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Abstract 

Background: Many thousands of patients with a suspected Mendelian disease have their 

exomes/genomes sequenced every year, but only about 30% receive a definitive diagnosis. Since 

a novel Mendelian gene-disease association is published on average every business day, 

thousands of undiagnosed patient cases could receive a diagnosis each year if their genomes 

were regularly compared to the latest literature. With millions of genomes expected to be 

sequenced for rare disease analysis by 2025, and considering the current publication rate of 1.1 

million new articles per annum in PubMed, manually reanalyzing the growing cases of 

undiagnosed patients is not sustainable. 

Methods: We describe a fully automated reanalysis framework for patients with suspected, but 

undiagnosed, Mendelian disorders. The presented framework was tested by automatically 

parsing all ~100,000 newly published peer reviewed papers every month and matching them on 

genotype and phenotype with all stored undiagnosed patients. If a new article contains a possible 

diagnosis for an undiagnosed patient, the system provides notification. We test the accuracy of 

the automatic reanalysis system on 110 patients, including 61 with available trio data. 

Results: Even when trained only on older data, our system identifies 80% of reanalysis 

diagnoses, while sending only 0.5-1 alerts per patient per year, a 100-1,000-fold efficiency gain 

over manual literature surveillance of equivalent yield. 

Conclusion: We show that automatic reanalysis of patients with suspected Mendelian disease is 

feasible and has the potential to greatly streamline diagnosis. Our system is not intended to 

replace clinical judgment. Rather, clinical diagnostic services could greatly benefit from a 

modest re-allocation of time from manual literature exploration to review of automated 

reanalysis alerts. Our system additionally supports a new paradigm for medical IT systems: 

proactive, continuously learning and consequently able to autonomously identify valuable 

insights as they emerge in digital health records. We have launched automated patient reanalysis, 

trained on the latest data, with user accounts and daily literature updates at 

https://AMELIE.stanford.edu. 
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Introduction 

Severe genetic diseases affect tens of thousands of infants born every year worldwide. Many 

Mendelian conditions such as intellectual disability are diagnosed later in life for a total estimate 

of 0.5-1% of the 7.8 billion world population1,2. Millions of such patients are projected to be 

sequenced over the next few years3. Currently, for an estimated 30% of patients4 with a 

presumed Mendelian disease, a definitive diagnosis is arrived at immediately after exome 

sequencing5. Conversely, 70% of patients do not receive a diagnosis (for a variety of reasons6). 

However, approximately 250 novel gene-disease associations are identified every year6–8. 

Reanalysis of exomes of patients with previously undiagnosable genetic conditions results in a 

significant fraction (4%-30%) of these cases becoming diagnosable in a period of 1 to 5 years 

after the initial negative analysis6,9–17. PubMed grows by over 1 million publications each year. 

Thus, the lack of capacity18 to regularly reassess non-diagnostic clinical exome or genome 

sequencing in the light of newly published literature necessarily results in delayed diagnoses. 

We have previously developed AMELIE19–21 (Automatic MEndelian LIterature Evaluation), a 

natural language processing and machine learning framework that automatically analyzes 

literature about Mendelian diseases and matches it to patients with undiagnosed Mendelian 

diseases to prioritize candidate causative genes in the patients’ genomes. Here, we adapted the 

use of AMELIE to perform continuous reanalysis of undiagnosed patients with suspected 

Mendelian disease. The AMELIE-based reanalysis framework automatically compares all new 

literature to all undiagnosed patients and notifies clinicians (or diagnosticians; we use these 

interchangeably here) about newly published, likely diagnostic articles. To estimate the 

diagnostic rate and clinician burden of the reanalysis system, we performed a “time machine” 

experiment: first, we trained the reanalysis system only on Mendelian disease data available until 

December 2011. Subsequently, we assembled a cohort of 110 Mendelian singleton patients, of 

which 61 also had trio sequencing data available, who gradually became diagnosable after 

January 2012. Using this system, we performed an automatic reanalysis experiment in monthly 

intervals from 2012 to 2018, demonstrating a high diagnostic yield at very low clinician burden. 
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Methods 

AMELIE-based automatic reanalysis 

The automatic reanalysis framework presented here takes as input exome or genome sequencing 

data and a (manually or automated ClinPhen22-created) list of phenotypic abnormalities per 

patient. User-parameterized filtering of exome or genome sequencing data reveals a list of 

patient variants that are rare (e.g., ≤0.5% minor allele frequency23) in the general population and 

hence potentially disease-causing. These are termed “candidate causative” variants. After 

sequencing, the patient’s candidate causative variants are analyzed for the presence of causative 

mutations using all knowledge available at the time. If the patient cannot be diagnosed shortly 

after sequencing, the patient’s relevant data (minimally consisting of a list of candidate causative 

variants and a list of phenotypic abnormalities observed in the patient) are added to a database of 

undiagnosed patients. Each patient is then reanalyzed automatically at monthly intervals until a 

diagnosis is successfully identified (Figure 1). 

