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Abstract  97 

Nonalcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease. Using a 98 

proxy NAFLD definition of chronic alanine aminotransferase elevation (cALT) without other liver 99 

diseases, we performed a trans-ancestry genome-wide association study in the Million Veteran 100 

Program including 90,408 cALT cases and 128,187 controls. In the Discovery stage, seventy-101 

seven loci exceeded genome-wide significance – including 25 without prior NAFLD or ALT 102 

associations – with one additional locus identified in European-American-only and two in 103 

African-American-only analyses (P<5x10
-8

). External replication in cohorts with NAFLD defined 104 

by histology (7,397 cases, 56,785 controls) or liver fat extracted from radiologic imaging 105 

(n=44,289) validated 17 SNPs (P<6.5x10
-4

) of which 9 were novel (TRIB1, PPARG, MTTP, 106 

SERPINA1, FTO, IL1RN, COBLL1, APOH, and IFI30). Pleiotropy analysis showed that 61 of 77 107 

trans-ancestry and all 17 validated SNPs were jointly associated with metabolic and/or 108 

inflammatory traits, revealing a complex model of genetic architecture. Our approach 109 

integrating cALT, histology and imaging reveals new insights into genetic liability to NAFLD. 110 

 111 

  112 
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Introduction 113 

Chronic liver disease with progression to cirrhosis and hepatocellular carcinoma is a global 114 

health issue
1
. In particular, nonalcoholic fatty liver disease (NAFLD) – a hepatic phenotype 115 

associated with metabolic syndrome and insulin resistance – is an increasingly common cause 116 

of chronic liver disease with an estimated world prevalence of 25% among adults
1-5

. In the 117 

United States (US), NAFLD prevalence is projected to reach 33.5% among the adult population 118 

by 2030, due in large part to rising rates of obesity and other cardiometabolic risk factors
6
. 119 

NAFLD is defined by ≥5% fat accumulation in the liver (hepatic steatosis) in the absence of other 120 

known causes for liver disease, based on liver biopsy and/or non-invasive radiologic imaging
3,4

. 121 

The clinical spectrum of NAFLD ranges from bland steatosis to nonalcoholic steatohepatitis 122 

(NASH) involving inflammation and hepatocellular ballooning injury with progressive fibrosis. At 123 

least 20% of patients with NAFLD develop NASH with increased risk of consequent cirrhosis and 124 

primary liver cancer
5,6

. To date, there is no licensed drug approved to treat NAFLD and prevent 125 

its progression, and the general therapeutic approach focuses on improving the underlying 126 

metabolic disorders such as glucose control and promotion of weight loss.  127 

Individual susceptibility to NAFLD involves both genetic and environmental risk factors. 128 

Current estimates of NAFLD heritability range from 20% to 50%
7
 while risk factors for NAFLD 129 

include obesity (in particular, abdominal adiposity), insulin resistance and several features of 130 

metabolic syndrome
2,5,6,8

. Several genetic variants that promote the full spectrum of fatty liver 131 

disease have been identified in genome-wide association studies (GWAS) utilizing cohorts 132 

based on liver biopsy, imaging, and/or isolated liver enzyme values
9-22

. The most prominent 133 

variants include p.I148M in PNPLA3 and p.E167K in TM6SF2, which increase NAFLD risk, and a 134 
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loss-of-function variant in HSD17B13 that confers protection against NASH
16

. However, the 135 

limited number of genetic associations in NAFLD contrasts with other cardiometabolic disorders 136 

where hundreds of loci have been mapped to date, such as obesity
23,24

, type 2 diabetes
25

, 137 

hypertension
26

, and plasma lipids
27

. This highlights the need for expanded discovery with larger 138 

samples and greater population diversity, with further integration of functional genomics data 139 

sets to potentially identify the effector genes
28

.  140 

The Million Veteran Program (MVP) is among the world’s largest and most ancestrally 141 

diverse biobanks
29

. The availability of comprehensive, longitudinally collected Veterans Health 142 

Administration (VA) electronic health records for US Veteran participants in the MVP also 143 

makes it a promising resource for precision medicine. However, NAFLD is markedly 144 

underdiagnosed clinically due to the invasive nature of the liver biopsy procedure, variable use 145 

of imaging modalities and poor sensitivity of international diagnostic codes (ICD) for NAFLD
4,30

