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An Ebola virus disease model with fear and environmental transmission dynamics
M.L. Juga, F. Nyabadza,F. Chirove

• Due to its high case fatality rate, EVD undoubtedly instills fear in the inhabitants of any
affected community.

• We propose an Ebola model with fear, which considers the pathogens in the environment to
quantify the effect of fear and environmental transmission on the EVD disease dynamics.

• The fear of death from Ebola is proportional to the Ebola disease transmission rate.
• At high levels of fear, the number of EVD cases decrease.
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ABSTRACT
Recent Ebola virus disease (EVD) outbreaks have been limited not only to
the interactions between humans but also to the complex interplay of the en-
vironment, human and socio-economic factors. Changes in human behaviour
as a result of fear can also affect disease transmission dynamics. In this paper,
a compartmental model is used to study the dynamics of EVD incorporating
fear and environmental transmission. We formulate a fear dependent contact
rate function to measure the rate of person to person, as well as pathogen
to person transmissions. The epidemic threshold and the model equilibria
are determined and, their stabilities are analysed. The model is validated by
fitting it to data from the 2019 and 2020 EVD outbreaks in the Democratic
Republic of Congo. Our results suggest that the fear of death from EVD may
reduce the transmission and aid the control of the disease, but it is not suf-
ficient to eradicate the disease. Policymakers need to also implement other
control measures such as case finding, media campaigns, Quarantine and in-
crease in the number of beds in the Ebola treatment centers, good laboratory
services, safe burials and social mobilisation, to eradicate the disease.

1. Introduction
Ebola virus is a filovirus that causes severe hemorrhagic fever in humans and is believed to

be transmitted to humans by animals, Feldmann and Geisbert (2011); Muyembe-Tamfum et al.
(2012). Individuals at risk of infection can also contract EVD from the environment by handling
or coming into physical contact with pathogen infested objects. Once an individual is infected with
the disease, they can develop symptoms after 2 to 21 days of being contaminated, and the infection
can last from 4 to 10 days, Astacio et al. (1996). Infected individuals usually have symptoms like
headaches, anorexia, lethargy, aching muscles or joints, breathing difficulties, vomiting, diarrhoea,
stomach pain, inexplicable bleeding or any sudden inexplicable death, WHO (2014a). Depending
on the strength of their immune system, an infected individual can either die immediately or re-
cover after treatment. Even though, research has shown that the virus usually lingers in the semen
of somemale survivors between about 6-9 months after recovery, Gallagher (2015), recovered indi-
viduals become immune to the virus strain they were infected by for at least 10 years, CDC (2015).
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Several mathematical modelling studies have been carried out to understand the dynamics and con-
trol of EVD, Khan et al. (2015) used a deterministic SEIHR (Susceptible–Exposed–Infected
–Hospitalised–Recovered) model which differentiates high-risk (e.g. health-workers) and low-risk
populations. They estimated the effective contact rate by using an ordinary least-squares estimation
to obtain the optimal value of the transmission rate and an estimate of the reproduction number,
R0. In some studies, SEIR models were proposed to fit data from the outbreaks in Congo and
Uganda, Juga and Nyabadza (2020); Chowell et al. (2004). The model in Chowell et al. (2004) was
extended by Legrand et al. (2007), by adding two new compartments for the hospitalized and Ebola
deceased individuals who have not yet been buried. In other studies, Althaus (2014); Barbarossa
et al. (2015); Lewnard et al. (2014); Djiomba Njankou and Nyabadza (2017), the effect of anti-EVD
control measures such as media campaigns, increasing hospitalization, timely burial of people who
died from EVD, distribution and use of protective kits in households were incorporated.
Due to its high case fatality rate, EVD undoubtedly instils fear in the inhabitants of any affected
community. According to a Bulletin of the WHO in 2016, Van Bortel et al. (2016), infected in-
dividuals are psychologically affected and their relatives are traumatized by the infection and the
death of the infected individuals. As a result of the fear, inhabitants may become more cautious and
resort to preventive measures against the disease such as avoiding physical contact with infected
individuals, eating of bush meat, keeping away from public places like schools, hospitals, market
places and burial places of the Ebola deceased. These changes in human behaviour resulting from
fear of the EVD may lead to a decrease in the human to human, and human to pathogen contact
rates. This has significant effects on the disease dynamics and evolution, which the above men-
tioned mathematical models and other early Ebola models did not consider. Besides, most of them
do not take into account the contaminated environment by pathogen infested objects (objects that
have come in contact with infected individuals, such as, contaminated syringes used in health care
centres, CDC (2014); WHO (2014b,c), bed linen contaminated by infected human’s stool, urine,
vomits or sweat of infected individuals, CDC (2014); WHO (2014b)). In this study, we propose an
Ebola model with fear, which considers the pathogens in the environment with the aim of quanti-
fying the effects of fear and environmental transmission on the EVD disease dynamics.
The rest of the paper is organised as follows: The introduction is given in Section 1, followed by the
model formulation in Section 2. In Section 3, we state and prove the basic properties of the model,
find the model steady states and carry out stability analysis of the model steady states. Finally, we
carry out numerical simulations in Section 4 and draw relevant conclusions from our results.

