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Abstract 17 

Background 18 

Intravenous tobramycin requires therapeutic drug monitoring (TDM) to ensure safety and efficacy when 19 

used for prolonged treatment, as in infective exacerbations of Cystic Fibrosis (CF). The 24 hour area 20 

under the concentration time curve (AUC24) is widely used to guide dosing, however there remains 21 

variability in practice around methods for its estimation.  22 

Objectives 23 

To determine the potential for a sparse sampling strategy using a single post-infusion tobramycin 24 

concentration and Bayesian forecasting, to assess the AUC24 in routine practice.  25 

Methods 26 

Adults with CF receiving once daily tobramycin had paired concentrations measured 2 hours (c1) and 6 27 

hours (c2) following end of infusion as routine monitoring. We estimated AUC24 exposures using Tucuxi, 28 

a Bayesian forecasting application incorporating a validated population pharmacokinetic model. We 29 

performed simulations to estimate AUC24 using the full dataset using c1 and c2, compared to estimates 30 

using depleted datasets (c1 or c2 only), with and without concentration data from earlier in the course. 31 

We assessed agreement between each simulation condition and the reference graphically, and 32 

numerically using median difference (∆) AUC24, and (relative) root mean square error (rRMSE) as 33 

measures of bias and accuracy respectively.  34 

Results 35 

55 patients contributed 512 concentrations from 95 tobramycin courses and 256 TDM episodes. Single 36 

concentration methods performed well, with median ∆AUC24 <2 mg.h.l-1 and rRMSE of <15% for 37 

sequential c1 and c2 conditions.  38 
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Conclusions 39 

Bayesian forecasting, using single post-infusion concentrations taken 2-6 hours following tobramycin 40 

administration can adequately estimate true exposure in this patient group and are suitable for routine 41 

TDM practice.             42 

 43 

Key Points 44 

- In stable adult patients with Cystic fibrosis without significant renal impairment, Bayesian 45 

forecasting allows accurate estimation of tobramycin AUC24 using a single blood sample taken 2-46 

6 hours post-infusion with acceptable accuracy, especially when including prior measured 47 

concentrations.   48 

- A single sample approach with Bayesian forecasting is logistically less complicated than a two-49 

sample approach, and could facilitate best-practice TDM in the outpatient setting. 50 

- A more intensive sampling strategy with Bayesian forecasting using two tobramycin 51 

concentrations in a dosing interval should be considered in unstable patients, or where 52 

observed concentrations deviate significantly from model predictions. 53 
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 67 

1. Introduction 68 

Life expectancy for patients with Cystic Fibrosis (CF) continues to improve, owing to a range of strategies 69 

to maintain lung function, including aggressive treatment of infective pulmonary exacerbations due to 70 

Pseudomonas aeruginosa.(1) Intravenous tobramycin is commonly prescribed for this purpose.(2) Well-71 

known toxicities of tobramycin include nephrotoxicity and ototoxicity, and there is increasing interest in 72 

minimising these long-term sequelae, which are at least partly attributable to cumulative lifetime 73 

exposure.(2–4) Once-daily tobramycin dosing is increasingly becoming standard practice in many CF 74 

centres, however centres differ with regard to therapeutic drug monitoring (TDM) practices, which 75 

range from simple trough concentration and nomogram methods, to more direct monitoring of the 24 76 

hour area under the concentration time curve (AUC24).(5–7) At our centre (Royal Prince Alfred Hospital, 77 