. 146 

The use of chronic elevation of serum alanine aminotransferase levels (cALT) as a proxy for 147 

NAFLD was shown to improve specificity and positive predictive value in the NAFLD diagnostic 148 

algorithm within the VA Corporate Data Warehouse
31

. Accordingly, we recently adapted and 149 

validated a cALT phenotype as a proxy for NAFLD to facilitate case identification in MVP
21

, 150 

applying a rigorous exclusion of other conditions that are known to increase liver enzymes (e.g., 151 

viral hepatitis, alcoholic liver disease, autoimmune liver disease, and known hereditary liver 152 

disease). Moreover, we showed that our cALT phenotype had a sensitivity of 80%, a specificity 153 

of 89%, an accuracy of 85%, a positive predictive value of 89%, and an area-under-the-curve of 154 

87% compared to gold standard abdominal imaging, liver biopsy, and clinical notes in a well-155 

characterized sample of 178 patients in the VA healthcare system. In the current study, we 156 
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applied this cALT phenotype in MVP participants of 4 ancestral groups
32

, and identified 90,408 157 

NAFLD cases and 128,187 controls (Figure 1, and Supplementary Figure 1).  158 

Our aims are to: (i) perform a trans-ancestry genetic susceptibility analysis of the cALT 159 

phenotype in MVP; (ii) replicate the lead SNPs in external NAFLD cohorts with hepatic fat 160 

defined by liver histology or radiologic imaging; (iii) identify putative causal genes at the lead 161 

loci by using an ensemble “variant-to-gene” mapping method that integrates results from 162 

coding and functional genomic annotations, and quatitative trait loci (QTL); and (iv) describe 163 

the genetic architecture at each associated locus by characterizing the profile of additional 164 

phenotypic associations using data from the GWAS catalog, MVP LabWAS, and MRC IEU 165 

OpenGWAS database. 166 

 167 

Results 168 

An ancestry-diverse study population with a high prevalence of cardiometabolic traits 169 

Our study consisted of 90,408 cALT cases and 128,187 controls comprising four ancestral 170 

groups, namely European-Americans (EA, 75.1%), African-Americans (AA, 17.1%), Hispanic-171 

Americans (HISP, 6.9%), and Asian-Americans (ASN, 0.9%,  Supplemental Table 1, 172 

Supplemental Figure 1). Consistent with the US Veteran population, MVP cases and controls 173 

(nQ= 218,595) were predominantly male (92.3%) with an average age of 64 years at study 174 

enrollment (Supplemental Table 1). The prevalence of cirrhosis and advanced fibrosis in the 175 

cALT cases ranged from 4.7% to 9.1%. With the exclusion of other known causes of liver disease 176 

as described previously
21

, cases were enriched for metabolic disorders (type 2 diabetes, 177 
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hypertension, and dyslipidemia), suggesting a link between chronic ALT elevation and metabolic 178 

risk factors. 179 

 180 

Identification of trans-ancestry and ancestry-specific cALT-associated loci in MVP  181 

To identify genetic loci associated with cALT, we performed a trans-ancestry genome-wide scan 182 

by meta-analyzing summary statistics derived from each individual ancestry (Methods and 183 

Figure 1). In this trans-ancestry scan, 77 independent sentinel SNPs met the conventional 184 

genome-wide significance level (P < 5x10
-8

), of which 60 SNPs exceeded trans-ancestry genome-185 

wide significance (P < 5x10
-9

). Of the 77 SNPs, 52 were previously reported to be associated 186 

with ALT, including 9 that were also associated with NAFLD (i.e., PNPLA3, TM6SF2, HSD17B13, 187 

PPP1R3B, MTARC1, ERLIN1, APOE, GPAM, and SLC30A10;LYPLAL1; Figure 2 and Supplemental 188 