AMELIE 

AMELIE21 performs two tasks: (1) automatically discovers and parses literature about 

Mendelian diseases to construct an “AMELIE knowledgebase”, and (2) estimates the likelihood 

that a given article contains a diagnosis for a patient through an “AMELIE classifier”. Here we 

build a computational framework around AMELIE that performs automatic reanalysis of 

undiagnosed patients with suspected Mendelian disease (Figure 1). For a detailed description of 

AMELIE, see Supplementary Methods and ref. 21. 

AMELIE knowledgebase 

The AMELIE knowledgebase is automatically constructed from articles about Mendelian 

diseases. Briefly, AMELIE knowledgebase construction is performed using a series of machine-

learning classifiers21 operating on text data. First, all PubMed abstracts available (30+ million 

currently) are classified in terms of their likelihood to discuss monogenic diseases. The full-text 

articles of potentially relevant abstracts are retrieved directly from the publishers. From each 

article’s full text, disease-causing genes and resulting clinical phenotypes are extracted. 

Mentioned genetic variants are retrieved using AVADA24. In addition, a set of full-text 
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classifiers assign scores to each article indicating whether it is most likely to be about a dominant 

or a recessive disease, and about protein-truncating (frameshift indel, stopgain, splicing) 

pathogenic variants or non-truncating (missense, nonframeshift indel) pathogenic variants. 

Information about mentioned phenotypic abnormalities, disease-causing genes, and disease 

inheritance modes, are extracted from these full text articles into the knowledgebase.  

AMELIE classifier 

The AMELIE classifier estimates the likelihood that a given article contains a diagnosis for a 

particular patient. Given an article A, a patient’s list of phenotypic abnormalities P, and a gene G 

containing candidate causative variants in the patient’s genome, the AMELIE classifier21 returns 

a diagnostic probability score between 0 and 100 (low to high) indicating how well the article A 

explains the patient’s phenotypes P in light of the patient-specific variants in gene G. 

Automatic reanalysis using AMELIE 

The automatic reanalysis framework takes a single parameter as input, termed “notification 

threshold”, a number (score) between 0 and 100. When a new article A about a disease-causing 

gene G is published and added to the AMELIE knowledgebase, the AMELIE classifier compares 

all known undiagnosed patients with a candidate causative variant in G to the article A and 

automatically sends a notification about the article if our “notification criterion” applies. We 

define the “notification criterion” as (1) article A’s diagnostic probability score is greater than or 

equal to the (global) notification threshold, and (2) article A’s diagnostic probability score is 

greater than or equal to the diagnostic probability score of previously published articles about the 

candidate gene G for the undiagnosed patient. 

Patients who are successfully diagnosed after such notifications are removed from the database 

of undiagnosed patients. If a notification sent by the automatic reanalysis framework contains an 

article that, after clinician review, enables patient diagnosis, the notification is counted as 

“diagnostic”, or a “true positive”; if not, it is considered a “false positive” (Figure 1).  

Patients 

To retrospectively test AMELIE-based automatic reanalysis, we assembled a cohort of 110 

diagnosed patients with diseases where the causative gene was first published between January 
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2012 and May 2018 (Table 1, Supplementary Table S1). Patient data was obtained from the 

Deciphering Developmental Disorders (DDD) project25, the clinical genetics service at Stanford 

Children’s Health (SCH), and the Undiagnosed Diseases Network (UDN)26. From these sources, 

we included all available patients with a single causative gene disease diagnosis for which the 

first supporting literature appeared after January 2012; had available exome or genome 

sequencing data containing the causative variant(s); and a list of clinician-noted or ClinPhen22-

extracted phenotypes (Supplementary Methods). De-identified data from the DDD project were 

accessed via the European Genome-Phenome Archive27 (study EGAS00001000775). As 

applicable to the participating patients, the study protocol was reviewed and approved by the 

Stanford University Institutional Review Board (IRB) and the central IRB at the NIH National 

Human Genome Research Institute for the Undiagnosed Diseases Network. Written informed 

consent was obtained from all participants. For each of the 110 patients, a clinician reviewed the 

literature about the patient’s disease and manually identified a subset of articles, each with 

sufficient information to diagnose the case. The year and month in which the first article linking 

the patient’s disease to the patient’s causative gene was published were tagged as the patient’s 

earliest possible date of literature-based diagnosis. 