2. Model formulation
We propose a deterministic model with six independent compartments, namely: susceptible

(S), infected (I), recovered (R), deceased (D) and a compartment for the pathogens in the envi-
ronment (P ). EVD is assumed to be transmitted either by person to person contact or individuals
coming in contact with pathogen infested objects (person to pathogen contact). In the event of an
Ebola outbreak in a community, the transmission rate is assumed to be reduced by fear that is pro-
portional to the number of deaths. This assumption is driven by the notion that individuals become
more cautious as they experience more deaths from EVD within the community. This leads to a
decrease in the contact rate. We model the level of fear by the parameter �, which measures the
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impact of fear per dead body. The parameter � > 0 with � = 0 representing no fear at all, while
0 < � ≤ �̃ shows increasing levels of fear to a maximum of �̃. It is plausible to believe that the
effective contact rate will reduce with increased levels of fear so that,

� =
�1P
K + P

+
�2(I + �1H + �2D)

1 + �D
, (1)

whereK is the half-saturation constant, that is, the concentration of pathogens that can cause a 50%
chance of infection. Here, �1 and �2 are the effective contact rates between susceptible individualsand the pathogens in the environment and between susceptible individuals and infected persons
that leads to an infection respectively.
The recruitment of susceptible individuals occurs through birth or immigration at a constant rate �.
Susceptible individuals become infected with the Ebola virus at a rate �. The infectious individuals
can either recover at a rate �1, or are hospitalised at a rate �2 or die at a rate �3. We assume that
hospitalised individuals are also infectious but with a relatively lower infectivity �1, compared to
that of the deceased and infectious individuals �2, thus, 0 < �1 < �2, with 0 < �1 < 1. Individualsin the hospitalised class can either recover at a rate 1 or die of EVD at a rate 2 and the dead bod-ies of the deceased are safely disposed at a rate �. Infected individuals and dead bodies of Ebola
patients shed pathogens into the environment at rates �1 and �2 respectively, while pathogens in
the environment decay at a per capita rate �. We assume that people die from natural causes at a
rate �. The compartmental diagram for the model is shown in Fig.1. The model derivation is also
based on the following additional assumptions:
The only host population considered in this model is the human population. Animals are not con-
sidered as part of the environment, this is justified by the fact that wild animals such as monkeys,
apes and duikers, which are also reservoirs for the Ebola virus live in the forests far away from
the human habitats, hence there is very little contact between humans and these animals. By def-
inition, the environment is a finite space, thus, it has a carrying capacity. Therefore the increase
in the amount of pathogens in the environment as the rate of infection increases is non-linear and
saturating, hence the use of a saturating response function in the force of infection. The fear fac-
tor does not affect the movement of infectious individuals from the infectious to the hospitalised
compartment and from the hospitalised to the dead compartment. This is because naturally, people
always take their sick relatives to the hospital irrespective of their condition. Also, a sick person
is usually not known to have the Ebola disease until after proper diagnosis in the hospital. The
hospitalised individuals are confined in controlled environments and are handled by professionals
with protective equipment to handle Ebola patients and dead bodies of Ebola deceased individuals.
As such, the level of fear of contracting the disease from the hospitalised individuals is very low
and assumed negligible. Also due to their relatively lower infectivity, we assume that the rate at
which the hospitalised individuals shed pathogens in the environment is negligible.
The compartmental diagram together with the model assumptions give rise to the following system
of differential equations:

dS
dt

= � − (� + �)S, (2)
dI
dt

= �S − �1I, (3)
ML Juga et al.: Preprint submitted to Elsevier Page 3 of 20
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Figure 1: The model diagram for EVD.

dH
dt

= �2I − �2H, (4)
dD
dt

= �3I + 2H − �D, (5)
dP
dt

= �1I + �2D − �P , (6)
where �1 = � + �1 + �2 + �3 and �2 = � + 1 + 2 with initial conditions, S(0) > 0, I(0) ≥ 0,
H(0) ≥ 0, D(0) ≥ 0, P (0) ≥ 0, for all t ≥ 0 and the recovered class is considered to be redundant.

