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s Abstract

7 The COVID-19 pandemic is widely studied as it continues to threaten many populations of people especially
s in the USA, the leading country in terms of both deaths and cases. More and more reports show that the
o spread of COVID-19 involves infected individuals first passing through a pre-symptomatic infectious stage
10 in addition to the incubation period and that many of the infectious individuals are asymptomatic. In this
un  study, we design and use a mathematical model to primarily address the question of who are the main
12 drivers of COVID-19 - the symptomatic infectious or the presymptomatic and asymptomatic infectious in
13 the states of Florida, Arizona, New York, Wisconsin and the entire United States. We emphasize the benefit
1 of lockdown by showing that for all four states, earlier and later lockdown dates decrease the number of
15 cumulative deaths. This benefit of lockdown is also evidenced by the decrease in the infectious cases for
16 Arizona and the entire US when lockdown is implemented earlier. When comparing the influence of the
v symptomatic infectious versus the presympomatic/asymptomatic infectious, it is shown that, in general, the
18 larger contribution comes from the latter group. This is seen from several perspectives (1) in terms of daily
1 cases, (2) in terms of daily cases when the influence of one group is targeted over the other by setting the
0 effective contact rate(s) for the non-targeted group to zero, and (3) in terms of cumulative cases and deaths
a1 for the US and Arizona when the influence of one group is targeted over the other by setting the effective
» contact rate(s) for the non-targeted group to zero. The consequences of the difference in the contributions
;3 of the two infectious groups is simulated in terms of testing and these simulations show that an increase
a in testing and isolating for the presymptomatic and asymptomatic infectious group has more impact than
» an increase in testing for the symptomatic infectious. For example, for the entire US, a 50% increase in
» testing for the presymptomatic and asymptomatic infectious group results in a 35% decrease in deaths as
x  opposed to a lower 6% decrease in deaths when a 50% increase in testing rate for the symptomatic infectious
2 is implemented. We also see that if the testing for infectious symptomatic is kept at the baseline value
2 and the testing for the presymptomatic and asymptomatic is increased from 0.2 to 0.25, then the control
s reproduction number falls well below 1. On the other hand, to get even close to such a result when keeping the
s presymptomatic and asymptomatic at baseline fitted values, the symptomatic infectious testing rate must be
2 increased considerably more - from 0.25 to 1.7. Lastly, we use our model to simulate an implementation of a
13 natural herd immunity strategy for the entire U.S. and for the state of Wisconsin (the most recent epicenter)
s and we find that such a strategy requires a significant number of deaths and as such is questionable in terms
3 of success. We conclude with a brief summary of our results and some implications regarding COVID-19
36 COIll\lt?“I) :gﬁg pﬁﬁrllgta%el%%tssagz\ivtéegsieeagch that has not been certified by peer review and should not be used to guide clinical practice.

s Keywords: COVID-19, symptomatic infectious, asymptomatic infectious, presymptomatic infectious,

33 natural herd immunity

1. Introduction

2 The coronavirus, known as COVID-19, emerged in Wuhan, China in December 2019, and has since then
a spread to all countries on earth. As of 12/10/2020, the United States has reported 15,535,565 cases and
2 291,403 deaths and although the leading country in both deaths and cases, the U.S. did not implement a
s national pandemic control initiative. Instead, many states and cities implemented their own initiatives at

w various times, and the transmission of COVID-19 has varied from state to state. States also implemented
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s their own testing initiatives. Around 12-10-2020, the reported testing rates are as follows: Arizona testing at
s arate of 347.7 tests per 100,000 people, Florida testing at a rate of 497.2 tests per 100,000 people, New York
«  testing at a rate of 985.7 tests per 100,000 people, and Wisconsin testing at a rate of 562.4 tests per 100,000
s people [2]. With regard to mask usage, the observed mask usage percentage in the US has increased since
2 the beginning of the pandemic. From March 1, 2020 to May 1, 2020, the mask use percentage increased from
so 5% to 40%. From May 1, 2020 to November 22, 2020, the mask use percentage increased from 71%. Social
st distancing has also played a role in the transmission of COVID-19. On March 8, 2020 to April 4, 2020, the
52 US experienced a 53% decrease in mobility. From April 4, 2020 to June 24, 2020, the decrease in mobility
53 changed to only -22%. From June 24, 2020 to November 22, 2020, the mobility oscillated between -18% and
so -25% [3]. The social distancing statistics are due to the fact that different states implemented stay-at-home
s periods for various intervals of time. All of these factors play a part in the transmission of COVID-19 in the
s US as a whole, and effectively in each state. Although we do not consider all of these measures directly, we
s do discuss the effect that lockdown has on the number of cases and deaths. We do include mask usage, and
ss we use a different mask compliance value for each period per state [I0]. To study social distancing, we fit
so the values for the effective contact rate for each time period per state and per time period.