We defined candidate causative variants in singleton patient genomes as rare (≤0.5% minor 

allele frequency in a large healthy control cohort23), non-silent exonic or core splice-site variants 

in protein-coding genes. For 61 of the 110 test patients, exome or genome sequencing data of 2 

of the patient’s unaffected relatives (usually parents) were available and the patient’s causative 

variants were not identically observed in an unaffected relative. For trio patients, candidate 

variants were further filtered by segregation with the disease in the family (Table 1, 

Supplementary Table S1). 

Experimental design 

For our time machine experiment, we built a version of the AMELIE knowledgebase and trained 

all machine learning components using only article data from 2011 or before. We then ran this 

AMELIE classifier, in monthly steps, on all PubMed data from January 2012 through May 2018, 

noting every notification generated at different notification thresholds (Figure 1). 
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Performance Measures 

We define the number of diagnosed patients as the number of test cohort patients who received a 

diagnostic notification within the experiment timeframe. The wait time for diagnosis after 

publication of the first diagnostic article is the number of months between the publication of the 

first diagnostic article and the sending of a diagnostic notification by AMELIE. 

In a typical undiagnosed patient set, only a small fraction of patients become diagnosable every 

year6,9–17. Since our test patient cohort consists only of patients who become diagnosable within 

the experiment timeframe, reporting the number of false positives per diagnostic notification 

purely from the test cohort data would underestimate the number of false positive notifications 

per diagnostic notification in a cohort including patients not diagnosable before May 2018. We 

conducted a meta-analysis of manual reanalysis studies of undiagnosed patients with suspected 

Mendelian disease6,9–15. For each study, we collected the total number of patients, the number of 

patients receiving a reanalysis diagnosis due to updated literature (rather than other factors like 

improved variant calling pipelines), and the reanalysis timeframe. Based on these data, we used a 

meta-analysis statistic implemented by the R function “metarate” to estimate the expected 

fraction of undiagnosed patients that become newly diagnosable per year through growth of 

knowledge about Mendelian diseases. This rate was estimated as 6.74% (Supplementary 

Methods and Supplementary Table S2). 

To calculate the number of false positive notifications per diagnostic notification and total 

clinician burden, we assume the existence of a typical undiagnosed patients’ database containing 

� patients. We estimate the average number of false positive notifications per patient per month 

� as the number of false positive notifications (FPs) per patient per month during the reanalysis 

experiment, calculated as 
�

�
∑ ����_���_���_����ℎ(�������)�������   . Further, we estimate 

the fraction � of diagnosable patients who receive a diagnostic notification by automatic 

reanalysis as the fraction of diagnosable test patients who receive a diagnostic notification in the 

reanalysis experiment timeframe. Based on these estimates, the expected annual number of 

diagnostic notifications equals 6.74% ⋅ � ⋅ � and the expected annual number of false positive 

notifications equals 12 ⋅ � ⋅ �. Thus, given a scenario in which 6.74% of patients in an 
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undiagnosed patients database become diagnosable within a year, the expected number of false 

positive notifications per diagnostic notification equals  
��⋅�

�.����⋅�
 and the total evaluation burden 

on clinicians, per patient per year, is 6.74% ⋅ � + 12 ⋅ �. 

Comparison of AMELIE-based reanalysis to a simple abstract-based approach 

To estimate the efficiency gain of AMELIE-based reanalysis over a manual abstract-based 

reanalysis approach, we defined the 20 most cited Mendelian disease journals as the most-cited 

journals in the Human Gene Mutation Database (HGMD), which aims to comprehensively curate 

Mendelian disease-causing mutations from the primary literature28 (Supplementary Table S3 and 

Supplementary Methods). For each patient, we assembled a surveillance list of all articles 

mentioning at least one patient candidate causative gene in the 20 most cited Mendelian disease 

journals that were published between the start of the reanalysis experiment and the publication of 

the first diagnostic article for the patient. The first diagnostic article was contained in this 

surveillance list for 82-83% of patients (91 of 110 of singleton patients and 51 of 61 of trio 

patients). Consequently, we estimated the efficiency gain of automatic reanalysis compared to 

tracking the 20 most cited Mendelian disease journals for a patient equals the number of articles 

about any of the patient’s candidate causative genes in the 20 most cited journals about 

Mendelian disease until publication of the first diagnostic article divided by the number of 

AMELIE-based automatic reanalysis notifications for the patient. 

