�erent strategies on the (local) evolu-
tion of the pandemic. Schematically, we will consider three scenarios, labelled
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passive, intermediate and active representing di�erent policies for the detection
process.

In the passive policy intervention starts when and if the symptoms are clear.
The intensity of the perceived symptoms is assumed to be, on average, pro-
portional to the viremic state. A distinction is made between the T and U ,
being the HS's more prone to act for the T group than for the U group. The
passive policy represents the policies adopted during the early days of the pan-
demic (mid-February to mid-march 2020 in Europe), where the HS focused
attention on imported cases (travellers) and their contacts. The intermediate
policy re�ects the situation in which the HS become aware of the problem of
presymptomatic contagious cases, and begin to track oligo-symptomatic cases
in the T group (contacts of known cases). At the same time, it has been ob-
served a lowering on the requirements, in terms of a lesser number and a larger
set of symptoms, required for sanitary intervention (isolation). The active in-
tervention consists in one of two possibilities: either the T class is substantially
enlarged by including in it the contacts of contacts, as was done in Italy or by
dropping the distinction between U and T and acting (or strongly exhorting to
individual action) on cases presenting any symptom compatible with COVID-
19, no matter how weak, as it was the public advise of e.g., the Swedish HS13.
We will only model the second case.

2.2 Mathematical/Computational support

The general approach is based on a Markov-jump process following the setup of
the Feller-Kendall (Feller, 1940; Kendall, 1950) algorithm. The compartments
Xi, i = 1, · · · , N involved in the process are the di�erent classes of individuals
taken into account (to be described below) and the stochastic dynamics evolves
by expressing the number of individuals on each compartment as a function
of time. Transitions between compartments are given by Markov jumps trig-
gered by di�erent events and characterised by an event probability rateWα(X),
α = 1, · · · , E. The relation between events, compartments (populations) and
stochastic dynamics is given by

Xi(t) = X0
i +

E∑
α=1

nα(t)δ
α
i (1)

where X0
i is the initial condition for compartment i, nα(t) indicates the number

of occurrences of event α up to time t and δαi is an integer indicating how
each occurrence of event α modi�es the population in compartment i. For
the present problem, δ will take the values −1, 0, 1, meaning that e.g., one
infected individual is removed from the contagious process by isolation, etc.
The stochastic dynamics proceeds by establishing the behaviour of nα(t) .

General properties of Markov jump processes are assumed to hold for this
problem, in particular that events are independent of each other (although re-

13March 13th recommendation (in Swedish) General information (English) accessed 2020-
10�13
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Figure 3: Schematic view of compartments and events.

lated indirectly by the dependence of the rates on the populations). These
properties add up to the following two results (Feller, 1940; Durrett, 2001; So-
lari and Natiello, 2014; Natiello and Solari, 2017):

1. The waiting time to the next event is exponentially distributed with rate
R =

∑E
α Wα(X).

2. At the occurrence time indicated above, the probability of occurrence for

event α is Pα =
Wα(X)

R
.

A realisation of this stochastic dynamical process requires a good knowledge of
the probability rates Wα and the computation of one random number (expo-
nentially distributed) for the time of occurrence of the next event and another
(uniformly distributed) for selecting the event happening at that time. Upon
occurrence of each event, populations and consequently transition rates are up-
dated according to eq.(1). Reported curves are the average of a few realisations
of this process. Random numbers were generated with the Double precision
SIMD-oriented Fast Mersenne Twister (dSFMT) algorithm (Saito and Mat-
sumoto, 2009), implemented in C.

2.3 Details

The algorithm is implemented as a C-programme, fully available from github.
The compartmental structure is as follows (see Fig. 3):

There exist three classes of compartments, namely susceptible S, traceable
infected T and untraceable infected U . Infected individuals belong in several
sub-compartments describing the degree of evolution of their disease (or rather
their infective period). At each stage, they may proceed in the disease to the

12
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Event α Wα(X) Incidence matrix δαi

External contagion a
S

N
S: −1; if (r0 > η)T0: +1 else U0: +1

Contagion T → S βTV (k)Tk
S

N − 1
S: −1; if (r1 > ε)T0: +1 else U0: +1

Contagion U → S βUV (k)Uk
S

N − 1
S: −1; if (r2 > s)U0: +1 else T0: +1

Disease evolution T pr(Tk) Tk: −1; Tk+1: +1

Disease evolution U pr(Uk) Uk: −1; Uk+1: +1

Infective removal T rem(Tk) = BkT V (k)Tk Tk: −1
Infective removal U rem(Uk) = BkU V (k)Uk Uk: −1