3. Properties and analysis of the model
3.1. Well posedness

We show that the system is well posed by showing that if the system starts with non-negative
initial conditions (S0, I0,H0,D0, P0), then the solutions of (2)-(6) will remain non-negative for all
t ∈ [0,∞) and that these non-negative solutions are bounded. We thus have the following theorem.
Theorem 1. Given that S0 > 0, I0 ≥ 0, H0 ≥ 0, D0 ≥ 0, P0 ≥ 0 and � > 0, the solutions S(t),
I(t),H(t), D(t) and P (t) of the system (2)-(6) will always be non-negative.

Proof 1. For the given initial conditions, the first equation gives

S(t) ≥ S(0) exp
(

−
(

∫

t

0
�(�)d� + �t

))

> 0,
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using the Grownwal inequality. From (3), we have

I(t) ≥ I(0) exp
(

− �1t
)

≥ 0.

Similarly,

H(t) ≥ H(0) exp
(

−v2t
)

≥ 0, D(t) ≥ D(0) exp
(

−�t
)

≥ 0 and P (t) ≥ P (0) exp
(

−�t
)

≥ 0.

The solutions of the system (2)-(6) are thus non-negative for any given non-negative initial condi-
tions.

We now prove the boundedness of the solutions of the system (2)-(6).
Theorem 2. Suppose m(t) = S(t)+I(t)+H(t) and the initial conditions for system (2)-(6) satisfy

m(0) ≤ mi, D(0) ≤ Di, P (0) ≤ Pi,

where
mi =

�
�
, Di =

(�3 + 2)�
��

, Pi =
�
�

(

�1 +
�2(�3 + 2)

�

)

.

then the solutions exist and satisfy

m(t) ≤ mi, D(t) ≤ Di, P (t) ≤ Pi.

Proof 2. Assume m(t) = S(t) + I(t) +H(t), then

dm
dt

≤ � − �m ⟹ m(t) ≤ �
�
+
(

m(0) − �
�

)

e−�t. (7)
Thus, m(t) ≤ mi. Substituting the upper bound of m into equation (5) yields,

dD
dt

≤
�(�3I + 2)

�
− �D ≤

�(�3 + 2)
��

+
(

D(0) −
�(�3 + 2)

��

)

e−�t,

which implies that D(t) ≤ Di. Similarly,

P (t) ≤ �
��

(

�1 + �2
(�3 + 2)

�

)

+
(

P (0) − �
��

(

�1 + �2
(�3 + 2)

�

))

e−�t,

from which P (t) ≤ Pi.

Combining the existence and uniqueness of a local solution together with Theorems 1 and 2, we
have the following Theorem:
Theorem 3. The invariant region of the system (2)-(6, where the basic properties of existence,
uniqueness and continuity of solutions are valid is the compact set:

Ω =
{

S(t), I(t),H(t), D(t), P (t) ∈ ℝ5
+ ∶ m(t) ≤

�
�
, D(t) ≤

�(�3 + 2)
��

,

P (t) ≤ �
��

(

�1 +
�2(�3 + 2)

�

)}

.

The system is thus well posed and the region Ω is therefore a feasible region for our model.
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3.2. Equilibria of the model
We determine the existence of the equilibrium points of the model (2)-(6) by setting the right

hand side of the system (2)-(6) to zero so that
� − (� + �)S∗ = 0, (8)
�S∗ − v1I∗ = 0, (9)
�2I

∗ − v2H∗ = 0, (10)
�3I

∗ + 2H∗ − �D∗ = 0, (11)
�1I

∗ + �2D∗ − �P ∗ = 0. (12)
From (10), (11) and (12), we haveH∗ = �1I∗, D∗ = �2I∗, and P ∗ = �3I∗,

where �1 = �2
v2
, �2 =

(�3 + 2�1)
�

, and �3 = �1 + �2�2
�

.

Substituting the expressions forH∗, D∗, P ∗ into (1), we obtain an expression for � in terms of I∗
so that

�∗ =

[

 
1 + �I∗�2

+
�1�3

K + I∗�3

]

I∗,

where  = �2
(

1 + �1�1 + �2�2
)

. Substituting the expression for �∗ into (9) , we have either

S∗ =
�1(1 + �I∗�2)(K + I∗�3)

�2 (K + �3I∗) + �1�3(1 + �I∗�2)
(13)

or
I∗ = 0.

If I∗ = 0, then we have H∗ = D∗ = P ∗ = 0 and S∗ = �
�
. This gives the disease free

equilibrium (DFE) point

E0 = (S0, I0,H0, D0, P 0) =
(

�
�
, 0, 0, 0, 0

)

.