Notification threshold calibration 

The automatic (global) reanalysis notification threshold can be adjusted to achieve high 

sensitivity (aiming for a large fraction of diagnosed patients), or high precision (aiming for a low 

number of false positives per diagnostic notification). We report the measures defined above for 

3 differently calibrated notification thresholds: (a) a “high-sensitivity” notification threshold, in 

which the clinician receives diagnostic notifications for at least 80% of diagnosable patients, 

comparable in recall to tracking the top 20 journals above, at the lowest possible clinician 

burden, (b) a “high-precision” approach, in which at most 3 false positives per diagnostic 

notification are sent on average at the highest possible true positive rate, and (c) a “minimal 
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interruptions” (even higher precision) approach, in which the majority of notifications sent are 

diagnostic, at the highest possible true positive rate. 

Results 

Table 2 summarizes the outcomes of the reanalysis experiment. The fraction of diagnosed 

patients and total number of notifications per patient per year is shown in Figure 2. The 

automatic reanalysis timeline of three examples of singleton patients is presented in Table 3. 

Automatic reanalysis on singleton data could be calibrated for high sensitivity or high precision; 

achieving high sensitivity and precision simultaneously was possible with trio data. Both modes 

of operation resulted in between 86 and 893 times fewer abstracts to consider compared to 

manual reanalysis by tracking abstracts in the 20 most cited Mendelian disease journals. 

Singletons 

We ran singleton analysis on all 110 patients. By manually tracking articles (only) about patient 

candidate causative genes in the 20 most cited Mendelian disease journals, clinicians would need 

to evaluate an average of 892 articles per diagnosable patient from the start of the reanalysis 

experiment until the publication of the first diagnostic article. 

In contrast, our automatic reanalysis system is powerful enough to attain “high sensitivity”, 

where 80% of all diagnosable patients trigger a diagnostic notification, 58% of them immediately 

upon publication of the first diagnostic article, at an average of only 1.05 notification per patient 

per year (Figure 2 and Table 2). In “high precision” mode false positive notifications are reduced 

by 80%, while 44% of diagnosable singleton patients receive a diagnostic alert, at an average 

rate of only 0.17 notifications per patient per year. And in “minimal interruptions” mode, only 

22% of diagnosable singleton patients receive a diagnostic notification, but the majority of 

notifications sent by the system are diagnostic, at a minimal 0.05 notifications per patient per 

year.   

Thus, automatic reanalysis with the above notification thresholds for high sensitivity, high 

precision, or minimal interruptions, requires following up on 361-893 times fewer articles 

compared to manual reanalysis surveillance overall, amounting to only a couple of article alerts 
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per patient. 

Trios 

In the case of manual reanalysis for our 61 trio patients, clinicians would examine an average of 

131 articles about candidate causative genes per patient by tracking abstracts in the 20 most cited 

Mendelian disease journals from start of the reanalysis experiment to the publication of the first 

diagnostic article. 

In contrast, automatic trio reanalysis in “high sensitivity” mode resulted in an 82% diagnosis 

rate, at 0.53 notifications per patient per year, or half the clinician burden of comparable 

singleton reanalysis. “High precision” mode was very similar, resulting in over 75% of 

diagnoses. And in “minimal interruptions” mode, the diagnosis rate was still 46% of diagnosable 

patients with the majority of notifications leading to diagnosis, at an impressive 0.12 

notifications per patient per year. 

Thus, automatic reanalysis as presented here requires following up on 86-145 times fewer 

articles per patient compared to manual reanalysis by tracking abstracts in the 20 most cited 

Mendelian disease journals. 