Table 3: Transition rates and incidence matrix. V (k) indicate the viremic levels
at stage k. r1, r2 are uniformly distributed random numbers in [0, 1]. Other
quantities are described in the text.

next stage of infection (diagonal arrows) or be removed from the system by
any reasonable means, e.g., by being detected and isolated by the HS, by self-
isolation, hospitalisation, etc. (vertical arrows labelled R), thus ceasing in all
such situations to be a source of contagion. Infection may proceed either by con-
tact of T or U individuals with an S individual, or by �importing� the infection
from outside the system in consideration.

What regards infection by contact, the tracing of infections is usually not
complete, for various reasons. To take this fact into account, we assume that
a portion of infections by T individuals (of size ε < 1 in Table 3) may remain
undetected and also that a portion of infections by U individuals (of size s < 1 in
Table 3) will eventually become detected. The quantities s and ε were discussed
in Section 2.1.3 and will be further speci�ed below. Two additional uniformly
distributed random numbers r1 and r2 (in [0, 1]) are computed to decide these
outcomes (double arrows from S in Fig. 3), representing the probability pairs
{1− ε, ε} and {s, 1− s} respectively for T and U infected individuals.

For the �imported� infections taking place outside the system, the uniform
random number r0 distributes the resulting infected individuals among T and
U with proportions {1− η, η}.

2.3.1 Rates and actions

In Table 3 we describe the expressions adopted for the di�erent rates and their
action on the population (i.e., the nonzero values of the incidence matrix {δ}αi ).
Considering the nature of the available data, the time-unit is (day)−1, i.e., tran-
sition rates are given per day. In the table, N is the size of the population,
typically a neighbourhood or other region that can be safely assumed to be-
have homogeneously (basically, that any individual may in principle meet any
other individual; a natural assumption for working places, schools, etc.). Initial
conditions for all simulations is that most individuals (N − c) are in compart-
ment S while the remaining c are in T0or U0 (we assume c is typically around
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2 for N up to a few thousands). The �import� rate a
S

N
describes infected in-

dividuals undergoing contagion outside the system. We include in this event
the possibility of travellers bearing the infection when returning to the system
after a temporary absence, a group that has been important in global scale to
transfer the disease across continents, but is comparatively small for such stable
communities as those we consider.

The evolution of the illness is given by stages Tk, k = 0, · · · ,K − 1 and
similarly for U) describing the viremic level V (k) at each stage (Figure 1 and
Table 2). In this work, K = 9. pr describes the rate of passage to the next
viremic stage i..e., (pr)−1 is the average permanence of an individual on each
stage (second column in table 2). The factor βV (k) describes the contagion
rate per each encounter between a susceptible and an infected individual. In
principle, βT and βU may be di�erent but we have not explored that possibility.
The constant ε indicates what portion of the individuals infected by a T will
not be detected by the health services during the contagion phase of that case,
while similarly s indicates what portion of the individuals infected by a U will
eventually be detected by the control procedures. Similarly, the constant η
describes the distribution of imported cases among T and U compartments.
Since η is largely unknown we will only consider the extreme cases. We have η =
0 usually associated to long distance travels to/from regions of viral circulation.
For the case of slums, casual contagion within the same city but in e.g., di�erent
neighbourhood is expected to be the most frequent case, hence we adopt η = s.

Finally, rem is the rate of removal of an individual from stage k out of the
contagion chain. This rate also depends both on the viremic level and on the
HS strategies (giving di�erent choices for the factors dT (k), dU (k)). This part
of the model will be described in detail in the next Subsection.

The data usually discussed in the news and websites is the number of con-
�rmed COVID-19 cases. In the present model this data is represented by the
total number D of detected individuals, i.e., the outcome of all removal events
within the infective period. The model provides an estimate of the silent cases,
i.e., infected individuals of which the HS has no records. In the model these non-
detected infected individuals ND are given by the identity N = S +D +ND,
where N is the population size and S the number of susceptible individuals.