Table 2)
9-12,14,16-22,33-35

. Of the 25 newly identified loci, 14 were novel (IL1RN, P2RX7, CASP8, 189 

MERTK, TRPS1, OGFRL1, HLA, SMARCD2;DDX42, CRIM1, FLT1, DNAJC22, HKDC1, UHRF2, 190 

STAP2;MPND), whereas 11 have been associated with gamma-glutamyl transferase (GGT) 191 

and/or alkaline phosphatase (ALP) levels
35

.  192 

In the ancestry-specific analyses, 55 loci in EAs, eight loci in AAs, and three in HISPs 193 

exceeded conventional genome-wide significance (P < 5x10
-8

, Supplemental Tables 3-5 and 194 

Supplemental Figures 2-4), of which 1 EA SNP and 2 AA SNPs were not captured in the trans-195 

ancestry analysis. No variants among ASN subjects achieved genome-wide significance, likely 196 

due to limited sample size (Supplemental Figure 5). Notably, the top two SNPs in the AA-only 197 

scan (with the genes GPT and ABCB4 nearby each SNP, respectively) showed stronger 198 
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associations than observed for PNPLA3. These two SNPs are polymorphic among AA’s but 199 

nearly monomorphic in all other populations.   200 

Replication of cALT-associated loci in liver biopsy and radiologic imaging data 201 

To validate that our cALT-associated SNPs capture genetic susceptibility to NAFLD, we 202 

assembled two external NAFLD cohorts, namely: (i) a Liver Biopsy Cohort consisting of 7,397 203 

histologically characterized NAFLD cases and 56,785 population controls from various clinical 204 

studies (Supplemental Table 6-7), and (ii) a Liver Imaging Cohort consisting of 44,289 205 

participants with available radiologic liver imaging data and quantitative hepatic fat (qHF) 206 

measurements (Supplemental Table 8). For each cohort, we performed a trans-ancestry lookup 207 

of the 77 lead SNPs (Methods). In the Liver Biopsy Cohort, there was directional concordance 208 

between effect estimates of biopsy-defined NAFLD in 66 of 77 SNPs (86%), including 15 SNPs 209 

with a significant association (adjusted Bonferroni nominal P < 6.5x10
-4

), of which 8 have not 210 

been reported in genome- or exome-wide association studies previously (e.g., TRIB1, MTTP, 211 

APOH, IFI30, COBLL1, SERPINA1, IL1RN, and FTO, Supplemental Table 7)
12

. In the Liver Imaging 212 

Cohort, there was directional concordance between effect estimates of qHF in 49 of 77 SNPs 213 

(64%). Among these, 11 were significantly associated with qHF (adjusted Bonferroni nominal P 214 

< 6.5x10
-4

, Supplemental Table 8) of which 6 were novel (e.g., TRIB1, MTTP, APOH, IFI30, 215 

COBLL1, and PPARG). As observed in previous studies owing to its role in glycogen storage (and 216 

associated impact on imaging)
12,36

, the PPP1R3B locus was significantly associated with qHF, 217 

however in the opposite direction from cALT, and not associated with biopsy-proven NAFLD. 218 

Collectively, 17 of 77 SNPs were validated in external histologic and/or radiologic NAFLD, of 219 

which nine were previously unreported; namely, five in both biopsy and imaging cohorts 220 
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(TRIB1, MTTP, APOH, IFI30, and COBLL1), three in biopsy cohort alone (FTO, SERPINA1, and 221 

IL1RN) and one in imaging cohort with a nominal significance in biopsy cohort (PPARG) 222 

(Supplemental Table 2). An additional 24 SNPs were nominally associated (P < 0.05) with 223 

directional concordance with histological and/or radiologic hepatic fat. 224 

We performed a SNP-specific statistical power analysis to investigate the SNP-specific 225 

type I error (α) at a P-value of = 6.5x10
-4

 (Bonferroni) using the respective effect estimates and 226 

allele frequencies (Supplemental Table 2 and 7). A total of 22 loci showed sufficient statistical 227 

power (> 80%) for replication in the liver biopsy cohort, of which 10 replicated (Supplemental 228 

Figure 6). Despite sufficient power, 12 SNPs did not replicate in the liver biopsy cohort, which 229 

included GPT, PPP1R3B, OGFRL1, TNFSF10, and PANX1. Remarkably, in the group of 55 SNPs 230 

without sufficient statistical power for replication, 6 SNPs did in fact replicate (namely PPARG, 231 

MTTP, FTO, IL1RN, IFI30, and COBLL1). We note that for cALT SNPs which were replicated in the 232 

histological NAFLD cohort, their effect size in histological NAFLD cohort were, on average 92.4% 233 

higher than cALT effect estimate (Supplemental Figure 7 and 8). Extrapolating to the remaining 234 