Web portal 

We have launched a web portal containing a working implementation of AMELIE analysis21 

followed by automatic reanalysis at https://amelie.stanford.edu. The updated website is trained 

on current PubMed (as opposed to 2011 in above experiment), and it performs daily literature 

updates by automatically parsing and classifying newly indexed PubMed entries, downloading 

full text of relevant articles, and inserting extracted knowledge from full-text articles into the 

AMELIE knowledgebase. For demonstration purposes users can sign up for individual accounts 

and enable automatic reanalysis notifications (delivered by email) for selected patients at user-

defined notification thresholds. Customizable singleton and trio variant filtering based on 

gnomAD variant frequency data29 is supported. 
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Discussion 

We present here a retrospective analysis of an automatic reanalysis framework on both singleton 

patients and trios diagnosed with Mendelian disorders over the span of over six years. We 

showed that automatic reanalysis can already be used to reveal diagnoses for patients with 

suspected Mendelian disease who could not be previously diagnosed at a very acceptable 

notification burden, while requiring dramatically less work of clinicians as compared to manual 

reanalysis. By simply tracking abstracts pertaining to patient candidate causative genes in the 20 

most cited Mendelian disease journals, clinicians have to review hundreds of articles per 

diagnosable patient from the start of our reanalysis experiment to diagnosis. 

In 2016 we were among the first to publish on the value of reanalysis6. From 40 cases we were 

able to diagnose 4. This 10% yield (on cases accumulated over multiple years) has since held up 

for a great number of similar studies by other groups over their undiagnosed patients. Here our 

sample size is bigger, and we expect it to be similarly representative of continuous patient 

reanalysis at under 1 notification per patient per year. Moreover, AMELIE’s “time machine” 

performance here was obtained while training only on 2011 data, not long after next generation 

sequencing became available in the clinic. It should be seen as a lower bound on AMELIE’s 

actual performance, as the AMELIE web portal is trained on nearly a decade of additional years 

of accumulated knowledge. Performance would further improve should the conservative 

expected rate of reanalysis diagnoses per year we estimate at 6.7% be higher. 

A mass of sequenced but undiagnosed patients is already accruing17. CLIA-certified exome data 

production now costs only a few hundred dollars. A wave of data – millions of sequenced 

patients3, and tens of thousands of articles on Mendelian disease genes21 – is coming the way of 

fewer than a thousand clinical laboratory geneticists in the U.S.30 and their peers worldwide. 

Germline exome and genome sequencing data, in contrast to results from many other diagnostic 

tests, do not expire. As our knowledge about disease-causing genetic variation constantly grows, 

manual reinterpretation of patient sequencing data can at best be done periodically. In Mendelian 

diagnosis alone, a substantial 70% of cases will not be diagnosed at initial analysis5, and yet, as 

estimated here, a meaningful ~6.7% will become diagnosable with each subsequent year that 
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passes on new knowledge alone. This accumulating load will greatly weigh on any interpretation 

service. Automation, as we show, can realize the promise of continuous reanalysis and timely 

diagnosis for all, and will be essential to handle the incoming flood of healthcare data and 

insights. 

Our AMELIE-based reanalysis framework has limitations, catching only 80% of diagnosable 

cases even in high sensitivity mode. But what diagnoses it finds, it offers with an efficiency gain 

of ~100-1000-fold over the – unsustainable – current standard of manual curation. Importantly, 

our system does not replace clinicians, but rather augments their capabilities. If a medical 

institute or lab devotes a certain number of work hours to re/analysis, a small fraction of this time 

should be devoted to resolving our system’s notifications. The remainder can certainly be spent 

on more open-ended explorations, and all lessons learned (both inside and outside the system) 

can be incorporated to make such resident clinical support systems better and better over time. 

Traditionally, patient cases are most often reassessed at the time of a new clinical encounter. The 

rapid accumulation of medical knowledge pressures this paradigm as the significance of one’s 

health record can change dramatically between visits.  On any given day, a patient may become 

diagnosable and a portion of such diagnoses are expected to be immediately actionable. At the 

same time, logistical and cost constraints currently prevent the regular reanalysis of many patient 

cases following non-diagnostic sequencing. Together with automated phenotype extraction tools 

from the electronic medical record, like ClinPhen22, AMELIE demonstrates the potential of a 

scalable means of regular reanalysis for undiagnosed patients, which can also encompass 

emerging incidentals. This has implications for the care of patients with undiagnosed genetic 

disease and more broadly. The promise of efficient, continuous, automated identification of 

latent, actionable diagnoses in patient data has the potential to significantly improve health 

outcomes across care settings. 