The outcome of the model is presented by computing a few realisations
(typically 100) of the Feller-Kendall algorithm. No matter how parameters are
chosen, there exists a non-zero probability of early disease extinction (as it is in
any Markov jump process), particularly when the onset of the epidemics contains
very few infected individuals (1 or 2 on a population of a few thousands). The
model allows for ruling out early extinctions, considering that the epidemics that
are tracked, and concern us, are those that avoid early extinction and come to
be noticeable.

The actual evolution of the pandemic is intrinsically stochastic. Borrowing
from the modelling language, there is only one �realisation� of the real process,
namely the one we are currently experiencing. There is no �second run�, al-
though many weakly coupled contagion chains may be running simultaneously
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within e.g. a larger city. With this in mind, we stress that the averaging of
realisations is not a substitute for the real process. It has a limited value, in
that it highlights features that are recurrent, while it smears out what is less
frequent. Moreover, no realisation of the stochastic process is �more true� than
any other. Predictions based only on the averaging of realisations may serve
as a clue about what to do, but policy decisions should take into account the
whole picture.

2.3.2 Contagion, removal and HS policies

We consider in detail the mechanisms of contagion and removal, as well as their
relation with both the evolution of the disease in the infective individual and
the HS policies.

Contagion within the system is taken to be strictly proportional to the
viremic levels V (k). The proportionality constants βT, βU may vary accord-
ing to social strategies and attitudes.

The eventual removal of an infected individual in the model is governed by
the competition between two mutually exclusive events. Either the individuals
evolve to the next stage in the viremic levels (i.e., they are still infected and
capable of contagion) or they are removed from the contagion chain for whatever
reason (detection, isolation, full recovery or death). At stage k, the probabilities
PXm (k) of moving to the next stage in the contagion chain and PXr (k) of being
removed from the chain for an individual of class X = {T,U}, can be described
(in the notation of Table 3) as:

PXm (k) =
pr(k)

pr(k) +BkX V (k)

PXr (k) =
BkX V (k)

pr(k) +BkX V (k)

= 1− PXm (k), k = 0, · · · ,K − 1

where BkX , X = {T,U}, model the HS policy adopted. In the present imple-
mentations, the factors BkX are set to zero for an initial subset [0, · · · , k0− 1] of
stages (k0 ≥ 1) and take the same positive value BX for the remaining stages,
k ∈ [k0,K − 1]. BX relates to the probability of X being e�ectively detected
(named 1− ε and s in Section 2.1.3) through Eqs.2 below.

At the �nal stage, K−1, the overall action of both competing events is a re-
moval from the contagion chain. Individuals that have not been removed at any
previous stage, have e�ectively participated in the contagion chain during all of
their contagious period. These individuals were not detected by the HS policies
while they still were active in the contagion chain. The overall probability of
detection can be computed as follows. Let QXk be the probability of removal
up to and including stage k for infected individuals of class X = {D,U} . Set
further, QX−1 ≡ 0. For any stage i,

QXi = QXi−1 + (1−QXi−1)PXr (i), i = 0, · · · ,K − 1,
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which can be restated as QXi =
(
1− PXr (i)

)
QXi−1 + PXr (i). The total proba-

bility of removal during the infective period is QXK−1, while the probability of
being detected at some point during the infective period for individuals in class
T,U is given by

QTK−1 = 1− ε, QUK−1 = s. (2)

Note that QTK−1 and Q
U
K−1 are rational functions, the ratio of two polynomials

of degree K − k0.
Eq. 2 relates the value of the constants BT , BU for the di�erent HS policies

with the probability of detection. The di�erences in dealing with T and U
infected individuals follows from the di�erences between QTK−1 and Q

U
K−1, being

the HS's more prone to act for the T group than for the U group. We distinguish
three main policies:

Passive policy Intervention on the U class concerns only severe cases (e.g.,
requiring hospitalisation) in a situation where the viremic levels of the patient
are comparatively high. In the model, intervention for the U class starts at
k0 = 3 (stage 3 in 2).

Intermediate policy The conditions required for sanitary intervention (iso-
lation) in the U group are broadened in terms of a lesser number and a larger
set of symptoms and possibly intervention at an earlier stage. Active (pre-
ventive) intervention, as in contact tracing, starting at stage k0 = 0 (or 1), is
implemented for the T group. It re�ects a situation in which the HS become
aware of the problem of presymptomatic contagious cases, and begin to track
oligo-symptomatic cases in the T group (contacts of known cases).

Active policy No distinction is made between U and T regarding actions of
the HS. One symptom is enough to trigger sanitary actions. Interventions start
at stage k0 = 0 (or 1).