We now determine the reproduction number before determining the endemic steady state using
expression (13).
3.2.1. The basic reproduction number (R0)

The basic reproduction number denoted by R0 is defined as the average number of new in-
fections generated by an infected individual or an infected dead body or through contact with a
pathogen infested object in a wholly susceptible population, Van den Driessche and Watmough
(2002). We use the next generation matrix method to compute R0 as follows:
By considering the new infections and the transfer matrices (see Van den Driessche andWatmough
(2002) for a detailed synopsis), the corresponding Jacobian matrices F and V evaluated at the DFE
are
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a2 a1 a0 Number of positive roots
+ + + 0
+ + - 1
+ - + 2 or 0
+ - - 1

Table 1
Possible number of positive roots of equation (14)

F =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

��2
�

��2�1
�

��2�2
�

��1
�k

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, V =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�1 0 0 0

−�2 �2 0 0

−�3 −2 � 0

−�1 −�2 −�3 �

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The reproduction number is the spectral radius of the next generation matrix, that is FV −1, so that

R0 = �
�

[

�2

(

1
�1
+
�1�2
�1�2

+
�2(2�2 + v2�3)

��1�2

)

+
�1
��K

(

�22�2
�1�2

+
��1 + �2�3

�1

)

]

.

The DFE is also locally stable when R0 < 1 following Theorem 2 in Mukandavire et al..
3.2.2. The endemic equilibria

Substituting the expression for S∗ in (13) into (8) and simplifying the resulting equation, we
obtain the following polynomial.

a2I
∗2 + a1I∗ + a0 = 0, (14)

where,

a2 = �2�1�3(1 + �1�1 + �2�2) + ��1�2�3(� + �1) > 0,

a1 = �1[K�2(1 + �1�1 + �2�2) +K�� + (�1 + �)�3] − �[�2(1 + �1�1 + �2�2) + �1��2],

a0 = K��1(1 − R0).

We use Descartes’ law of signs to determine the possible number of positive roots of equation (14)
as shown in Table 1.
The positive solutions of (14) are given by:

I∗ =
−a1 ±

√

a21 − 4a2a0
2a2

.
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Clearly, the coefficient a2 is always positive. If a0 < 0 and Δ = a21 − 4a2a0 > 0, a unique endemic
equilibrium exists, irrespective of the sign of a1. If a0 > 0, a1 < 0 and Δ > 0, we get two positive
real equilibrium points, otherwise, we have no endemic equilibrium point. The possibility of a
backward bifurcation is indicated by the case a0 > 0, a1 < 0 and Δ > 0 in which we have two
endemic equilibria. We solve the equation Δ = 0 for the threshold value of the reproduction
number, Rc

0, (the value of R0 below which the DFE is the only steady state) so that
Δ = a21 − 4a2a0 = 0,

and
Rc
0 = 1 −

a21
4a2K��1

.

It follows that the system has two positive equilibria for Rc
0 < R0 < 1.

3.3. Bifurcation analysis
3.3.1. The direction of bifurcation

Without loss of generality, assume that �2 = c�1, where c is a positive constant. Expressingequation (14) as a function of �1 and I∗ gives
F (�1, I∗) = (d2�1 + d22)I∗2 + (d1�1 + d11)I∗ + d0�1 + d00 = 0,

where
d1 = c(1 + �1�1 + �2�2)(K�1 − �) + �3(�1 − ���2),
d11 = (K� + �3)�, d22 = ��1�2�3�, d00 = K��1,
d2 = c�1�3(1 + �1�1 + �2�2) + ��1�2�3,
d0 = −�[cK(1 + �1�1 + ��2�2) + �3].

We are interested in the solutions I∗ for a given value of �. For I∗ = 0, we get:

�1 = �∗ =
K��1

�[cK(1 + �1�1 + ��2�2) + �3]
.

Therefore at �1 = �∗, I∗ = 0. We compute the bifurcation direction, by definition,
dI∗

d�1
= −

F�1
FI∗

, where F�1(�∗, 0) = d0 < 0 and FI∗(�∗, 0) = d1�∗ + d11.

Note that �∗ = 1
R0

. Hence, FI∗(�∗, 0) < 0 ⟺ R0 < −
d1
d11

and FI∗(�∗, 0) > 0 ⟺ R0 > −
d1
d11

.