60 Mathematical modelling can help us better understand how COVID-19 cases and mortality is affected
s based on when and how long lockdown periods are enforced. Modelling can also help us identify the main
e drivers of the disease and give insight on how best to use the standard control and mitigation strategies. We
63 expand on the standard SIR model, which uses a system of ordinary differential equations to model disease
6 spread through multiple compartments over time. In this study, we do not consider a time-varying system.
65 Prior studies consider susceptible individuals transitioning to exposed and then to infectious. We include
6 & presymptomatic compartment for individuals who are infectious before the onset of symptoms. We also
e consider individuals who were tested, resulting in an asymptomatic or symptomatic classification, as well
6 as the population of people who may have self-isolated after being exposed by an infected individual. It is
6 known that over the course of the pandemic, hospitals have been highly stressed and over-crowded due to the
7o influx of COVID-19 patients. In order to study mortality due to the pandemic, we also include compartments
n  that keep track of the number of patients admitted to the hospital and the ICU.

7 We explore scenarios where lockdown is started earlier or extended past the reported date. We show
7z that both scenarios decrease the number of deaths. We can use these type of simulations to predict future
7 mortality populations and use the information to help with determining when lockdown periods should start
7 and how long the lockdown period should be enforced.

7 Finally, in response to the increase in public discussions of a natural herd immunity approach, we use
77 our model to run some basic scenarios for implementing such a strategy in the state of Wisconsin and the

7 US as a whole. We simulate the number of deaths that would occur before herd immunity is achieved.

7 2. Main Questions

80 The overall purpose of this study is to explore the postlockdown dynamics of COVID-19 and in the
a1 process, explore the notion that the main drivers of COVID19 are the asymptomatic and presymptomatic
& infectious individuals. Because both the asymptomatic and presymptomatic infectious spread COVID-19
s without showing symptoms we group these two compartments together and compare that group to the
& symptomatic infectious. More specifically, we use a mathematical model to address the following questions
s for New York, Arizona, Florida, Wisconsin, and in some cases, the entire US. The section of the paper in

s which each question is addressed is given after the question.

&7 e How do changes in lockdown dates (i.e., earlier or later lockdown dates) affect the number of deaths
o8 and cases? (Section 4.3.1)

80 e How does the contribution of the presymptomatic and asymptomatic infectious individuals compare
% to that of the symptomatic infectious in terms of cases and deaths? (Section 4.3.2)
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o1 e If we isolate all symptomatic infectious individuals or all asymptomatic and presymptomatic infectious
% individuals, how will this impact deaths and cases? (Section 4.3.3)

03 e How might a minimum testing rate for presymptomatic and asymptomatic compare to that for the
0 symptomatic infectious individuals in order to obtain a reproduction number below 1?7 (section 4.3.4)
o e How many deaths will occur in a natural herd immunity simulation for Wisconsin and the entire US?
% (Section 4.4)

o 2.1. COVID-19

o8 In order to assess and deliver guidelines for individuals to avoid coronavirus infection, the CDC has
o implemented models equipped with the many stages of the virus [I]. A person who has been infected is
wo considered pre-symptomatic (an individual who is infectious but did not show symptoms at the time of
1 testing) or asymptomatic (a person who is infectious and does not show symptoms throughout the course
102 of the infection). The CDC built pandemic planning scenarios varying the infectiousness of asymptomatic
103 individuals compared to symptomatic, varying the percent of asymptomatic individuals, and varying the
14 percentage of transmission of presymptomatic individuals. In this paper, we use similar methods to build
105 our model and determine parameter values for the locations and time periods of interest. Figure [I| shows
s the stages of COVID-19, especially the incubation period, infectious period, presymptomatic period, and
w7 symptomatic period. It should be noted that a presymptomatic infectious individual can become either

108 asymptomatic or symptomatic infectious.
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Figure 1: The Stages of COVID-19

100 We are interested in modeling COVID-19 in the United States as a whole, as well as focusing on four
uo states. We consider New York (Northeast), which started as an epicenter in the US. We consider Florida
(Southeast) and Arizona (Southwest) due to the fact that they became hot spots with significant numbers of

111

uz  daily cases and overwhelming numbers in their healthcare facilities. Lastly, we consider Wisconsin (Midwest),
us  which became a hot spot later in the year. Table [I] shows the differences between the states with regards to

1+ the number of cumulative deaths.