49 SNPs without 80% statistical power for replication, 22 SNPs showed higher effect sizes for 235 

histological NAFLD than cALT and were therefore labeled as candidate NAFLD loci 236 

(Supplemental Table 2).  237 

 238 

Genetic risk scores and histologically characterized NAFLD 239 

We next constructed genetic risk scores (GRSs) based on effect estimates from our cALT GWAS 240 

SNPs in four independent liver biopsy cohorts to quantify the cumulative predictive power of 241 

our 77 sentinel variants (Supplemental Table 9A,  Supplemental Figure 9). A 77 SNP-based GRS 242 
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was predictive of NAFLD in the meta-analyzed liver biopsy cohorts (GRS-77, P = 3.7x10
-28

). 243 

Stratification of GRS-77 into a GRS consisting of a set of 9 well-established NAFLD SNPs (GRS-9), 244 

and a GRS consisting of 68 remaining SNPs (GRS-68) revealed significant independent capacity 245 

to predict histologically characterized NAFLD (GRS-9, P = 2.2x10
-11

; GRS-68, P = 2.4x10
-7

), further 246 

supporting the clinical relevance of our panel of SNPs derived from proxy NAFLD phenotype. 247 

We further examined the SNPs in three groups based on their strength of external replication: 248 

(i) replicated at Bonferroni threshold; (ii) achieving nominal significance (P<0.05) with 249 

directional concordance without reaching Bonferroni significance; and (iii) P>0.05. As shown in 250 

Supplemental Figure 10 and Supplementary Table 9C, a significant capacity for NAFLD 251 

prediction was noted not only for externally replicated SNPs (Beta: 0.644, P=2.53 x 10
-10

) but 252 

also the nominal SNPS set albeit with attenuated effect (Beta: 0.198, P=1 x 10
-4

).  253 

 254 

cALT heritability and genetic correlations with other phenotypes 255 

To further characterize the architecture of our cALT phenotype and its relationship with other 256 

traits, we estimated heritability and genetic correlations with other traits using linkage 257 

disequilirium (LD) score regression
37-39

 (Methods). The SNP-based liability-scaled heritability 258 

was estimated at 16% (95% CI: 12-19, P < 1x10
-6

) in EA. Genetic correlation analysis between 259 

NAFLD from the EA-only scan and 774 complex traits from LD Hub (Methods) identified a total 260 

of 116 significant associations (adjusted Bonferroni nominal P < 6.5x10
-5

, Supplemental Table 261 

10). These encompassed 78 cardiometabolic risk factors (67.2%) including measures of obesity 262 

and adiposity, type 2 diabetes, hypertension, dyslipidemia, and coronary artery disease, which 263 

is consistent with reports from observational studies correlating these traits to NAFLD
40

. 264 
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Additional genetically correlated traits represented general health conditions (11.2%), 265 

educational attainment and/or socio-economic status (12.0%) and other conditions such as 266 

gastro-oesophageal reflux, osteoarthritis, gout, alcohol intake, smoking, ovary removal, and 267 

urinary albumin-to-creatinine ratio (9.5%).  268 

 269 

Identification of conditionally independent cALT-associated variants  270 

To discover additional conditionally independent cALT signals within the 77 genomic regions, 271 

we performed exact conditional analysis using stepwise regression on individual level data for 272 

all single-ancestry sentinel variants (namely 51 EA, 8 AA, and 3 HISP genomic regions). We 273 

detected a total of 29 conditionally independent SNPs (P < 1x10
-5

) flanking five known and 16 274 

novel cALT loci in EA (Supplemental Table 11). In particular, the GPT locus showed the highest 275 

degree of regional complexity with 4 conditionally independent SNPs, followed by AKNA with 3 276 

conditionally independent SNPs. For one novel locus located on chromosome 12 between 121-277 

122Mb, the trans-ancestry lead variant (rs1626329) was located in P2RX7, whereas the lead 278 

peak variant for EA mapped to HNF1A (rs1169292, Supplemental Figure 11).  Both variants are 279 

in strong LD with distinct coding variants (P2RX7: rs1718119, Ala348Thr; HNF1A: rs1169288, 280 