Simulation scenarios In the next section we discuss a few scenarios based
on these policies, relating to data from Table 1. We consider three detection
e�orts, that we may call Low, Medium and High (L,M,H) for each scenario.
We identify the T group with health workers, who for practical reasons were
better monitored than other individuals. A �rst scenario, labelled I (for �Ideal�)
corresponds to the active policy, with three di�erent e�ort levels, represented by
BX such that the detection probability 1− ε = s takes the values 0.21, 0.61 and
0.79. The latter corresponds to the fraction of con�rmed cases among health
workers displaying one symptom of the extended list of Section 2.1.1. However,
registration of symptoms was optional. Therefore, 0.79 is only a crude lower
bound to the ability of detecting cases among health workers (which are subject
in part to routine testing). A second scenario of intermediate character, labelled
F+ (for �fever plus other�), corresponds to the same detection probabilities as
above for the T group, whereas for the U group the detection probabilities s are
set to 0.10, 0.28 and 0.36. The latter corresponds roughly to the proportion of
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Name Ideal I Fever+ F+ Hospital H

a 0.002 0.002 0.002
βT = βU 2.5 2.5 2.5
BT 0.24,1.00,1.76 0.24,1.00,1.76 0.24,1.00,1.76
k0T 1,1,1 1,1,1 1,1,1
BU 0.24,1.00,1.76 0.10,0.34,0.46 0.03,0.09,0.12
k0U 1,1,1 1,1,1 3,3,3

Table 4: Parameter values used in various simulation scenarios, in the variants
low, medium and high respectively. B is called det in the code and k0 is called
delay.

con�rmed cases among health workers displaying fever plus another symptom in
Table 1. The third scenario, labelledH (for �hospital�) is still unaltered for the T
group relative to the previous two, while the U group is subject to the Passive
policy (thus assuming that only highly viremic cases have a chance of being
detected, and only from stage 3), with detection probabilities s set to 0.02, 0.06
and 0.08. The latter corresponds roughly to the proportion of con�rmed health
worker cases that were hospitalised in Table 1. Hence, the High intensity level
of the three scenarios relate to detection policies adopted by HSs at di�erent
periods of time.

Unless otherwise stated, all simulations are performed with 5000 individuals,
of which two are initially contagious in the T compartment (it makes only
imperceptible di�erence to set the initial contagion in the T group or the U
group), while the contagion rate is set to β = 2.5 and there is a small rate of
external contagion (ext = 0.002).

A list with the parameter values used in di�erent scenarios can be found in
Table 4. Other necessary input data for running the simulations is: number
of realisations (usually 100), length of simulation in days, initial condition for
populations S, T, U (usually 4998, 2, 0), random number seed, �ag to discard
�early� extinctions (positive integer) and maximal duration to be considered
�early� (usually 19 days).

3 Results

3.1 General Results

The following results follow from the structure of the model. There is essentially
nothing left to prove, just following the construction in 2.3.2.

Lemma 1. QXK−1 is a monotonically increasing function of BX .

In modelling language, BX senses the e�ciency of the detection process.

Lemma 2. For �xed BX , Q
X
K−1 is decreasing with increasing k0.

17

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.06.21249318doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.06.21249318
http://creativecommons.org/licenses/by/4.0/


 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100  120  140  160  180

Figure 4: Fraction of susceptible individuals for 100 realisations. Left: Low,
constant detection. Right: Increasingly sharp detection

A late start stage for the detection process can be interpreted as a HS policy
that is only capable of taking care of seriously ill cases, with highly developed
viremic levels. The more stages an individual passes without any policy action,
the lower the overall chances of detection within the infective period.

3.2 Simulations

Simulation results allow us to compare the outcomes of di�erent policies on an
equal footing.

3.2.1 Spread

Before considering averaged results let us sense the spread of outcomes from
di�erent realisations of the process. In Figure 4 we show the fraction of sus-
ceptible individuals as a function of time for 100 realisations of the stochastic
process in two di�erent con�gurations.