Sydney, Australia), we perform AUC24 based monitoring (target AUC24 100 mg.h.l-1) using a log-linear 78 

regression (LLR) method, which requires two-concentrations within a dosing interval and simple 79 

pharmacokinetic calculations coded into a Microsoft Excel spreadsheet.(8) Although simple and 80 

accurate, significant attention is required to coordinate correct application of the TDM protocol, 81 

including obtaining two blood samples at the appropriate times, and ensuring the dosing and monitoring 82 

information is recorded accurately.(9,10) Thereafter, clinicians performing the AUC24 estimation must 83 

perform the required calculations in a timely manner in order to return dosing advice prior to the next 84 

dose. There is increasing interest in the ambulatory management of pulmonary exacerbations, however 85 

it is difficult and impractical to collect two post-infusion blood samples in the outpatient setting. A 86 

simple, accurate method of AUC24 estimation to inform ongoing dosing using a single blood sample may 87 

therefore greatly increase the efficiency of this TDM practice, broaden its utility to outpatient settings, 88 

and improve patient acceptability.  89 
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Bayesian forecasting, which incorporates information from population pharmacokinetic models with 90 

one or two measured post-infusion concentrations has been shown to accurately characterise 91 

tobramycin pharmacokinetics in adults with CF, compared to results derived from intensive 92 

sampling.(11,12) In a small study of 12 adults receiving once-daily tobramycin, Bayesian methods 93 

resulted in less biased and more precise AUC24 estimation than a LLR method, and one- and two-sample 94 

Bayesian strategies were similarly accurate.(11) The authors of this study considered all three methods 95 

potentially suitable for routine TDM. The aim of the current study was to examine the potential 96 

generalisability of this finding by studying a larger group of adult patients, representative of those 97 

typically managed in CF centres. We sought to determine the agreement in AUC24 estimation between a 98 

one-sample and a two-sample approach using Bayesian forecasting, in order to determine the potential 99 

suitability of a one-sample Bayesian forecasting approach for routine TDM in this group of patients. 100 

 101 

2. Methods 102 

2.1. Patients and data 103 

We collected data retrospectively from adults (>18 years) with CF who received once-daily intravenous 104 

tobramycin for pulmonary exacerbations, as part of routine practice between January and December 105 

2018. Clinical staff were instructed to take blood samples for the measurement of tobramycin 106 

concentrations at two time points (hereafter designated t1 and t2) at approximately 2 hours (c1) and 6-8 107 

hours (c2) following the end of the infusion (0.5 hours). Dosing and drug concentration information, in 108 

addition to a patient’s height, weight, and the most recent creatinine measurement, was submitted to 109 

the TDM monitoring service for estimation of pharmacokinetic parameters and subsequent dosing 110 

advice, in order to achieve a target AUC24 of 100mg/L (acceptable range 80-120mg.h.l-1). In routine 111 

practice our TDM service currently uses a log linear regression method for AUC24 estimation, with 112 

proportional dose adjustment for subsequent dose recommendations.(8)          113 
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We recruited all patients with CF contributing at least one pair of tobramycin concentrations, which 114 

constituted a single TDM episode. We excluded episodes where c2 was below the lower limit of 115 

quantification, and where any of the concentration measurements was considered unreliable based on 116 

clinician assessment at the time of the TDM episode—for example where c1 was higher than c2. These 117 

cases were identified by the clinician performing the TDM, and prompted a request to repeat the 118 

measurements the following day.    119 

The study was approved by the Sydney Local Health District Ethics Committee (ref X19-0168) with a 120 

waiver of informed consent due to retrospective collection of routinely collected data. 121 

2.2. Tobramycin assay 122 

Plasma tobramycin concentrations were determined using immune spectrophotometric assay on a 123 

Roche/Hitachi cobas c system platform with LLOQ of 0.33 mg l-1 and intra- and inter-day assay 124 

coefficients of variation <10%. 125 

2.3. Simulation of sampling regimens 126 

We simulated the potential effect of different sparse-sampling strategies on PK parameter and AUC24 127 

estimates using the Tucuxi Bayesian forecasting software (www.tucuxi.ch), using a previously validated 128 

population pharmacokinetic model for adults with CF by Hennig et al.(12–14) Patient age, height, 129 

weight, and serum creatinine were covariates for the underlying population pharmacokinetic model 130 

used to generate the a priori pharmacokinetic parameter estimates. We used the full set of sequential 131 