Ile27Leu) and are compelling candidate genes for metabolic liver disease. In AA, we observed a 281 

total of six conditionally independent variants at three genomic regions, namely three variants 282 

at GPT, two at AKNA and one at the ABCB4 locus (Supplemental Table 11). No conditionally 283 

independent variants were identified in Hispanic Americans. Collectively, 35 additional variants 284 

were identified at 22 loci across multiple ancestries by formal conditional analysis. 285 

 286 
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Fine mapping to define potential causal variants in 95% credible sets 287 

To leverage the increased sample size and population diversity to improve fine-mapping 288 

resolution, we computed statistically derived 95% credible sets using Wakefield’s approximate 289 

Bayes’ factors
41

 using the trans-ancestry, EA, AA, and HISP summary statistics (Supplemental 290 

Table 12-15, Methods. Trans-ancestry fine-mapping reduced the median 95% credible set size 291 

from 9 in EA (with IQR 3 - 17) to 7.5 variants (IQR 2 - 13). A total of 11 distinct cALT associations 292 

(e.g. MTARC1, IL1RN, OGFRL1, PPP1R3B, SOX7;RP1L1;C8orf74, TRIB1, ERLIN1, TRIM5, 293 

OSGIN1;MLYCD, TM6SF2 and PNPLA3) were resolved to a single SNP in the trans-ancestry meta-294 

regression, with an 4 additional loci suggesting single SNP sets from EA (n=2) and AA (n=2) 295 

ancestry-specific scans.  296 

 297 

Liver-specific enrichment of cALT heritability 298 

To ascertain the tissues contributing to the disease-association underlying cALT heritability, we 299 

performed tissue-specific heritability analysis using stratified LD score regression. The strongest 300 

associations were observed for genomic annotations surveyed in liver, hepatocytes, adipose, 301 

and immune cell types among others (e.g., liver histone H3K36me3 and H3K4me1, adipose 302 

nuclei H3K27ac, spleen TCRγδ, eosinophils in visceral fat; P < 0.003, Supplemental Table 16). 303 

Medical subject heading (MeSH)-based analysis showed enrichment mainly in hepatocytes and 304 

liver (False Discovery Rate (FDR) < 5%, Supplemental Table 17). Gene set analysis showed 305 

strongest associations for liver and lipid-related traits (P-value < 1x10
-6

, Supplemental Table 306 

18). Enrichment analyses using publicly-available epigenomic data implemented in GREGOR 307 

enrichment analysis (Methods) showed that most significant enrichments were observed for 308 
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active enhancer chromatin state in liver, epigenetic modification of histone H3 in hepatocytes 309 

or liver-derived HepG2 cells (e.g. H3K27Ac, H3K9ac, H3K4me1, H3K4me3; adjusted Bonferroni 310 

nominal P < 1.8x10
-5

, Supplemental Table 19 and 20). These analyses additionally support the 311 

hypothesis that our cALT GWAS captures multiple physiological mechanisms that contribute to 312 

NAFLD heritability. Furthermore, DEPICT-based predicted gene function nominated 28 gene 313 

candidates, including the known genes PNPLA3 and ERLIN1 (FDR <5%, Supplemental Table 21), 314 

as well as well-known cardiometabolic disease genes such as PPARG. 315 

 316 

Coding variants in putative causal genes driving cALT associations 317 

There were six novel trans-ancestry loci for which the lead SNP is a coding missense variant 318 

(Supplementary Table 22), namely Thr1412Asn in CPS1, Glu430Gln in GPT, Val112Phe in TRIM5, 319 

Ala163Thr in DNAJC22, Glu366Lys in SERPINA1 and Cys325Gly in APOH. To identify additional 320 

coding variants that may drive the association between the lead SNPs and cALT risk, we 321 

investigated predicted loss of function (pLoF) and missense variants in high LD to the identified 322 

cALT lead variants (r
2
 > 0.7 in each respective 1000 Genomes super-population, Supplemental 323 

Table 22). Four previously described missense variants were replicated in the current study, 324 

including Thr165Ala in MTARC1, Ile291Val in ERLIN1, Glu167Lys in TM6SF2 and Ile148Met in 325 

PNPLA3. Among novel loci, missense variants in high LD with lead variants included the genes 326 

CCDC18, MERTK, APOL3, PPARG, MTTP, MLXIPL, ABCB4, GPAM, SH2B3, P2RX7, ANPEP, IFI30 327 

and MPV17L2. Two additional missense variants were observed in AKNA and NYNRIN, however 328 

the coding variants were outside of the calculated boundaries of their respective credible sets. 329 