The left panel corresponds to an situation where the probability of detection
while still contagious is 21% for the T -group and 9% for the U -group, with β =
2.5. All outcomes display a sharp fall in the number of susceptible individuals.
Notice however the spread in time: The fastest and slowest realisations di�er
in about 40 days, corresponding to 100% at the 0.5 level. The right panel
corresponds to a weaker contagion situation (β = 1.75), where the probability
of T -detection increases every 60 days, from 0.6 through 0.71 up to 0.79 (all
detections starting on stage 1), while the U -detection goes from 0.07 through
0.58 (with detection starting on stage 3) up to 0.79, with detection starting on
stage 1. Notice here the spread in the outcome. While some realisations display
almost no variation in the fraction of susceptible individuals, some others achieve
a fall of over 50%. It is worth to keep in mind that the policy of progressively
increasing the detection e�ort has been the rule in practical cases.
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Figure 5: Average growth rates for 100 realisations at the beginning of the
epidemics. Left: H simulations. Red (log(N − S)) and green (logD) curves
correspond to Medium e�ort while Blue (log(N − S)) and magenta (logD)
curves correspond to High e�ort. Right: F+. Red (log(N − S)) and green
(logD) curves correspond to Low detection e�ort while Blue (log(N − S)) and
magenta (logD) curves correspond to Medium detection level.

3.2.2 Initial growth

As in most models with homogeneous contact, the initial growth of the epidemic
outbreak is almost exponential and this regime lasts for about two months in
the present simulations with about 5000 initial susceptible individuals. However,
it is worth to indicate that the growth exponent of infected cases and that of
detected cases is not the same, being the latter smaller than the former, specially
in less e�ective regimes as H and F+. As a consequence, basic reproductive
numbers inferred from the early development of the pandemic that had assumed
that detected cases are roughly proportional to the actual cases underestimate
the growth rate. See Figure 5. Note that the gap between growth rates is
larger for the lower detection e�ort as compared with the higher (red/green vs
blue/magenta pairs).

3.2.3 Undetected/detected ratios

The ratio between total cases and detected cases of COVID-19 has been the
subject of several works. In particular Malani et al (2020); Muñoz et al (2020)
address the situation in slums, reporting ratios of 10 : 1 (Malani et al, 2020)
and 5 : 1 (Muñoz et al, 2020). The latter study was performed at least one
month after �most cases� occurred, although with the outbreak still running.
The majority of the registered cases had occurred before June 6th., when the
tracking method in use was of type F+. After June 6th., the tracking sharpened
to �any two symptoms�, a medium form of I. We show averaged ratios in Figure
6 but it is worth to keep in mind that there are usually large �uctuations present.
The �gure shows that in all situations there is a tendency to a sharp increment
of the ratio at the beginning of the outbreak followed by a maximum level and
subsequently a monotonic decrement.
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Figure 6: Average ratio of total cases to detected cases (100 realisations) under
eight di�erent control measures implemented with moderate e�ciency.
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Figure 7: Daily cases. Observable delays in the development of outbreaks for
three individual realisations. Left, F+M policy presenting a �long� waiting time
until the outbreak develops. Centre, IH policy with immediate second wave.
Right, IH policy with delayed second wave.

3.2.4 Dynamical mechanisms

The most remarkable features present in the simulations are the diverse forms in
which the stochasticity and the particularities of the contagious process manifest
globally. Despite being seeded with two traceable cases, it is not uncommon
(probability larger than 0.01) to observe the outbreak to remain with sporadic
cases up to 50 days and only then the recognisable bell-shaped of the daily
cases begins. We show one of such cases in Figure 7 left panel. In the centre
panel we show a �two waves� outbreak under policy IH and a di�erent shape of
�two waves� with a long delay between them. The di�erence among realisations
suggests that stochastic epidemic outbreaks are not just an �average outbreak�
plus noise.

As expected, the epidemic size depends strongly on the policy applied. It is

20

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.06.21249318doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.06.21249318
http://creativecommons.org/licenses/by/4.0/


IdealL Total

Total

F
re

qu
en

cy

0 1000 2000 3000 4000 5000

0
10

20
30

40
50

60

IdealM Total

Total

F
re

qu
en

cy

0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0

IdealH Total

Total

F
re

qu
en

cy

0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0

Figure 8: Transition of probability (frequency, %) distribution for the I (Ideal)
policies as a function of the intensity of control measures. Left, low detection
rate. Centre, medium detection rate. Right, high detection rate.

interesting to show the transition of the probability distribution as a function of
the intensity of the control measures. In Figure 8 we show histograms after 100
simulations for the total number of infections in a population of 5000 individuals.
While extinctions of the epidemic with a low number of cases are always possible,
they are infrequent in the Low intensity case, they begin to be noticeable in
the Medium intensity and are dominant in the High intensity situation. This
transition is known as the stochastic equivalent of the transition in deterministic
equations when the basic reproductive number moves from above one to below
one and has been discussed elsewhere (Nåsell, 1996, 2002, 2001).