Cumulative Deaths

Beginning of lockdown | End of lockdown | on August 11, 2020 | on November 23, 2020
United States 16767 104803 164519 257779
Arizona 25 651 4199 6464
Florida 170 1399 8553 18085
New York 249 30482 32770 34339
Wisconsin 10 594 1006 3158

Table 1: This table gives the cumulative deaths for each state and the United States. The lockdown dates depend on the state.
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s 3. Methods

ue  3.1. Model with presymptomatic compartment and face masks

17 We use a modified Kermack-McKendrik-type epidemic (no human demography) model to better under-
us  stand the dynamics of COVID-19. Since a main objective of this study is to analyze the role of infectious
ne  individuals who show no symptoms, the model (2)) includes a presymptomatic compartment as the foundation
10 for parameter estimation. We use a deterministic susceptible, exposed, presymptomatic, symptomatically-
1w infectious, asymptomatically-infectious, self-isolated, hospitalized, recovered, and ICU patients modeling
2 framework, with the classes denoted as S(t), E(t), Ep(t), I(t), A(t), J(t), H(t), R(t),C(t) respectively;
s we also include D(t) to track deaths.The model also includes the mitigation/control interventions of face
1« mask usage (with a compliance parameter as well as a face mask efficacy parameter) and testing/detection

125 implementation for each of the infectious classes.

A= (1—=€mem) (BrI+ BaA+B.E.) % > >

Figure 2: Schematic flow diagram of the model

12 3.2. Data Collection

127 We obtain the observed cumulative deaths and cases data for the states of Arizona, Florida, New York
s and Wisconsin from the COVID-19 Data Repository by the Center for Systems Science and Engineering
1o (CSSE) at Johns Hopkins University (2020). The repository contains data beginning at January 22, 2020
130 (the marked beginning of the pandemic in the US), however, we focus primarily on the data from March 1,
1 2020 through October 13, 2020. Using these data sets we determine the initial conditions for the number of
122 cases and deaths for a given time period.

133 The model has 24 parameters and we use values from the literature for 18 of these and estimate the
13« remaining 6 by fitting the model to the observed cumulative mortality data for each state. The parameters
135 that are estimated are as follows: the effective contact rate for the symptomatically-infectious individuals Sy,
136 the effective contact rate for the asymptomatically-infectious individuals 54, the effective contact rate for
17 presymptomatically-infectious individuals Sp, the rate at which presympotomatically-infectious individuals
s self-isolate 7p, the rate at which asympotomatically-infectious individuals self-isolate 74, and the hospitaliza-
139 tion rate for self-isolating individuals «v;. Parameter fitting was performed using a non-linear sum-of-squares
1o estimate - i.e. determining the best parameters set that minimizes the sum of the square of the difference
1w between the model outputs for death and the observed values for deaths.

142

143 Our model for the transmission dynamics of COVID-19 is given by the following deterministic system of

us  non-linear differential equations.
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where N(t) = S+ E+EP+I+ A+ H+J+C+ R is the total population at time ¢. Let €, be the efficacy
of face masks to prevent transmission and acquisition of infection, ¢,, the compliance in face mask usage in
the community (0 < ¢, < 1), o the progression rate from exposed (E) to infectious classes (I or A), r the
fraction of exposed individuals who show clinical symptoms at the end of the incubation period, 7, the rate
self-quarantined symptomatically-infectious humans self-isolate, ~v,, v,, 7,, Yu, Vo the recovery rates for the
subscripted population, v, the rate of ICU admission for hospitalized individuals, ¢, the hospitalization
rate for symptomatically-infectious individuals, a, the hospitalization rate for asymptomatically-infectious
individuals, §, the disease-induced mortality rate for symptomatically-infectious individuals, 6, the disease-
induced mortality rate for asymptomatically-infectious individuals, J,, the disease-induced mortality rate

for hospitalized individuals, ., the disease-induced mortality rate individuals in ICU. We assume that

hospitalized individuals do not come in contact with the general population.