Among the trans-ancestry coding missense variants, eleven were predicted based on two 330 
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methods (SIFT, PolyPhen-2) to have potentially deleterious and/or damaging effects in protein 331 

function (Supplementary Table 22)
42,43

. An AA-specific locus on chromosome 7 (rs115038698, 332 

chr7:87024718) was in high LD to a nearby missense variant Ala934Thr in ABCB4 (rs61730509, 333 

AFR r
2
=0.92) with a predicted deleterious effect, where the T-allele confers an increased risk of 334 

cALT (β=0.617, P=1.8x10
-20

). In summary, among our 77 trans-ancestry loci, 24 prioritized a 335 

candidate gene based on a missense variant in high LD with the lead SNP, including 5 novel loci 336 

with external validation (e.g., SERPINA1, APOH, PPARG, MTTP and IFI30;MPV17L2).  337 

 338 

Additional approaches to nominating putative causal genes 339 

Co-localization analyses: We performed colocalization analyses with gene expression and 340 

splicing across 48 tissues measured by the GTEx project, and overlapped our lead SNPs with 341 

histone quantitative trait locus (QTL) data from primary liver to identify cALT-associated 342 

variants that are also associated with change in gene expression (eQTLs), splice isoforms 343 

(sQTLs), or histone modifications (hQTLs, Methods, Supplemental Table 23). Across all tissues, 344 

a total of 123 genes were prioritized, including 20 genes expressed in liver tissue (Methods). 345 

For liver tissue alone, a total of eight variant-gene pairs were identified where the allele 346 

associated with protection against cALT was also associated with reduced transcription levels. 347 

Furthermore, sQTL analysis in GTEx v8 identified two genes in the liver (HSD17B13 and ANPEP) 348 

and 13 genes that were affected in at least two tissues (Supplemental Table 24). Finally, two of 349 

our lead SNPs were in high LD (r
2
 > 0.8) with variants that regulated H3K27ac levels in liver 350 

tissue (hQTLs), namely EFHD1 (hQTL SNPs rs2140773, rs7604422 in EFHD1) and FADS2 loci 351 

(hQTL rs174566 in FADS2)
44

.  352 
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Assay for chromatin accessibility using liver-derived cells: We next mapped our cALT loci to 353 

regions of open chromatin using ATAC-seq in three biologically-relevant liver-derived tissues 354 

(human liver, liver cancer cell line [HepG2], and hepatocyte-like cells [HLC] derived from 355 

pluripotent stem cells)
45

. Additionally, we used promoter-focused Capture-C data to identify 356 

those credible sets that physically interact with genes in two relevant cell types (HepG2 and 357 

liver). For each credible set, we identified genes with significant interactions (CHiCAGO score > 358 

5, Methods) that overlap with at least one lead variant (Supplemental Table 25). These 359 

datasets are useful entry points for deciphering regulatory mechanisms involved in the 360 

pathophysiology of NAFLD. Based on DEPICT gene prediction, coding variant linkage analysis, 361 

and QTL colocalization (Supplemental Tables 18-25), 215 potentially relevant genes were 362 

identified for the 77 loci. A protein-protein interaction (PPI) analysis revealed that among the 363 

192 available proteins, 86 nodes were observed, with strong PPI enrichment (P < 9.0x10
-8

) 364 

indicating that the protein network shows substantially more interactions than expected by 365 

chance (Supplemental Table 26 and Supplemental Figure 12). 366 

 367 

Variant-to-Gene Ensembl Mapping Approach to nominate putative causal genes 368 

We developed an ensemble method for predicting the likely causal effector gene at 77 loci 369 

based on 8 distinct gene-mapping analyses, including: SNP-gene overlap, DEPICT gene 370 

prediction, coding variant linkage, colocalization with eQTL, sQTL and hQTL, promotor Capture-371 

C and/or ATAC-Seq peak overlap, and PPI network analysis. For each gene that resides in a 372 

sentinel locus, the number of times that it was identified in the eight analyses was summarized 373 

into a nomination score which reflects the cumulative evidence that the respective gene is the 374 
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causal effector gene in the region. This ensemble method for mapping variants to genes 375 

resulted in the nomination of a single gene as the causal effector gene at 53 of 77 genomic loci. 376 