The number of detected cases, i.e., people diagnosed as infected with SARS-
CoV-2, depend in no trivial form of the detection policy and intensity. We
show in Figure 9 that the relation is not monotonic. In general, an increase in
detection e�ciency from medium to high intensity may result in a decrease in
the number of cases detected (policies F+ and I) but also in an increase (H).
In fact, the design of the model only assures that the probability of detection
increases with increasing intensity. If the total number of cases is low, the total
number of detected cases will also be low, despite a higher detection probability.
We can see as well that the e�orts made with a passive policy (H) produce only
little changes in the development of the epidemic.

4 Discussion

In the present model biological aspects are intertwined with sanitary policies.
These policies are not considered in terms of their desired e�ects traduced as
e�ective parameters of an otherwise free running epidemic but rather mecha-
nistically, changing not only parameter values but the structure of the model
as well. By doing so, we allow policies to manifest not only what they were
intended for, but also unexpected features. The same can be said with re-
spect to the coupling between intrinsic randomness and dynamics which results
not only in the, usually expected, �decoration� with daily �uctuations of the
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Figure 9: Relation between detected and total cases corresponding to the aver-
age over 100 realizations of the policies H, F+ and I, with three intensity levels
labelled 1, 2, 3 in the plot and corresponding to Low, Middle and High detection
levels.

outbreak but presents low-frequency �uctuations as well. These low-frequency
�uctuations account, by themselves, for the possibility of silent circulation of the
virus for (remarkably) prolonged intervals of times as well as for the awakening
of extinguished outbreaks due to contagion outside the simulated community.
The e�ective coupling of control measures and intrinsic randomness brings us
into the realm of possible/predictable developments of outbreaks that cannot
be described with the standard (intuited) approach.

Although it should be clear from the setup adopted in this work, it is worth
recalling that all realisations of a stochastic model are on an equal footing. Any
of them respond to the process in its own right. A strength of the present
approach is the capability of displaying a variety of possible epidemic outcomes.
Indeed, Figure 4, Right and 7 show that dramatic di�erences in epidemic size (for
the same stochastic process), �second waves� and late development of outbreaks
are not unlikely to occur.

Taking averages over many realisations projects out part of the information
given by the stochastic process. Yet, in some cases, averages may be illustrative
of general trends. In particular, Figures 5 and 6 show that the ratio of unde-
tected to detected cases is not constant in the course of an epidemic and even
worse, the growth rate of undetected cases is larger than that of detected cases.
Hence, epidemic size is likely to be underestimated when computed through
recorded cases. Finally, Figure 8 illustrates how the stochastic outcomes can be
translated into probabilities of e.g., having a given epidemic size.
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One important goal of this work is to assist in the issue of resource allocation
when dealing with a pandemic. HSs throughout the world di�er in equipment,
logistic capabilities, �exibility, etc., depending on the preexisting policies and
infrastructure. The working conditions di�er even locally within the same city,
as discussed above. Where should resources go? Will low-cost (and lower e�-
ciency) strategies under a longer period of time be preferred to high-cost (and
higher e�ciency) strategies with a shorter time-span?

In our model we mimic the HS decisions by considering two groups of in-
dividuals: Those that are early identi�ed and recognised as potential patients,
T , and the rest, U , of which the HS is initially unaware. We do not deal with
�nancial costs, but we can compare highly-e�ective and less e�ective strategies
throughout time. Preventive intervention strategies accrue costs in terms of
isolating contagious people and testing. The kind of intervention considered
in the present work is based upon tracking oligosymptomatic people but not
searching for completely asymptomatic cases, thus a good indicator of costs is
the total number of cases detected. The best strategy of all those considered
in this respect is the I strategy with an e�cient, H, search method, which is
able to inhibit the development of outbreaks. The strategy has fewer detected
cases and smallest overall size ( see Fig. 8, right panel and Figure 10, upper left
panel).