4. Results

4.1. Computation of Reproduction Numbers

The basic reproduction number Ry is the average number of secondary infections produced when one
infected individual is introduced into a host population of susceptibles. For our model’'s Rg, we have Rg =

Roa + Ror + Rop where
ﬁA(l — 7")

R T e
04 apg+ya+0a

Brr

Ror = ———
or ar + 1+ 901

and

Rop = —.
op

The control reproduction number R is the average number of new cases generated by a typical infectious
individual introduced into a host population of susceptibles with some control measures/interventions in
place. Using the next generation operator method and notation found in [I2] we have the following compu-
tation for the control reproduction number R¢. If take the column vector (E Ep I A) representing the
compartments of infected, we have the associated next generation matrices, F' and V, for the new infection

terms and the transition terms are given respectively as
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0 1—emem)Br (1 —é€mem)Br (1 —€emem) Ba Oe 0 0 O

0 0 0 0 —0e Gy 0 0
F= and V=

0 0 0 0 0 —rop Gy O

0 0 0 0 0 —(1-rop 0 Gy

where, Gy =op+7p, Go =ar+y7+ 075+ 77, G3 = g +74+ 4+ 7a. R is the spectral radius of the

next generation matrix given by,
Rc :p(FV”) =Rr+Ra+Rp

where Ry = %7 Ra = (176'"675)1%:)“”, and Rp = % In absence of interventions,

ie. with 7 =74 =7p =74 = €, = ¢, = 0, we get the basic reproduction number for model , Ro, as

given earlier.

Theorem 1. The disease-free equilibrium (DFE) of the model is locally-asymptotically stable if Ro < 1,
and unstable if Rc > 1.

A basic implication of Theorem 1 is that in order to control the COVID-19 outbreak (to not generate

more), it suffices to keep R¢ < 1.

4.2. Goodness of Fit

We analyze how well our model fits the data from John Hopkins using the T-Test in R. The T-Test
measures the difference between two sets of continuous data. We want to compare two sample means
to determine if there is a statistically significant difference between the model and the data. We use a
paired T-test where each vector has the same amount of entries and the values are taken from the same
independent variable. The T-Test assumes that the data in each vector is normally distributed and that
they have approximately equal variances. To test for normality, we use the Shapiro-Wilk Test in R. The null
hypothesis for this test is that the values in the vector are normally distributed. If the p-value is greater
than 0.05, then the distribution of the values in the vector are not significantly different from the normal
distribution. I.e. we fail to reject the null hypothesis. We can visualize this using a Q-Q plot. We assume
normality if all the points fall along the reference line. We then check the variances of the values in the two
vectors using the standard variance equation from probability. Let the null hypothesis for the T-Test be

that the difference between the two groups is 0. The T-statistic is defined as

T1 — T2

V(3 /n1) + (s3/n2)

We conclude that the model for each state, cumulative death population, during the lockdown period
does indeed fit the data. Table [2] shows the resulting p-values of the T-Test for each state and the United

States as a whole during the lockdown period. The goodness of fit plots can be found in the appendix

(section 6.3) in Figures and

Daily p-value | Daily T-statistic | Cumulative p-value | Cumulative T-statistic
United States 0.9722 0.035037 0.7839 0.27581
Florida 0.9083 0.11621 0.4947 0.69165
Arizona 0.6002 -0.52796 0.0004622 3.7845
New York 0.8781 -0.15396 0.007702 2.749
Wisconsin 0.02353 -2.323 2.2e-16 -17.953

Table 2: Goodness of Fit for the T-Test. This table gives the p-values and T-statistic for each test for each state and the United
States during the lockdown period. The daily column denotes the model vs the data of the daily deaths. The cumulative
column denotes the model vs the data of the cumulative deaths.
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4.8. Simulated Epidemics

We fit our model using the cumulative and daily mortality data for Florida, Arizona, Wisconsin, and New
York over the pre-lockdown, lockdown, and post-lockdown periods based on the state’s respective decisions.
Florida, Arizona, New York, and Wisconsin pre-lockdown period is defined from March 10, 2020 to April 3,
2020, March 21, 2020 to March 31, 2020, March 2, 2020 to March 22, 2020, and March 19, 2020 to March
25, 2020 respectively. The lockdown period is defined from April 3, 2020 to May 4, 2020, March 31, 2020
to May 15, 2020, March 22, 2020 to May 28, 2020, March 25, 2020 to May 26, 2020 respectively. For the
entire US the pre-lockdown and postlockdown dates are January 22, 2020 to April 7, 2020 and April 7, 2020
to May 28, 2020, as given in [I0]. The post-lockdown periods begin at the end of the prescribed lockdown
period for each state and for most of our results ends on August 11, 2020. Figure [3| shows the fit for our

model with the cumulative deaths data during the lockdown period.