Therefore, if R0 < − d1d11 , then the bifurcation is backward and if R0 > − d1d11 , then the bifurcation
is forward. We numerically determine the direction of bifurcation in the next section.
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3.3.2. Bifurcation simulation
A bifurcation is a change of the topological structure of a system as its parameters pass through

a critical value, Kuznetsov (2013). Since the system’s behaviour changes as the reproduction num-
ber passes the value 1, R0 = 1 is a critical point. The occurrence of a backward bifurcation has
important public health implications since it might not be enough to reduceR0 below 1 to eliminate
the disease. The basic reproduction number must be further reduced below Rc

0 to ensure disease
eradication. In this model we have shown that there exists a forward and a backward bifurcation.

(a) (b)
Figure 2: Forward bifurcation in (a) for � = 0.95, �1 = 0.023 and backward bifurcation in (b) for
� = 0.394, �1 = 0.25. The rest of the parameter values are the same as the parameter values in Table 3

Figure 2 (a) and (b) give the graphical representations of the forward and backward bifurcations re-
spectively for the given parameters in the caption. We observe changes in the qualitative behaviour
of the system (2)-(6) whenR0 = 1, whereR0 is the bifurcation parameter. For values ofR0 greaterthan one, we have a forward bifurcation, meaning that the disease will persist in the population
and decreasing R0 to values below one is not a sufficient condition for the disease eradication. The
presence of a backward bifurcation makes disease control complicated due to the co-existence of
the DFE and the EE for values of R0 between Rc

0 and 1. Thus an increase in the level of fear of
death from the EVD is not sufficient to bring about disease eradication. Control measures such as
media campaigns, isolation of the infected, and case finding need to be implemented together with
the already existing changes in human behaviour due to fear of death, to bring the population to a
DFE state. Note that an increase in the level of fear � and a corresponding decrease in the effective
contact rate �1 (with all the other parameters unchanged) changes the backward bifurcation in Fig-
ure 2 (b) to a forward bifurcation, as shown in Figure 3.
In Figure 3, the graph with the dashed curve is obtained from Figure 2 (b) by increasing the value of
� while decreasing the value of �1. It shows that when more people become afraid of dying, there is
a corresponding change in their behaviour, which intend leads to a fall in the effective contact rate.
These changes in the values of � and �1 change a backward bifurcation to a forward bifurcation,
thereby making it easier to control and contain the disease.
Many of the epidemiological models that exhibit backward bifurcation have always had the bifur-
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Figure 3: Effect of increasing level of fear, �, and decreasing the effective contact rate, �1, on the
infected population size. The other parameters are same as in figure 2.

cation influenced by a single parameter. Our model presents a unique scenario in which backward
bifurcation is driven by two important epidemiological parameters. We now present the global
stability of the unique endemic equilibrium point in the next subsection.
3.4. Global stability of the endemic equilibrium point.
Theorem 4. The endemic equilibrium is globally asymptotically stable in Ω if R0 > 1.

Proof 3. If R0 > 1, we have a unique endemic equilibrium. We consider a candidate Lyapunov
function given by

V =
[

S − S∗ − S∗ ln
( S
S∗

)]

+ k1
[

I − I∗ − I∗ ln
( I
I∗

)]

+k2
[

H −H∗ −H∗ ln
( H
H∗

)]

+ k3
[

D −D∗ −D∗ ln
( D
D∗

)]

+ k4(P − P ∗)2,

where k1, k2, k3, k4 are positive constants to be determined. At endemic equilibrium, the partial
derivatives with respect to each variable are

)V
)S

=
(

1 − S∗

S

)

, )V
)I

= k1
(

1 − I∗

I

)

, )V
)H

= k2
(

1 − H∗

H

)

,

)V
)D

= k3
(

1 − D∗

D

)

, )V
)P

= 2k4(P − P ∗).

The endemic equilibrium is clearly a critical point of V . The second derivatives are given by

)2V
)S2

= S∗

S2
, )2V
)I2

= k1
I∗

I2
, )2V
)H2

= k2
H∗

H2
,

)2V
)D2

= k3
D∗

D2
, )2V
)P 2

= 2k4.
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The second derivatives of V are all positive at any point of Ω, therefore, the Lyapunov function V
is concave up and the unique endemic equilibrium point is a minimum point of V . We now show
that dV

dt
≤ 0. The time derivative of V is given by

dV
dt

=
(

1 − S∗

S

)dS
dt

+ k1
(

1 − I∗

I

)dI
dt
+ k2

(

1 − H∗

H

)dH
dt

+k3
(

1 − D∗

D

)dD
dt

+ 2k4(P − P ∗)
dP
dt
,

=
(

1 − S∗

S

)[

� −
�1PS
K + P

−
c�1(I + �1H + �2D)S

1 + �D
− �S

)

+k1
(

1 − I∗

I

)( �1PS
K + P

−
c�1(I + �1H + �2D)S

1 + �D
− �1I

)

+k2
(

1 − H∗

H

)(

�2I − �2H
)

+ k3
(

1 − D∗

D

)(

�3I + 2H − �D
)

+2k4(P − P ∗)
(

�1I + �2D − �P
)

.