concentration pairs (Sc1c2) available at the time of each TDM episode as the reference (‘REF’), and 132 

compared this to one of five simulated sampling conditions (‘SIM’) which incorporated less information: 133 

a) c1 and c2 without sequential prior concentration measurements from the same TDM episode (NSc1c2), 134 

b) c1 measurements only, using sequential information from previous c1 measurements (Sc1); c) c1 135 

measurements only, without prior sequential measurements (NSc1); d) c2 measurements only, with 136 
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sequential measurements (Sc2; e) c2 measurements only, without sequential measurements (NSc2). We 137 

used customised scripts to perform the simulations using the Tucuxi engine, to reduce the risk of errors 138 

and to ensure reproducibility of the results.    139 

2.4. Statistical analysis and measures of agreement 140 

We performed statistical analysis using R (version 3.3.2, R Foundation for Statistical Computing, Vienna, 141 

Austria) implemented in the RStudio environment (version 1.0.136, RStudio Team (2016), RStudio, Inc., 142 

Boston, MA). As a measure of bias we estimated agreement of the PK parameters, and AUC24 between 143 

the reference and each of the simulated conditions for each TDM episode. The main parameter of 144 

interest was the estimated AUC24, calculated from the estimated clearance and the administered dose 145 

according to equation (1): 146 

𝐴𝑈𝐶24 =
𝑑𝑜𝑠𝑒 𝑝𝑒𝑟 24ℎ

𝐶𝐿
          (1) 147 

We calculated absolute differences in AUC24 estimates between each of the simulation conditions and 148 

the reference method according to equation (2): 149 

Δ𝐴𝑈𝐶24(𝑆𝐼𝑀𝑚− 𝑅𝐸𝐹)(𝑚𝑔. ℎ. 𝑙−1) = 𝐴𝑈𝐶24(𝑆𝐼𝑀𝑚)𝑖,𝑗
−  𝐴𝑈𝐶24(𝑅𝐸𝐹)𝑖,𝑗

     (2) 150 

The relative difference in exposure estimates was calculated as per equation (3): 151 

 Δ𝐴𝑈𝐶24(𝑆𝐼𝑀𝑚− 𝑅𝐸𝐹)(%) =
𝐴𝑈𝐶24(𝑆𝐼𝑀𝑚)𝑖,𝑗

− 𝐴𝑈𝐶24(𝑅𝐸𝐹)𝑖,𝑗

(𝐴𝑈𝐶24(𝑆𝐼𝑀𝑚)𝑖,𝑗
+ 𝐴𝑈𝐶(𝑅𝐸𝐹)𝑖,𝑗

) 2⁄
× 100%     (3) 152 

Where 𝐴𝑈𝐶24(𝑆𝐼𝑀𝑚)𝑖,𝑗
  denotes the estimated AUC24 calculated using data from simulation m (NSc1c2, 153 

NSc1, Sc1, NSc2, Sc2)  for the ith individual on the jth TDM episode, and 𝐴𝑈𝐶24(𝑅𝐸𝐹)𝑖,𝑗
 denotes the 154 

estimated AUC24 calculated using the all prior concentration data available for individual i at the time of 155 

the jth TDM episode. For the purposes of this study separate admissions were treated as independent 156 

cases.       157 
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As a measure of accuracy of the simulated method with the reference we calculated the root mean 158 

square error (RMSE, 𝑚𝑔. ℎ. 𝑙−1) and the relative RMSE (rRMSE, %) according to equations (4), and (5): 159 

𝑅𝑀𝑆𝐸(𝑚𝑔. ℎ. 𝑙−1) =  √1

𝑛
∑ (𝐴𝑈𝐶24(𝑆𝐼𝑀𝑚)𝑖,𝑗

−  𝐴𝑈𝐶24(𝑅𝐸𝐹)𝑖,𝑗))
2

𝑛
𝑖,𝑗=1     (4) 160 

𝑟𝑅𝑀𝑆𝐸(%) =  √1

𝑛
∑ (

𝐴𝑈𝐶24(𝑆𝐼𝑀𝑚)𝑖,𝑗
− 𝐴𝑈𝐶

24(𝑅𝐸𝐹)𝑖,𝑗)