1500

0 e
325526

50 55
i35

Figure 3: Data fitting of the model using COVID-19 mortality data for the states of Florida, Arizona, New York and Wisconsin
during their respective lockdown periods. The plots show the model (blue) against the data (red).

The state variables and the parameters for our model are given in the Appendix in Tables [3] and []

respectively.

4.8.1. Lockdown starting earlier or later

For all of the states, the first lockdown (and for most states, the only lockdown so far) was implemented in
the month of March. Since an earlier lockdown would have most likely prevented the disease from gaining a
foothold in these areas, when we simulate an earlier lockdown, we find that the number of cumulative deaths
decreases significantly for each state. This decrease occurs each time we add one week to the beginning of
the lockdown period - see Figure [

Florida Lockdown Wisconsin Lockdown

;;;;;;
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Figure 4: Row 1: The cumulative deaths for each state if lockdown began 1 week earlier. Row 2: The cumulative deaths for
each state if lockdown began 2 weeks earlier.

In general, an earlier lockdown also results in a decrease in daily cases for both the symptomatic and
asymptomatic/presymptomatic compartments, as shown in the daily cases plots for Arizona and the entire

US in Figure[f
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Figure 5: Daily cases for the asymptomatic/pre-symptomatic individuals (cyan curve) versus the symptomatic individuals (red
curve) for the entire US and Arizona if Row 1: Lockdown began 1 week earlier and if Row 2: Lockdown began 2 weeks earlier.

200 On the other hand, if we use the original lockdown start dates but extend the lockdown periods by 2 and

20 4 weeks for each state, we again see a decrease in cumulative deaths as shown in Figure [6]

Florida Lockdown s 0t How York Lockdown

Cumulative Deaths.

22611

New York Lockdown

% a4 s e 0 s e 10

-6z a6 22625 an25- 63

Figure 6: Row 1: The cumulative deaths for each state if lockdown was lifted 2 weeks later. Row 2: The cumulative deaths
for each state if lockdown was lifted 4 weeks later.

202 These varying lockdown dates scenarios can be used to assess the efficacy of lockdowns and to guide
203 the manner in which the lockdowns are implemented. For example, one interesting lockdown scenario is to
24 consider what would happen if the entire U.S. implemented a lockdown during the month of December 2020
205 for two weeks. In order to simulate such a strategy we reduce the contact rate parameters - i.e., the betas
2 - by 40% [7] and run the simulation forward. As shown in Figure [7 below, the simulations give that such a

207 lockdown would result in a marked decrease in the number of deaths.


https://doi.org/10.1101/2020.12.28.20248967
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.12.28.20248967; this version posted January 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

It is made available under a CC-BY-NC-ND 4.0 International license .

<10° US Postlockdawn

m— without lockdown
4.6+ — 4~ with lckdown

Cumulative Deaths
..- w
®
T

B AR

32+ _vw.,.f_wvw
g Y
a2
3Ir S
28
280 285 290 285 300 305 310 315 320 325 330

Dec 07, 2020 - Jan 20, 2021

Figure 7: Cumulative deaths in US with lockdown in December (green) versus without lockdown (blue)

4.8.2. Simulations for Asymptomatic, Presymptomatic, and Symptomatic

In this section, we focus more on comparing the contributions of the symptomatic infectious group versus
the asymptomatic and presymptomatic infectious group. To this end, we first consider plotting the daily
cases for the two groups against each other. In all states and time periods, we find that the number of daily
cases for the asymptomatic and presymptomatic is more than the daily cases for the symptomatic as shown

in the following figure.
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Figure 8: The plots show the presymptomatic and asymptomatic versus symptomatic individuals for each state during their
respective Row 1: Pre-lockdown period, Row 2: Lockdown period, and Row 3: Post-lockdown period.

The parameter 3 represents the contacts by the symptomatically infectious individuals that could trans-
mit the disease. By setting 5; = 0, we eliminate that transmission and focus on the effect of the presymp-
tomatic and asymptomatic individuals. Similarly, fixing 54 = Bp = 0, targets the effect of the symptomat-
ically infectious. In order to further discern the role of the asymptomatic and presymptomatic infectious
versus that of the symptomatic infectious, we consider these zero contact rate scenarios in terms of the num-
ber of daily cases for all of the states and the entire U.S. In Figure[d] we show the results for the pre-lockdown
and post-lockdown periods and for those periods, we again get that the larger contribution comes from the
asymptomatic and presymptomatic individuals. For the lockdown period we obtain mixed results and these

are considered in the appendix (Figure.
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Figure 9: The plots show the daily cases for each state with 8y = 0 (cyan curve) and with 84 = Bp = 0 (red curve) during
their respective Row 1: Pre-lockdown period and Row 2: Post-lockdown period.