(15)

At the endemic equilibrium, the system (2)-(6) yields the following:

� = (�∗ + �)S∗, �1 =
�∗S∗

I ∗
, �2 =

�2I∗

H∗ ,

� =
�3I∗ + 2H∗

D∗ , � =
�1I∗ + �2D∗

P ∗
.
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Substituting the above expressions for the constants �, �, �, �1 and �2 into (15), we have

dV
dt

=
(

1 − S∗

S

)[c�1I∗S∗

1 + �D∗

(

1 −
SI(1 + �D∗)
S∗I∗(1 + �D)

)

+
c�1�1H∗S∗

1 + �D∗

(

1 −
HS(1 + �D∗)
H∗S∗(1 + �D)

)

+
c�1�2D∗S∗

1 + �D∗

(

1 −
DS(1 + �D∗)
S∗D∗(1 + �D)

)

+
�1P ∗S∗

K + P ∗

(

1 −
PS(K + P ∗)
P ∗S∗(K + P )

)

+�(S ∗ −S)
]

+ k1
(

1 − I∗

I

)[c�1I∗S∗

1 + �D∗

( SI(1 + �D∗)
S∗I∗(1 + �D∗)

− I
I∗

)

+
c�1�1H∗S∗

1 + �D∗

( HS(1 + �D∗)
H∗S∗(1 + �D)

− I
I∗

)

+
c�1�2D∗S∗

1 + �D∗

( DS(1 + �D∗)
D∗S∗(1 + �D)

− I
I∗

)

+
�1P ∗S∗

K + P ∗

( PS(K + P ∗)
P ∗S∗(K + P )

− I
I∗

)]

+ k2
(

1 − H∗

H

)[

�2I∗
( I
I∗
− H
H∗

)]

+k3
(

1 − D
D∗

)[

�3I∗
( I
I∗
− D
D∗

)

+ 2H∗
( H
H∗ −

D
D∗

)]

−2k4P ∗
(

1 − P
P ∗

)[

�1I∗
( I
I∗
− P
P ∗ + �2D

∗
( D
D∗ −

P
P ∗

)]

.

(16)

Let

x = S
S∗
, y = I

I∗
, z = H

H∗ , w = D
D∗ , u =

P
P ∗ ,

v = 1 + �D∗

1 + �D
, r = K + P ∗

K + P
, ℎ = 1

1 + �D∗ , g =
1

K + P ∗ ,
(17)

Substituting the expressions in (17) into (16), we obtain:

dV
dt

= −�
(S − S∗)2

S
+ �1I∗f (x, y, z, w, u, v, r),

where

f (x, y, z, w, u, v, r) = S∗
(

1 − 1
x

)[

cℎ(1 − xyv) + cℎ�1�1(1 − 2xv)

+cℎ�2�2(1 − xwv) + g�3(1 − uxr)
]

+k1S∗
(

1 − 1
y

)[

cℎ(xyv − y) + cℎ�1�1(zxv − y)

+cℎ�2�2(xwv − y) + g�3(xur − y)
]

+ k2�2
(

1 − 1
z

)

(y − z)
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+
k3
�

(

1 − 1
w

)[

�3(y −w) + 2�2(z −w)
]

+2k4P ∗
(

1 − 1
u

)[

�1(u − y) + �2�2(u −w)
]

.

We equate the coefficients of y, yv z, zv, wv, ur, u,
y
u
, w
u
, and w to zero in order to eliminate the

positive and non-constant part of f , and solve for the constants k1, k2, k3 and k4 so that,

k1 = 1, k2 =
k32�2
�1�2

, k3 =
k4�2�2
�3 + 2�2

,

k4 = �1S
∗ cℎ(1 + �1�1 + �2�2) + g�3

�1 + �2�2
,

and

f (x, y, z, w, u, v, r) = cℎS∗
(

2 − xv − 1
x

)

+ cℎ�1�1S∗
(

2 − xvz
y
− 1
x

)

+cℎ�2�2S∗
(

2 − xwv
y

− 1
x

)

+ g�3S∗
(

2 − xur
y
− 1
x

)

+k2�2
(

1 −
y
z

)

+
k3�3
�1

(

1 −
y
w
−w

)

+
k32�2
�1

(

1 − z
w
−w

)

.

Given that the expression −� (S − S
∗)2

S
< 0, we show that f (x, y, z, w, u, v, r) < 0.