Acknowledgments 

We would like to thank Erich Weiler for continuous support and guidance. We thank the 

members of the Bejerano lab for technical advice and helpful discussions. We thank Victoria 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.29.20248974doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.29.20248974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

14 

Wang, Max Haeussler, Mark E. Diekhans, Natalie T. Deuitch, and Laura E. Hayward for helpful 

input. We thank Elijah Kravets, Julia Buckingham and Kirstie MacMillan for study coordination. 

We thank the European Genome-Phenome Archive27 (EGA) and the Deciphering Developmental 

Disorders (DDD) project25 for data sharing. The DDD study presents independent research 

commissioned by the Health Innovation Challenge Fund [grant HICF-1009-003], a parallel 

funding partnership between the Wellcome Trust and the Department of Health, and the 

Wellcome Trust Sanger Institute [grant WT098051]. The views expressed in this publication are 

those of the author(s) and not necessarily those of the Wellcome Trust or the Department of 

Health. The study has UK Research Ethics Committee approval (10/H0305/83, granted by the 

Cambridge South REC, and GEN/284/12 granted by the Republic of Ireland REC). Deidentified 

DDD data was obtained through EGA. The research team acknowledges the support of the 

National Institute for Health Research, through the Comprehensive Clinical Research Network. 

The authors would like to thank the Genome Aggregation Database (gnomAD) and the groups 

that provided exome and genome variant data to this resource. A full list of contributing groups 

can be found at http://gnomad.broadinstitute.org/about. UDN data were obtained directly from 

the UDN. Funding: All computational work was funded only by a Bio-X SIGF fellowship (JB), 

the Stanford Department of Pediatrics (JAB, GB), a Packard Foundation Fellowship (GB), and a 

Microsoft Faculty Fellowship (GB). UDN curated data used in this manuscript was supported by 

the NIH Common Fund, through the Office of Strategic Coordination/Office of the NIH Director 

under Award Numbers U01HG007709, U01HG007672, U01HG007690, U01HG007708, 

U01HG007674, U01HG007942 and U01HG007943. The content is solely the responsibility of 

the authors and does not necessarily represent the official views of the National Institutes of 

Health. A list of UDN collaborators is available in Supplementary Table S4.  

Author contributions 

JB and GB designed the study and analyzed the results. JB and ES implemented the text mining 

software, website and associated databases. EEB verified diagnostic articles for the purposes of 

the reanalysis experiment. CAD and KAJ processed patient data. JNK, DB, SM, JAMA, SN, 

CGP, JDC, RH, JMS, JBK, JAR, PM, DRA, VS, EAW, CME, EAA, MTW, and UDN provided 

curated patient data. PDS and DNC curated HGMD. JAB provided guidance on clinical aspects 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.29.20248974doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.29.20248974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

15 

of study design, testing set construction and interpretation of results. JB, JAB, and GB wrote the 

manuscript. All authors commented on and approved the manuscript. GB guided the study. 

Conflict of Interest 

DNC and PDS acknowledge the receipt of financial support from Qiagen Inc through a License 

Agreement with Cardiff University. The Department of Molecular and Human Genetics at 

Baylor College of Medicine receives revenue from clinical genetic testing completed at Baylor 

Genetics. EAA is advisor to Apple, co-founder of Personalis Inc., and of DeepCell Inc. MTW is 

a stockholder of Personalis. The remaining authors declare no conflict of interest. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.29.20248974doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.29.20248974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

16 

References 

1.  Church G. Compelling Reasons for Repairing Human Germlines. N Engl J Med 
2017;377(20):1909–11.  

2.  Blencowe H, Moorthie S, Petrou M, et al. Rare single gene disorders: estimating baseline 
prevalence and outcomes worldwide. J Community Genet 2018;9(4):397–406.  

3.  Birney E, Vamathevan J, Goodhand P. Genomics in healthcare: GA4GH looks to 2022. 
bioRxiv 2017;203554.  

4.  Dragojlovic N, Elliott AM, Adam S, et al. The cost and diagnostic yield of exome 
sequencing for children with suspected genetic disorders: a benchmarking study. Genet 
Med 2018;20(9):1013.  

5.  Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of 
mendelian disorders. N Engl J Med 2013;369(16):1502–11.  

6.  Wenger AM, Guturu H, Bernstein JA, Bejerano G. Systematic reanalysis of clinical exome 
data yields additional diagnoses: implications for providers. Genet Med 2017;19(2):209-
214 (ePub 2016).  

7.  Bamshad MJ, Nickerson DA, Chong JX. Mendelian Gene Discovery: Fast and Furious with 
No End in Sight. Am J Hum Genet 2019;105(3):448–55.  