In Figure[10} we again take the 8; = 0 (green curve) versus the 34 = 8p = 0 (magenta curve) scenario, but
here we consider the effect in terms of cumulative cases and cumulative deaths for the entire US and the state
of Arizona. Both types of plots indicate that the main drivers are the asymptomatic and presymptomatic

individuals.
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Figure 10: The cumulative cases and deaths for the U.S. and Arizona over the respective lockdown period where Case 1
corresponds to S5 = 0 (green curve; so focuses on the impact of asymptomatic/pre-symptomatic individuals) and Case 2
corresponds to 84 = Bp = 0 (magenta curve; so focuses on the impact of symptomatic individuals)

4.3.3. Isolating Symptomatic and Asymptomatic/Pre-symptomatic

Recall that the 7 values give the rate for testing/detection of infected individuals and subsequent self-
isolation. In this section we compare and contrast the effect of isolating the symptomatic against the effect
of isolating the asymptomatic and presymptomatic by changing the appropriate 7 values. For example, to
address the effect of isolating symptomatic infectious individuals, we can increase the value of 7; (the rate
that symptomatically infectious individuals self-isolate) while keeping all other rates the same. We consider
this scenario for the entire U.S. and find that when 7; increases (so that the number of symptomatically
infectious individuals that are self-isolated and taken out of the general population increases), the number of
cumulative deaths decreases by as much as 12.5%. Alternatively, if the rate of self-isolation for the asymp-
tomatic and presymptomatic infectious individuals - 74 and 7p respectively - are increased and the 77 is kept
at the baseline value for the U.S., the number of cumulative deaths decreases by about 35% at the end of the
period - see Figure Thus, the decrease is more pronounced when the 74 and 7p are increased than when
the 77 is increased which indicates that the asymptomatic and presymptomatic have more impact. Figure

focuses on the difference in impact with 50% increase in testing and shows that the asmptomatic and

10
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21 presymptomatic testing gives up to about four times as much percent decrease as the symptomatic.

22

23 We can also compare the effect of these type of testing scenarios for different states. For example,
2 although Wisconsin and Florida had similar testing rates around 12/10/2020, we find that a 50% increase
us in 74 and 7p, results in roughly a 20% decrease in cumulative deaths for Wisconsin compared to a 50%
26 decrease in cumulative deaths for Florida - Figure[I3] Note that the results for both states show the greater

27 influence of the aysmptomatic and presymptomatic infectious.
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Figure 11: The effect of an increase in testing of symptomatic individuals versus asymptomatic and presymptomatic individuals
on the cumulative deaths in the US during postlockdown period 5/15 to 8/11.
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Figure 12: The effect of a 50% increase in testing of asymptomatic and presymptomatic versus symptomatic on the cumulative
deaths in the US during postlockdown period 5/28 to 8/11.
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Figure 13: The effect of a 50 percent increase in testing of asymptomatic and presymptomatic (green curve) versus symptomatic
(magenta curve) individuals on the cumulative deaths for Wisconsin and Florida.

us  4.83.4. Minimum testing needed

29 In this section we consider the question concerning the minimum rate of testing/detection required to
0 lower the control reproduction number, R¢c below one. This question is more difficult to answer directly,
1 but we can begin to get at an answer by again considering the effect of increasing testing. For example, for

2 the entire U.S. from May 28 to Aug 11 (after lifting of lockdown) if the testing is ramped up to the rate of

11
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»3 0.2 for asymptomatic and presymptomatic - that is, if 74 and 7p are both set to 0.2, while 7; = 0.25, then
»4  the reproduction control number R¢ is 0.9819 (so just below 1). If 74 and 7p are bumped above 0.2, for
x5 example to 0.25, while 77 remains at 0.25, then R falls well below 1 - to 0.8858 - and the resulting decrease
6 in cumulative deaths and daily cases is shown in Figure To get a better appreciation of the impact of
»7  testing for asymptomatic and presymptomatic cases, note that if 74 and 7p are kept at their baseline fitted
s values, then 7; must be increased to 1.7 to get Re = 0.9119. Of course, the challenge with all of these
x0  testing scenarios is that the testing of asymptomatic and presymptomatic individuals is more difficult since
%0 those individuals do not have symptoms, so in order to achieve these testing rates, widespread and frequent
s testing should be implemented.