𝐴𝑈𝐶24(𝑆𝐼𝑀𝑚)𝑖,𝑗
+ 𝐴𝑈𝐶

24(𝑅𝐸𝐹)𝑖,𝑗)
2⁄
)

2

𝑛
𝑖,𝑗=1 × 100%     (5) 161 

Where n is the total number of TDM episodes. We explored agreement of simulated conditions with the 162 

reference overall, and according to number of previous TDM episodes graphically, using boxplots and 163 

relative difference plots.(15) 164 

Results 165 

2.5. Patients and data 166 

Between January 1st and December 21st 2018, 54 patients were admitted on 95 occasions for an 167 

infective exacerbation of their CF and received a course of tobramycin as part of their antimicrobial 168 

therapy. There were 256 TDM episodes (range 1-5 per course) and 512 concentrations. The median age 169 

was 31 years (IQR 22-40.25), and 23 (43%) patients were male. Tobramycin was given for a median 13 170 

days (IQR 11-14). Demographics are summarised in table 1. Dosing and monitoring data, and 171 

pharmacokinetic parameter estimates for each TDM episode are shown in table 2 and figure 1. The 172 

median dose of tobramycin was 8.6 mg.kg-1 (IQR 7.1-10). Within a dosing interval, c1 was measured at a 173 

median of 2 h (IQR 2 – 2.6), and c2 at a median of 6.2 h (IQR 6-6.7). Across all TDM episodes the median 174 

estimated AUC24 using the Bayesian forecasting approach with all available data was 94.2 mg.h.L-1 (IQR 175 

75.3-112.9).      176 

2.6. Comparison of simulation methods  177 
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Figure 2 shows the relative difference plot of ∆AUC24 (%) for each of the simulation conditions. There 178 

was no clear trend in agreement according to estimated AUC24. Table 3 and figure 3 show the estimated 179 

tobramycin exposure for the reference condition based on the full data set (Sc1c2) and each of the 180 

simulation conditions, and differences between the methods, pooled across all TDM episodes (n=256). 181 

AUC24 estimates were on average modestly greater than the reference condition, with median ∆AUC24 182 

<5% compared to Sc1c2 for all conditions except NSc1. rRMSE of all methods was <15% of the reference 183 

AUC24. Large differences in estimated exposure, defined arbitrarily as ∆AUC24>30% were rare in all 184 

conditions but occurred least frequently in the Sc1 condition (1.6% of episodes). Table 4 and figure 4 185 

show comparisons of NSc1c2, Sc1, and Sc2 with the reference condition, stratified by TDM episode. As 186 

expected for NSc1c2, both ∆AUC24 and rRMSE increased for subsequent TDM episodes, as this condition 187 

only considered the most recent available data. For Sc1 and Sc2, rRMSE improved modestly for second 188 

and subsequent TDM episodes, and was <15% for all TDM episodes 189 

Discussion  190 

Our study suggests that in stable adult patients with CF pulmonary exacerbations, the tobramycin AUC24 191 

can be reliably estimated using Bayesian forecasting and a single post infusion concentration. In a small 192 

proportion of cases the estimates differed more significantly. The reasons for these outliers are unclear 193 

but could relate to erroneous information (e.g. time of dose or blood sample recorded incorrectly), or 194 

physiological instability. This observations illustrates the importance of attention to situations where 195 

observed concentrations are significantly different from those predicted by the model, in order to apply 196 

clinical judgement in when unexpected results occur. The graphical interface provided by modern 197 