At the remaining 24 loci, two loci lacked any data to support the nomination of a causal gene, 377 

and at 22 loci two or more causal genes were nominated because they shared the maximum 378 

nomination score (Supplemental Table 27). We highighted 35 loci for which a causal gene was 379 

prioritized by at least 3 sources of evidence (or 4 sources of evidence for coding variants) in 380 

Table 1a/b. These included 6 loci with co-localizing eQTLs in liver or adipose tissues and 381 

connection to the predicted gene via Promoter CaptureC data (i.e., EPHA2, IL1RN, SHROOM3, 382 

HKDC1, PANX1, DHODH;HP).  383 

Gene expression of nominated genes in the Liver Single Cell Atlas: To confirm that the 384 

nominated genes are involved in liver biology, we performed a gene expression lookup in single 385 

cell RNA-Seq data from the Liver Single Cell Atlas
46

. As a result, for 76 of 77 loci a gene was 386 

nominated that was expressed in at least one liver cell type, with exception of the rs9668670 387 

locus which nominated several keratin genes (KRT84;KRT82;KRT74)(Supplemental Table 27).  388 

 389 

Transcription factor analysis 390 

We observed that 14 nominated genes are transcription factors (TF) (Supplemental Table 28). 391 

Using the DoRothEA data in OmniPath, we identified that two of these TFs have several 392 

downstream target genes that were also identified in our GWAS scan (Methods). Notably, the 393 

CEBPA TF targets the downstream genes PPARG, TRIB1, GPAM, FTO, IRS1, CRIM1, HP, TBC1D8, 394 

and CPS1, but also NCEH1, a gene in the vicinity of one of our associations that lacked a 395 
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nominated candidate gene. Similarly, HNF1A, the lead gene in the EA scan (and corresponding 396 

to the trans-ancestry P2RX7 locus) targets SLC2A2, MTTP, and APOH. 397 

 398 

Pleiotropy and related-trait genetic architecture of lead cALT SNPs 399 

We next sought to identify additional traits that were associated with our 77 trans-ancestry 400 

lead SNPs using four different approaches. First, a LabWAS of distinct clinical laboratory test 401 

results
47

 in MVP (Methods) yielded 304 significant SNP-trait associations (adjusted Bonferroni 402 

nominal P = 3.1x10
-5

, Supplemental Table 29, Supplemental Figure 13). Second, a PheWAS 403 

Analysis in UK Biobank data using SAIGE (Methods) identified various SNP-trait associations 404 

that mapped to loci previously associated with liver and cardiometabolic traits, as well as 405 

additional enriched association for gallstones, gout, arthritis, and hernias (adjusted Bonferroni 406 

nominal P < 4.6x10
-7

, Supplemental Table 30). In particular, we examined all associations for 407 

PheCode 571.5, “Other chronic nonalcoholic liver disease” which comprised 1,664 cases and 408 

400,055 controls, which with a disease prevalence of 0.4% seems to be underreported. Still, of 409 

the 73 variants with available data, 14 were both nominally associated and directionally 410 

consistent with our scan (signed binomial test P=3.4x10
-9

), providing additional validation for 411 

our scan (Supplementary Table 31). Third, a SNP lookup using the curated data in the MRC IEU 412 

OpenGWAS project (Supplemental Table 32) identified 2,892 genome-wide significant SNP-trait 413 

associations for trans-ancestry SNPs, with additional 283 SNP-trait associations for the ancestry-414 

specific lead SNPs. Finally, we performed cross-trait regional colocalization analyses of EA, AA, 415 

and HISP lead loci with 36 other GWAS statistics of cardiometabolic and blood cell related traits 416 
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(Methods). This resulted in significant regional colocalization for 64 SNP-trait pairs in EA, 32 417 

SNP-trait pairs in AA, and 12 SNP trait pairs in HISP (Supplemental Table 33). 418 

Based on the four analyses described above, we selected all SNP-trait associations 419 

relevant phenotypes to NAFLD biology and classified them as liver (e.g. ALT, ALP, AST, and GGT), 420 

metabolic (e.g. HDL, LDL, and total cholesterol, triglycerides, BMI, glucose, and HbA1c), or 421 

inflammatory traits (e.g., C-reactive protein, white blood cell count, lymphocyte count, 422 

granulocytes, neutrophils, monocyte count, basophils, eosinophils, and myeloid white cells) 423 