262
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Figure 14: The effect of an increase in 74 and 7p

%3 4.4. Forward Simulation of the Pandemic

264 Natural herd immunity refers to the process by which enough of the population achieves immunity
%5 via natural recovery from the disease, so that the remaining population that is not immune also receives
26 protection against the acquisition of the disease. The process involves a natural herd immunity threshold,
%7 that is, the minimum number of people required to achieve disease-acquired immunity. For a disease with
%8 a basic reproduction number of Ry, the necessary minimum fraction of people who must achieve immunity
%0 can be given as 1 — 1/Ro. We simulate for both Wisconsin (a state which was considered an epicenter later
a0 in 2020) and the entire U.S., a scenario in which COVID-19 is allowed to run its natural course (with no
o1 implementation of any new control or mitigation strategies) until natural herd immunity is achieved . For
a2 both Wisconsin and the entire US, the number of deaths that occur before reaching the herd immunity
a3 threshold, is considerably high; thus, making the success of a natural herd immunity strategy for COVID-19
2a  questionable (at the very least). For the state of Wisconsin, the number of deaths that occurs is approximately

a5 450,000 and for the entire U.S., the number of deaths is more than 10 million - see Figure

WI, Ry = 3.0223 R_= 2.4467 enddate 53 US , Ry= 5.5236 R = 3.624 enddate 47

a5 |bcm=u]17 betas = 0.1018 betaP = 1.1166

4 enddate 53 = Dec 05

betal=1.3 betaA=0.775 betaP=1.35

enddate 47 = Nov 29

Cumnulative Deaths
o
in
Cumulative Deaths
o

1} 10 20 30 a0 50 60 0 5 10 15 20 25 30 35 a0 45 50
10/13/2020 startdate 10/13/2020 startdate

Figure 15: The number of deaths that will occur before natural herd immunity threshold is achieved for the state of Wisconsin
and the entire US. The simulations are run starting on October 13.

12
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26 5. Discussion

277 From various perspectives, our analysis indicates that overall, the drivers of COVID-19 are the asymp-
s tomatic and presymptomatic infectious individuals. We see that if testing is increased, these asymptomatic
a9 and presymptomatic infectious have a greater impact than the symptomatic infectious; hence, widespread
20 and frequent testing is key to controlling the spread of the disease. This is especially true after holiday
s periods and large gathering events which are often notorious for reduced and lax implementation of control
2 and mitigation strategies such as social distancing. Thus, in the schools and workplaces, testing should be
23 intentionally and systematically increased after such occurrences in order to control the silent transmission
28« by the newly infectious individuals who do not (yet) have symptoms. Our simulations also show that al-
25 though lockdown might be difficult in terms of economic impact, the benefit of even a short lockdown (2

26 weeks) in reducing deaths is considerable.

27 6. Appendix A

w8 0.1. Tables of State Variables and Parameter Values

State Variable | Description

S Population of susceptible individuals

E Population of non-quarantined exposed individuals (infected but not
showing symptoms and cannot transmit infection; newly-infected but not
infectious)

E, Population of presymptomatic (infectious) individuals

1 Population of symptomatically-infectious individuals

A Population of asymptomatically-infectious individuals

J Population of self-isolated individuals

H Population of hospitalized individuals

R Population of recovered individuals

C Population of individuals in intensive care unit (ICU)