We compare two distributions of detected cases for equal e�ciency of detec-
tion, see Figure 10. The comparatively few detected in the I panel of Figure 10
constitute most of the outbreak, while F+ adds a larger number of undetected
cases. A short side of the I policy is that the e�ective su�ocation of an epi-
demic outbreak in slum areas cannot by itself prevent recurrent late outbreaks
triggered by external contagion (see Figure 11). Hence, the alert state of the
HS will have to be maintained for longer times. However, the advantages of
the I strategy under a medium or low detection success, thus having a higher
failure rate in avoiding outbreaks, is not so considerable. As it can be seen in
the �gure, combining a suboptimal policy with a suboptimal tracking (F +M ,
lower right panel) is expected to be more cost e�ective than an optimal policy
with suboptimal tracking (IM , lower left panel) in terms of detection, although
the overall size of the epidemic is expected to be lower in the I situation, while
the necessary social e�ort is larger.

Despite our simulations have been seeded in all cases with two infected people
and only epidemic outbreaks that do not get extinguished for 19 days have been
considered, some runs do not develop an outbreak and some others produce
an outbreak only because of external contagion (from outside of the simulated
neighbourhood), an e�ect than can occur in a completely di�erent time scale as
is shown in 11

Also, we illustrate that �average epidemics� are not good representatives to
grasp the dynamics, and that the undetected (mild, unrecognised, presymp-
tomatic, �asymptomatic�) cases are in good proportion the result of public poli-
cies coupled to the characteristics of the illness.

Limitations: As mentioned previously, one of the assumptions of the present
model is the homogeneity of contacts through the population. For that reason,
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it only makes full sense when applied to small communities. The proper path to
surpass this constraint is to raise the level of detail, identifying subpopulations
with some common property (e.g., age segregation, mobility, local con�nement,
etc.) that are in weakly mutual interaction. This is a costly approach from the
point of view of experimental design, since each new level of detail demands a
detailed understanding of the speci�c interactions. Some e�ort in this direc-
tion has been to identify �superspreaders�, a possibility that recently became
interesting. (Edholm et al, 2018)

5 Conclusions

The modelling goal of this work was to conceive mechanisms for the interplay
of the epidemic disease and the adopted social measures. The epidemic is not
just biologically given in terms of e.g., a basic reproductive number or a herd-
immunity level that are taken to be virus-speci�c and independent of social
organisation. The belief in a biologically given epidemic leads to the false alter-
native between herd-immunity and vaccine, with the hidden assumption that
social behaviour cannot (or must not) be modi�ed. On the contrary, this work
suggests that what we (collectively) do in�uences the level of risk to which we
are exposed. Social behaviour can modify epidemic outcomes (Bavel et al, 2020).

We observe that an increment in the number of daily detected cases does not
necessarily imply an improvement on how the epidemic is being managed, nor
a worsening of the outbreak. Case-detection cannot be understood separately
from the HS policy. Lower detection may be an indicator of success in the proper
context. Hence, to translate the statistics for one country to another country is
far from straightforward. More locally, the transfer of information from detected
(registered) cases to estimated number of cases from seroprevalence studies is
not independent of the adopted HS policy and depends as well of the timing
with respect to the development of the outbreak.

Randomness plays a substantial role in COVID-19 dynamics, a role that
departs from the signal+noise analysis framework. Low frequency, or coherent
�uctuations, are relevant at the level of outbreaks in slums and there is no reason
to believe the same is not going to be true in larger, heterogeneous, settings. The
immediate consequence is that averaging and uncontrolled �approximations� to
the average outbreak will be aligned with intuitions but misaligned with a reality
displaying a largely unpredictable form. The stochastic behaviour is a�ected as
well by the social management of the epidemic, coupling two usually neglected
contributions and making prediction of outcomes even more di�cult.

The intervention of health authorities had been �from below� in most coun-
tries. By �from below� we mean a sequence of interventions going from non-
intervention and passing through increasing levels of action until reaching lock
downs in desperation. Such an approximation has to be revised, it is an ap-
proach that privileges something di�erent than people's health. If our model
is correct, it is possible to control the outbreaks with interventions that tar-
get mostly the symptomatic population. Such a method will have to target

25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.06.21249318doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.06.21249318
http://creativecommons.org/licenses/by/4.0/


for isolation of any one presenting a single symptom of those compatible with
COVID-19. The cost of more certainties is to lose control of the outbreak, be-
ing forced to apply lock downs, thus immobilising the productive forces of the
healthy people rather than the comparatively small group that is potentially
infected by SARS-CoV-2.