Bayesian forecasting software allows a visual representation of this discrepancy, which may improve the 198 

identification of unusual results. Where observed concentrations deviate substantially from those 199 

predicted by the model, patients may benefit from repeat or more intensive sampling to confirm 200 

observed concentrations and to ensure an accurate estimation of their pharmacokinetic parameters. 201 
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This approach would be particularly applicable to critically unwell patients, given known physiological 202 

fluctuations in these patients where a single sample approach may be less appropriate.(16–19). 203 

Similarly, in stable patients, significantly discrepant concentrations from those expected either relative 204 

to previous estimates or predicted on the population pharmacokinetics should prompt careful 205 

consideration of a pre-analytical source of error.(20)  206 

Although a more limited sampling approach resulted in less accurate pharmacokinetic parameter 207 

estimation relative to the reference, the effect was usually small (rRMSE <15%). Although there is no 208 

established standard for acceptable accuracy in this context, it is of comparable magnitude to accepted 209 

target ranges used in clinical practice.(12) In specific situations, e.g. those at higher risk of renal 210 

dysfunction, or unstable patients with sepsis or requiring ICU admission, a more stringent approach may 211 

be considered appropriate. In these situations, clinicians may choose to monitor the patient more 212 

closely, e.g. by continuing with two-concentration monitoring until the patient is judged stable, and then 213 

switching to a single concentration approach, e.g. to reduce phlebotomy or line access, or to facilitate 214 

ambulatory management.   215 

Accuracy and bias of estimates were similar whether using a sample taken approximately 2 hours after 216 

the end of the infusion or approximately 6 hours after the end of infusion. These results largely agree 217 

with the results of Gao et al, who found that a single concentration taken 70 – 640 minutes yielded 218 

sufficiently accurate results.(10) For practical purposes a timed blood sample taken any time between 2-219 

6 hours post end of infusion is likely to be sufficient for routine monitoring. 220 

Numerous software applications for performing Bayesian forecasting are now available, however have 221 

not yet been widely-adopted, possibly owing to access to and cost of specialist software, required 222 

expertise, and the switching cost of new TDM workflows.(7,21–23) The simplicity of a single-sample 223 

Bayesian forecasting method may therefore help to offset some of these barriers for adoption. Patients 224 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.31.20249095doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.31.20249095
http://creativecommons.org/licenses/by-nc-nd/4.0/


with CF have generally stable tobramycin pharmacokinetics over time, and as such may be considered 225 

ideal candidates for Bayesian forecasting methods, which allow accumulation of data for an individual 226 

patient over time.(24) Patients with CF are frequently managed in CF centres and may have multiple 227 

admissions to the same institution, thus in theory clinicians managing these patients should be able to 228 

derive an accurate individualised dosing strategy for each patient. Bayesian forecasting software which 229 

allows automated population of results from an electronic medical record may therefore be of great 230 

benefit.  231 

3. Conclusions 232 

Bayesian forecasting, using a single post infusion sample between 2-6 hours post infusion and prior 233 

concentration measurements can precisely and accurately estimate tobramycin exposure. This simple 234 

approach increases the flexibility of a Bayesian TDM workflow, and may facilitate efficient outpatient 235 

monitoring for ambulatory therapy.    236 

 237 

 238 

 239 

 240 

  241 
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Figures 307 

Figure 1: Time versus tobramycin concentration (n=512) 308 
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Figure 2:  Relative difference plot of mean estimated AUC24 versus difference in AUC24 (%) for the 311 

reference method (full dataset) versus each simulated condition, with median difference and 2.5th and 312 

97.5th percentiles (dashed lines)  313 
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Figure 3: Distribution of differences in estimated AUC24 (%) for full data set (reference condition) versus 316 

each simulation condition 317 
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Figure 4: Distribution of differences in estimated AUC24 for full dataset (reference condition) versus 320 

selected simulation conditions according to TDM episode  321 
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Table 1: Baseline demographics and admissions 

Patients 54  

Age (years), median (IQR) 31 (22, 40.3) 

Male, n (%) 23 (42.6) 

Height (cm), median (IQR) 166 (160, 171) 

Weight (kg), median (IQR) 56 (50, 65) 