D Population of COVID-19 deceased individuals

Table 3: State variables for the Model

13
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Parameter | Description Range | Baseline value | References
B, Effective contact rate for symptomatically-infectious Fitting Fitting Fitting
individuals
B, Effective contact rate for asymptomatically-infectious Fitting Fitting Fitting
individuals
Bp Effective contact rate for Fitting Fitting Fitting
presymptomatically-infections individuals
€m Efficacy of face masks to prevent transmission and 0.4 -0.6 0.5 [10]
acquisition of infection (0 < €, <1)
Cm Compliance in face mask usage in the community 0.01-0.19 per state [10]
(0<cm<1)
Oe Progression rate from exposed (E) to 1/2.5 day ! 1/2.5 day ! [10]
presymptomatic infectious class (E,,) infectious class
op Progression rate from presymptomatic infectious 1/2.5 day ! 1/2.5 day~! [10]
class (F,) to asymptomatically infectious or
symptomatically infectious
r Fraction of exposed individuals who show clinical 0.4-0.6 0.5 [9116] 5]
symptoms at the end of the incubation period
Tp Rate at which presymptomatic infectious individuals Fitting Fitting Fitting
self-isolate
T, Rate self-quarantined symptomatically-infectious 1-25day! 2.5 day~! | [L3]H4] 1] 8]
humans self-isolate
T, Rate at which asymptomatically-infectious humans Fitting Fitting Fitting
self-isolate
v, Recovery rate for individuals in the I class 1/30 — 1/3 day~! 1/7 day~! 9]16] 5]
Ya Recovery rate for individuals in the A class 1/14 - 1/3 day~? 1/7 day =1 9] 6] 5)
v, Recovery rate for self-isolated individuals 0.1 -0.15 day T 1/8 day~* [9]
Vo Recovery rate for hospitalized patients 1/30 —1/3 day~! 1/14 day~! [9] 6] 5]
Yo Recovery rate for ICU patients 0.018 — 0.027 day~! 0.0225 day " 9]
b, Rate of ICU admission for hospitalized individuals 0.02 - 0.1 day ! 0.083 day ! 9 5]
o, Hospitalization rate for symptomatically-infectious 0.1595 - 0.2803 day ! 0.2199 day~! 6] 15
individuals
a, Hospitalization rate for asymptomatically-infectious 0.2 - 0.3 day~! 1/4 day 1 [9]
individuals
ay Hospitalization rate for self-isolated individuals Fitting Fitting Fitting
0, Disease-induced mortality rate for 0.018 — 0.027 day~! 0.0225 day ! 5117 9]
symptomatically-infectious individuals
0, Disease-induced mortality rate for 0.006 — 0.009 day* 0.0075 day ! 5]
asymptomatically-infectious individuals
0y Disease-induced mortality rate for hospitalized 0.001 — 0.1 day~! 0.015 day ! [6] 5117
individuals
O Disease-induced mortality rate individuals in ICU 0.018 — 0.027 day ! 0.0225 day ! 615

Table 4: Parameter notation, description, values and sources for the Model Some values change depending on the
state and time period.

w0 0.2. Lockdown period with separated symptomatic and asymptomatic individuals

In Figure [J] the results for the pre-lockdown and post-lockdown periods confirm the hypothesis that the

290

21 asymptomatic and presymptomatic are the primary contributors to the spread of COVID-19. However, when

22 we consider this scenario of targeting the asymptomatic and presymptomatic (by setting 8y = 0) versus the

symptomatic (with 84 = Bp = 0) for lockdown, we get mixed results. In particular for New York and

293
24 Wisconsin we get more symptomatic infectious cases than asymptomatic and presymptomatic - see Figure

LLO|
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Figure 16: The plots show the daily cases for each state with 81 = 0 (cyan curve) and 84 = Bp = 0 (red curve) for the lockdown
period.

6.3. Goodness of Fit

296

In this section, we show the plots for the goodness of fit of the lockdown period for each state and the

US as a whole.

297
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Cumulative death values from the model (4) Cumulative death values from the data. Row 2: Box plot of the (1) Daily death
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Figure 18: Florida Row 1: Q-Q plots for the (1) Daily death values from the model (2) Daily death values from the data (3)
Cumulative death values from the model (4) Cumulative death values from the data. Row 2: Box plot of the (1) Daily death
values from the model and data (2) Cumulative death values from the model and data.
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Figure 19: Arizona Row 1: Q-Q plots for the (1) Daily death values from the model (2) Daily death values from the data (3)
Cumulative death values from the model (4) Cumulative death values from the data. Row 2: Box plot of the (1) Daily death
values from the model and data (2) Cumulative death values from the model and data.
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Figure 20: New York Row 1: Q-Q plots for the (1) Daily death values from the model (2) Daily death values from the data
(3) Cumulative death values from the model (4) Cumulative death values from the data. Row 2: Box plot of the (1) Daily
death values from the model and data (2) Cumulative death values from the model and data.
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Figure 21: Wisconsin Row 1: Q-Q plots for the (1) Daily death values from the model (2) Daily death values from the data
(3) Cumulative death values from the model (4) Cumulative death values from the data. Row 2: Box plot of the (1) Daily
death values from the model and data (2) Cumulative death values from the model and data.
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