8.  Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database (HGMD®): 
optimizing its use in a clinical diagnostic or research setting. Hum Genet 2020; 

9.  Nambot S, Thevenon J, Kuentz P, et al. Clinical whole-exome sequencing for the diagnosis 
of rare disorders with congenital anomalies and/or intellectual disability: substantial interest 
of prospective annual reanalysis. Genet Med 2018;20(6):645–54.  

10.  Need AC, Shashi V, Schoch K, Petrovski S, Goldstein DB. The importance of dynamic re-
analysis in diagnostic whole exome sequencing. J Med Genet 2017;54(3):155–6.  

11.  Costain G, Jobling R, Walker S, et al. Periodic reanalysis of whole-genome sequencing data 
enhances the diagnostic advantage over standard clinical genetic testing. Eur J Hum Genet 
2018;26(5):740–4.  

12.  Xiao B, Qiu W, Ji X, et al. Marked yield of re-evaluating phenotype and exome/target 
sequencing data in 33 individuals with intellectual disabilities. Am J Med Genet A 
2018;176(1):107–15.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.29.20248974doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.29.20248974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

17 

13.  Ewans LJ, Schofield D, Shrestha R, et al. Whole-exome sequencing reanalysis at 12 months 
boosts diagnosis and is cost-effective when applied early in Mendelian disorders. Genet 
Med 2018;20(12):1564.  

14.  Eldomery MK, Coban-Akdemir Z, Harel T, et al. Lessons learned from additional research 
analyses of unsolved clinical exome cases. Genome Med 2017;9(1):26.  

15.  Shashi V, Schoch K, Spillmann R, et al. A comprehensive iterative approach is highly 
effective in diagnosing individuals who are exome negative. Genet Med 2018;161–72.  

16.  Baker SW, Murrell JR, Nesbitt AI, et al. Automated Clinical Exome Reanalysis Reveals 
Novel Diagnoses. J Mol Diagn JMD 2019;21(1):38–48.  

17.  Liu P, Meng L, Normand EA, et al. Reanalysis of Clinical Exome Sequencing Data. N Engl 
J Med 2019;380(25):2478–80.  

18.  Maiese DR, Keehn A, Lyon M, Flannery D, Watson M, Working Groups of the National 
Coordinating Center for Seven Regional Genetics Service Collaboratives. Current 
conditions in medical genetics practice. Genet Med Off J Am Coll Med Genet 
2019;21(8):1874–7.  

19.  Birgmeier J, Haeussler M, Deisseroth CA, et al. AMELIE accelerates Mendelian patient 
diagnosis directly from the primary literature. bioRxiv 2017;171322.  

20.  Birgmeier J, Haeussler M, Deisseroth CA, et al. AMELIE 2 speeds up Mendelian diagnosis 
by matching patient phenotype & genotype to primary literature. bioRxiv 2019;839878.  

21.  Birgmeier J, Haeussler M, Deisseroth CA, et al. AMELIE speeds Mendelian diagnosis by 
matching patient phenotype and genotype to primary literature. Sci Transl Med 
2020;12(544).  

22.  Deisseroth CA, Birgmeier J, Bodle EE, et al. ClinPhen extracts and prioritizes patient 
phenotypes directly from medical records to expedite genetic disease diagnosis. Genet Med 
2018;1.  

23.  Karczewski KJ, Francioli LC, Tiao G, et al. Variation across 141,456 human exomes and 
genomes reveals the spectrum of loss-of-function intolerance across human protein-coding 
genes. bioRxiv 2019;531210.  

24.  Birgmeier J, Deisseroth CA, Hayward LE, et al. AVADA: toward automated pathogenic 
variant evidence retrieval directly from the full-text literature. Genet Med 2019;1–9.  

25.  Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes 
of developmental disorders. Nature 2015;519(7542):223–8.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.29.20248974doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.29.20248974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

18 

26.  Ramoni RB, Mulvihill JJ, Adams DR, et al. The Undiagnosed Diseases Network: 
Accelerating Discovery about Health and Disease. Am J Hum Genet 2017;100(2):185–92.  

27.  Lappalainen I, Almeida-King J, Kumanduri V, et al. The European Genome-phenome 
Archive of human data consented for biomedical research. Nat Genet 2015;47(7):692–5.  