Note that the expression
(

2−xv−1
x

)

is less than or equal to zero by the arithmetic-mean-geometric-

mean inequality, with equality if and only if x = v = 1. Also, the expressions
(

2 − xvz
y

− 1
x

)

,
(

2−xwv
y
− 1
x

)

and
(

2−xur
y
− 1
x

)

are less than or equal to zero by the arithmetic-mean-geometric-

mean inequality with equality if and only if x = y = u = w = v = r = z = 1. After some tedious
algebraic manipulations of replacing the constants k1, k2, k3 and k4, similar conclusions can be
drawn for the remaining expressions in f . Therefore f is negative and will be equal to zero if
x = y = z = u = w = v = r = 1. So V is positive definite at the endemic equilibrium and dV

dt
≤ 0

with equality if and only if S = S∗, I = I∗, H = H ∗, D = D∗, P = P ∗. The only invariant
set contained in Ω is the set containing only the endemic equilibrium point. This shows that each
solution which intersects ℝ5

+ limits to the endemic equilibrium. Therefore by LaSalle’s invariance
principle, LaSalle and Artstein (1976), the endemic equilibrium is globally asymptotically stable
on Ω.

4. Numerical simulations
4.1. Parameter estimation

In this subsection, we determine the parameter values used in the model. The parameter values
are estimated from the fitting process. We fit the model (2)-(6) to the WHO weekly cumulative
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Month/Year Week 1 Week 2 Week 3 Week 4
05/19 1500 1705 1826 1920
06/19 2008 2071 2168 2230
07/19 2338 2418 2501 2671
08/19 2763 2831 2887 2950
09/19 3036 3081 3129 3168
10/19 3191 3205 3220 3243
11/19 3274 3287 3296 3303
12/19 3313 3324 3348 3362
01/20 3390 3398 3414 3418
02/20 3428 3431 3432 3444
03/20 3444 3444 3444 3453
04/20 3453 3457 3461 3461
05/20 3462 3462 3462 3463
06/20 3463 3463 3463 3470

Table 2
WHO data from the 2019 and 2020 outbreaks in the North Kivu and South Kivu provinces of the DRC.

data from the 2019 and 2020 outbreaks in the North Kivu and South Kivu provinces of the DRC.
The data is shown in Table 2. The model presented in the system (2)-(6) is fitted to data in Table
2 using the fminsearch fitting method. Fig 4 shows the optimal fit of the model to the EVD data in
Table 2. The sum squares error of the fit is 0.03. Table 3 gives a summary of the parameter values

Figure 4: Curve fitting of the model to the data in table 2

that give the optimal fit.
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Parameter Description Estimated value (week−1)
� Recruitment rate 200
�1 Effective human to human contact rate 0.053
�2 Effective human to pathogen contact rate 0.064
� Natural death rate 0.000296
�3 Disease related death of the infected 0.6
2 Disease related death of the hospitalized 0.2
1 Rate of recovery of the hospitalised 0.8
�1 Rate of recovery of the infected 0.33
� Rate of disposal of dead bodies 0.009
�2 Rate of hospitalization of the infectious 0.019
� Level of fear 0.4
� Rate of removal of pathogens in the environment 0.016
K Half saturation constant 30
�1 Rate of shedding of pathogens by the infected 0.05
�2 Rate if shedding of pathogens by the dead 0.06
�1 Infectivity rate of the infectious individuals 0.09
�2 Infectivity rate of the dead individuals 1.2

Table 3
Estimated parameter values obtained from the fitting process.

4.2. Sensitivity analysis
One can not be certain about the parameter values to choose when carrying out numerical sim-

ulations of a model. Most of the methods used to collect data from which parameter values of
models are chosen are not completely free from errors in as much as a lot of effort is made to
minimize errors. These uncertainties are the cause of most of the variability in model predictions.
Sensitivity analysis is thus performed to assess this variability in the model predictions, Gomero
(2012). We use Latin Hypercube Sampling (LHS) method as described in Blower and othes to
explore the entire parameter space of the model. We run the simulations 1000 times to have a
large sample size and to increase the level of accuracy of the results. Normally, we are supposed
to specify a probability density function (pdf) for each unknown parameter, but since the pdf of
each parameter is often unknown, we choose by default a uniform distribution for the variables,
independently sample each parameter and do sensitivity plots to determine the most sensitive pa-
rameters. The Partial correlation coefficient (PRCC) value for a specific parameter is a Pearson
correlation coefficient for the residuals from two regression models. The scatter plots of the most
significant parameters are shown in figures 5 and 6.
Figure 5 shows the correlations between the most significant parameters and the population of the
infected. In Figure 5(a) we obverse an increase in the infected population as the person to person
contact rate increases. This is because EVD is easily transmittedwhen susceptible individuals come
in contact with the infectious. In Figure 5(b) we see that the level of fear is negatively correlated
to the infected population, however, other control measures such as quarantine, contact tracing and
media campaigns are also required to bring about the Ebola disease eradication.
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(a) (b)
Figure 5: Scatter plots of the infected population I as a function of effective person to person contact
rate, �2, in (a), and as a function of the rate of the level of fear in (b)