Admissions/patient, median 

(range) 
1 (1, 6) 

Admissions, total 95  

Creatinine on admission 

(umol/L), median (IQR) 
64 (53, 77) 

CRP on admission (mg/L), 

median (IQR) 
28 (7.9, 64.8) 

T>38C on admission, n (%) 13 (14.1) 

Length of tobramycin course 

(days), median (IQR) 
13 (11, 14) 
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Table 2: Tobramycin concentrations and parameter estimates for each TDM 

episode (n=256) 

Measurement/parameter estimate Median (IQR) 

Dose administered (mg) 520.0 (400, 560) 

Dose per kg (mg.kg-1) 8.6 (7.1, 10) 

t1 (h) 2.0 (2, 2.2) 

t2 (h) 6.2 (6, 6.7) 

c1 (mg.L-1) 11.5 (9.3, 14) 

c2 (mg.L-1) 2.9 (2.2, 3.9) 

V1 (L.70kg-1) 18.4 (15, 21.5) 

V2 (L.70kg-1) 8.9 (7.9, 10) 

Q (L.h-1.70kg-1) 1.5 (1.3, 1.8) 

CL (L.h-1.70kg-1) 6.2 (5.4, 7.5) 

AUC24 (mg.h.l-1) 94.2 (75.3, 112.9) 

 326 

Table 3: Comparison of simulation conditions 

Simulation 

condition 
AUC24 (mg.h.l-1) ∆AUC24 (mg.h.l-1) ∆AUC24 (%) ∆AUC24>30% RMSE (mg.h.l-1) rRMSE (%) 

Sc1c2 94.2 (75.3, 112.9) (ref)        

NSc1c2 95.9 (76.6, 118.1) 0.0 (0, 7.2) 0.0 (0, 7.6) 8 (3.2) 12.3 10.9 

Sc1 96.8 (79.4, 112.5) 1.6 (-3.6, 7.1) 1.7 (-3.3, 8.4) 4 (1.6) 11.3 11.1 

NSc1 97.8 (79.2, 119.8) 4.9 (-0.6, 13) 5.3 (-0.7, 13.6) 9 (3.6) 16.7 14.2 

Sc2 95.5 (75.2, 116.8) 1.2 (-3.7, 6.7) 1.8 (-4.4, 6.8) 7 (2.8) 13.1 11.4 

NSc2 96.0 (74.7, 119.1) 3.1 (-3.7, 9.5) 3.5 (-4.5, 10.5) 7 (2.8) 15.5 13.0 

Data are expressed as median (IQR) or n (%) 

 327 

  328 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.31.20249095doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.31.20249095
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4: Comparison of simulation conditions according to number of preceding TDM episodes 

Simulation 

condition 
TDM 

episode 
∆AUC24 (mg.h.l-1) ∆AUC24(%) RMSE (mg.h.l-1) rRMSE (%) 

NSc1c2 

first 0.0 (0, 0) 0.0 (0, 0) 0.0 0.0 

second 2.7 (-3.2, 7.8) 3.3 (-3.2, 8.7) 12.2 11.7 

third or 

greater 
8.1 (-0.5, 18.4) 8.3 (-0.5, 14.8) 19.1 16.1 

Sc1 

first 3.1 (-1.6, 10.2) 5.0 (-2, 12.1) 12.8 13.0 

second 1.3 (-4.1, 5.6) 1.4 (-3.5, 6) 10.8 9.9 

third or 

greater 
-0.7 (-5.6, 4.3) -0.7 (-5.9, 3.8) 9.6 9.4 

Sc2 

first 0.2 (-6.2, 4.3) 0.6 (-7.3, 5.8) 11.8 11.6 

second 1.1 (-2.7, 8.2) 1.9 (-2.8, 7.7) 14.7 11.5 

third or 

greater 
2.3 (-1.4, 9.3) 2.5 (-1.3, 10) 12.8 11.1 

Data are expressed as median (IQR) 
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