28.  Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database: towards a 
comprehensive repository of inherited mutation data for medical research, genetic diagnosis 
and next-generation sequencing studies. Hum Genet 2017;136(6):665–77.  

29.  Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 
60,706 humans. Nature 2016;536(7616):285–91.  

30.  Providers begin to use genomic testing in mapping patient care. Health Data Manag 
[Internet] 2018;Available from: https://www.healthdatamanagement.com/news/providers-
begin-to-use-genomic-testing-in-mapping-patient-care 

31.  Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Genenames.org: the HGNC 
resources in 2015. Nucleic Acids Res 2015;43(Database issue):D1079-1085.  

32.  Bateman A, Martin MJ, O’Donovan C, et al. UniProt: the universal protein knowledgebase. 
Nucleic Acids Res 2017;45(D1):D158–69.  

33.  Jurafsky D, Martin JH. Speech and Language Processing (2Nd Edition). Upper Saddle River, 
NJ, USA: Prentice-Hall, Inc.; 2009.  

34.  Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online 
Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic 
disorders. Nucleic Acids Res 2015;43(Database issue):D789-798.  

35.  Haeussler M. Download, convert and process the full text of scientific articles: 
maximilianh/pubMunch3 [Internet]. 2018. Available from: 
https://github.com/maximilianh/pubMunch3 

36.  Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. J 
Mach Learn Res 2011;12:2825–2830.  

37.  1000 Genomes Project Consortium, Auton A, Brooks LD, et al. A global reference for 
human genetic variation. Nature 2015;526(7571):68–74.  

38.  Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations 
and supporting evidence. Nucleic Acids Res 2018;46(D1):D1062–7.  

39.  Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 
ArXiv13033997 Q-Bio [Internet] 2013;Available from: http://arxiv.org/abs/1303.3997 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.29.20248974doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.29.20248974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

19 

40.  Broad Institute, Picard Tools. Picard Tools - By Broad Institute [Internet]. 2017;Available 
from: http://broadinstitute.github.io/picard/ 

41.  DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping 
using next-generation DNA sequencing data. Nat Genet 2011;43(5):491–8.  

42.  Girdea M, Dumitriu S, Fiume M, et al. PhenoTips: patient phenotyping software for clinical 
and research use. Hum Mutat 2013;34(8):1057–65.  

43.  Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools. 
Bioinformatics 2011;27(15):2156–8.  

44.  Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from 
high-throughput sequencing data. Nucleic Acids Res 2010;38(16):e164.  

45.  Schwarzer G. meta: An R package for meta-analysis. R News 2007;7(3):40–45.  

46.  Wei C-H, Kao H-Y, Lu Z. PubTator: a web-based text mining tool for assisting biocuration. 
Nucleic Acids Res 2013;41(Web Server issue):W518-522.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.29.20248974doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.29.20248974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

20 

Figures 

Figure 1. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.29.20248974doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.29.20248974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

21 

Figure 1. Automatic reanalysis of patients with undiagnosed Mendelian diseases. After 

sequencing, clinicians examine the automated AMELIE analysis in search of a diagnosis. If a 

diagnosis is not available (currently in ~70% of all cases), the patient’s information is entered 

into a reanalysis database. Every month, AMELIE matches all newly published literature against 

every patient candidate causative variant and phenotypes to seek new diagnoses. If a newly 

published article is flagged as being possibly diagnostic, it is reviewed by clinicians, resulting in 

either diagnosis or continuation of AMELIE-based automatic reanalysis. See example, reanalysis 

notifications in Table 3.  
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Figure 2.  
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Figure 2. Fraction of diagnosed patients and average clinician burden per patient per year 

across notification thresholds. Both panels have the same x-axis so that matching values can 

read simultaneously from both. (Upper panel) The fraction of diagnosable test cohort patients 

who received a diagnostic notification (i.e., true positive) during the 6.5 year reanalysis 

experiment timeframe across notification thresholds. (Lower panel) The expected total number 

of notifications (or clinician burden) per patient per year across notification thresholds, including 

both diagnostic notifications and false positive notifications. For example, the system detects 

80% of diagnosable singletons (trios) at the low burden of 1 (0.5) notification per patient per 

year.  
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Tables 

Table 1. Clinical characteristics of patient cohort 
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Table 2. Reanalysis experiment outcomes 
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Table 3. Automatic reanalysis notifications of three singleton patients,  
               starting January 2012 

    

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.29.20248974doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.29.20248974
http://creativecommons.org/licenses/by-nc-nd/4.0/