(a) (b)
Figure 6: scatter plots of the pathogens in the environment P as a function of the rate of save disposal
of dead bodies, �, in (a), and as a function of the rate of the level of fear in (b)

In Figures 6 (a) and (b), we give the scatter plots of the pathogens in the environment P , as a func-
tion of parameters that are more negatively correlated to P , � and � respectively. The plots show
that an increase in the save disposal of dead bodies of Ebola deceased individuals and an increase
in the level of fear of dead will help reduce the concentration of pathogens in the environment.
Consequently, the infection rate will decrease.
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4.3. Simulation results

Figure 7: Evolution of the infected population for different levels of fear, �. The values of the other
parameters are the same as the parameter values in Table 3.

Figure 8: Evolution of the hospitalised population for different levels of fear, �. The values of the other
parameters are the same as the parameter values in Table 3.

In Figures 7 and 8, we consider the following initial conditions: S0 = 98000, I0 = 1500,
H0 = 1000, D0 = 300, P0 = 600. The plots are obtained by varying the level of fear, leaving the
other parameters constant. The observed decrease in the number of infectives and hospitalised as
the level of fear increases shows the impact of the fear of death from EVD on the disease trans-
mission dynamics. Also, Figure 9 depicts the impact of fear on the pathogens in the environment.
It shows a decrease in the concentration of pathogens in the environment as the level of fear in-
crease. This can be justified by the fact that an increase in the level of fear leads to changes in
human behaviour which leads to a decrease in the shedding of pathogens in the environment by the
infected humans and infected dead bodies. The contour plot in Figure 10 (a) shows an increase in
the reproduction number as the effective contact rates increase. Therefore the disease transmission
rate is higher when the contact rates are high. 10 (b) shows the contribution of the pathogens in
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Figure 9: Changes in the concentration of the pathogens in the environment for different levels of fear,
�. The values of the other parameters are the same as the parameter values in Table 3.

(a) (b)
Figure 10: Contour plot of R0 as a function of effective person to pathogen contact rate, �1, and
effective person to person contact rate �2 in (a), and as a function of the rate of shedding of pathogens
in the environment by the infected and the dead in (b)

the environment to disease transmission. We observe that as the infected and the Ebola deceased
individuals continually shed pathogens in the environment more people contract the disease. This
is seen in the increasing values of R0 on the R0-axis.

5. Conclusion
In this work, we presented a 6 compartment deterministic model to assess the impact of fear

induced by EVD on the disease transmission dynamics, taking into consideration environmental
transmissions. The model’s basic properties such as positivity and boundedness of solutions as
well as the reproduction number and steady states were determined and analysed. The analysis
of the model reveals the existence of an unstable DFE for values of the reproduction number less
than one, or, the existence of a globally stable DFE for values of the reproduction number less
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than a threshold Rc
0, when the level of fear is high. We have also shown that the level of fear in a

community experiencing an EVD outbreak is an important factor in disease control. when the level
of fear of death from the disease is low, the contact rate increases and controlling EVD becomes
more difficult because of the presence of a backward bifurcation. An increase in the level of fear
changes human behaviour and leads to a decrease in the effective contact rate, a forward bifurcation
appears and reducing the reproduction number to values less than 1 will eradicate EVD. The model
fitted well to the DRC (North and South Kivu provinces) cumulative data. One can retain that an
increase in the level of fear produces a decrease in the number of EVD cases. However, the impact
of fear alone on disease transmission is not significant. It is, therefore, necessary to implement
other control measures against EVD like treatment, case-finding and quarantine to limit the disease
spread in the population.
The model simulation results show that the level of fear has an inverse relationship with the rate of
shedding of pathogens in the environment by the Ebola-infected individuals and dead bodies. This
indicates that an increase in the level of fear does not only cause a decrease in the person to person
transmission rate but also results to a decrease in the environmental transmission rate (pathogen to
person transmission). This model can be improved by considering the growth of the pathogens in
the environment independent of the infection dynamics as considered in this manuscript. While the
model has some limitations, the consideration of fear and environmental transmission are critical
in the management and control of EVD.
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