The decision of requiring more symptoms to declare a case as COVID-19
suspect whenever the patient has no identi�ed contact with con�rmed cases
facilitates the circulation of the virus even when a highly e�cient detection
protocol is used.

As an ethical matter, asymptomatic cases are better considered as unde-
tected cases. The term �asymptomatic� puts the blame on the virus and helps
to dispense social failures. In contrast, �undetected� places the burden on society
and should help to �x attention in what we can do better.
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A Criteria of suspicious case in Argentina

The early evolution of the criteria (we omit the speci�cations for sanitary oper-
ators) for a case to be suspicious in Argentina is as follows (we indicate corre-
spondence with Italy's resolutions):

February 29, 2020 (Corresponds to Italy's January resolution)
There are two ways to be considered a suspected case:
1. The person has fever and signs of respiratory infection (cough, di�culty in
breathing) and a requirement for hospitalisation
and no other aetiology that fully explains the clinical presentation and a
history of travel or residence in mainland China in the 14 days prior to the
onset of symptoms.
2. The person has fever and signs of respiratory infection (cough,
odynophagia, di�culty in breathing) and either
a history of travel or residence in the province of Hubei (China) in the 14 days
prior to the onset of symptoms
or known close contact with a probable or con�rmed case of COVID-19
infection, in the 14 days prior to the onset of symptoms
or exposure in a health centre in a country where con�rmed cases of
COVID-19 have been attended, in the 14 days prior to the onset of symptoms
or visited or worked in a live animal market in any city in China.
�

March 5, 2020 (Corresponds to Italy's late February resolutions)
The person has fever and one or more respiratory symptoms (cough, di�culty
in breathing, odynophagia) without another aetiology that fully explains the
clinical presentation, and that in the last 14 days either has been in contact
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with con�rmed or probable COVID-19 cases or has a history of travel or
presence in areas with local transmission of SARS CoV-2
�

March 16, 2020 (Corresponds approximately to Italy's March 9th resolution)
In addition to the previous situation, a new suspected case begins to be
considered: Any person with severe acute respiratory disease who requires
mechanical ventilation due to their respiratory symptoms, without other
aetiology that explains it, even without epidemiological link.
�

March 21, 2020
Travel history to speci�c countries is substituted by travel abroad.
Speci�cations are given for severe acute respiratory disease, de�ned as
pneumonia and one of the following:
Respiratory rate:> 30 / min,
Sat O2 <93% (ambient air),
Mechanical assistance requirement,
Increase in in�ltrates> 50% in 24-48 hours,
Altered consciousness,
CURB-65≥ 2 points,
Unit of Intensive Therapy requirement,
and without another aetiology that explains the clinical picture.
�

March 30, 2020
The issue of travel or residence in areas of local transmission (either
community or by conglomerates) of COVID-19 in Argentina is added.
In the case of pneumonia, the other conditions raised on March 21 are no
longer required.
�

April 8
Cases added:
Health workers presenting fever and and one symptom among (cough,
odynophagia or di�culty in breathing)
�

April 16, 2020
To the requirements raised on March 5, in the case of symptoms that could
accompany fever, the following is added: anosmia/dysgeusia.
�

May 13
Anyone presenting fever (37.5ºC or more) and one or more of (cough,
odynophagia, di�culty in breathing, anosmia, dysgeusia) of recent
presentation, without another clinical explanation AND precedents of
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travelling to (or residence in) places with viral circulation or contact with
con�rmed cases of COVID-19
Anyone presenting anosmia/dysgeusia is to be observed by 72hs and then
tested.
Health workers with two or more of the described symptoms.

June 6
Anyone presenting two or more of (fever -37.5ºC or more-, cough,
odynophagia, di�culty in breathing, anosmia, dysgeusia) AND (having being
present in a zone with viral circulation OR residing in a �popular
neighbourhood� -slum-) OR requiring hospitalization)
Health workers and any with close contact with a COVID-19 case presenting
ate least one symptom.
�

August 4
Three symptoms added to the set: headache and vomits and diarrhoea.
�

September 11
Added symptom: myalgia
Anyone presenting fever (37.5ºC or more) and one or more of (cough,
odynophagia, di�culty in breathing, anosmia, dysgeusia) of recent
presentation, without another clinical explanation.
Anyone presenting anosmia/dysgeusia.
For health workers and inhabitants of �popular neighbourhoods� the requisite
is of one symptom.
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