(Supplemental Tables 29-33 Figure 3). Across the trans-ancestry lead variants (n=77), ancestry-424 

specific variants (n=3), and secondary proximal associations (HNF1A, n=1), 17 trans-ancestry 425 

and one EA-specific SNPs showed association with only liver traits (Figure 3). In contrast, 17 426 

trans-ancestry and 3 ancestry-specific  loci showed associations with both liver and metabolic 427 

traits whereas 4 trans-ancestry loci showed associations with both liver and inflammatory 428 

traits. Finally, 39 trans-ancestry loci showed association with all three traits: liver enzymes, 429 

cardiometabolic traits, and inflammation, including 15 of 17 loci that were externally validated 430 

in liver biopsy and/or imaging cohorts (color-coded in red in Figure 3).  Collectively, our findings 431 

identify novel cALT-associated genetic loci with pleotropic effects that may impact hepatic, 432 

metabolic and inflammatory traits. 433 

 434 

Pleiotropy-stratified GRS and histological NAFLD. 435 

The foregoing analyses raised the possibility that SNPs with greater pleiotropy relative to 436 

metabolic and/or inflammatory traits beyond liver-related traits may have greater contributions 437 

to NAFLD. To this end, we compared the GRS between four subgroups of trans-ancestry SNPs as 438 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 25, 2021. ; https://doi.org/10.1101/2020.12.26.20248491doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.26.20248491
http://creativecommons.org/licenses/by/4.0/


20 

20 

defined in Figure 3 Venn Diagram including: (i) 17 SNPs only associated with liver traits; (ii) 5 439 

SNPs associated with liver and inflammatory traits; (iii) 17 SNPs associated with liver and 440 

metabolic traits; and (iv) 38 SNPs associated with liver, cardiometabolic and inflammatory 441 

traits. As shown in Supplemental Table 9D, all 4 subgroups showed significant capacity to 442 

predict NAFLD. However, the strongest effect was observed for the group combining all three 443 

traits (Beta = 0.592, P=2.8 x 10
-9

) followed by liver and metabolic traits (Beta = 0.148, P=4.6 x 444 

10
-6

), whereas liver trait alone and liver with inflammatory traits showed significant but 445 

reduced effects (Supplementary Figure 14). Collectively, these findings show greater NAFLD 446 

associations for pleiotropic SNPs that combine liver, metabolic and inflammatory traits. 447 

 448 

Directional Pleiotropy and Associated Gene Clusters.  449 

Finally, we visualized the direction and strength of the associations between the 77 trans-450 

ancestry loci and 7 inflammatory biomarkers and 13 cardiometabolic traits in a heatmap (Figure 451 

4). The loci were grouped into 7 broad gene clusters using stratified agglomerative hierarchical 452 

clustering (Methods). Gene cluster 1 consisted of 5 trans-ethnic loci (including APOE), for which 453 

cALT risk alleles were associated with increased LDL and total cholesterol, apolipoprotein B1, 454 

and markers of inflammation. Gene cluster 2 comprised of genes (such as IL1RN, MTARC1, 455 

GPAM, and TRIB1) for which the cALT risk alleles were associated with increased LDL and total 456 

cholesterol, apolipoprotein B1, but decreased levels of inflammatory markers. The majority of 457 

the SNPs in cluster 1 and 2 were additionally characterized by lower triglyceride levels, but not 458 

all. Gene cluster 3 (including MTTP) included genes that showed predominantly positive 459 

associations with apolipoprotein B1, LDL and total cholesterol. Gene cluster 4 was characterized 460 
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by a lack of distinctive biomarker co-association profiles. The genes in cluster 5 (including 461 

PNPLA3, ERLIN1, and PPP1R3B) were characterized by higher rates of type 2 diabetes, but 462 

decreased levels of triglycerides, LDL cholesterol, HDL cholesterol, apolipoprotein B1, 463 

apolipoprotein A1, white blood cell count, and neutrophils. The genes in cluster 6 (e.g., PPARG, 464 

and SLC30A10) were associated with higher triglycerides and type 2 diabetes, but decreased sex 465 

hormone binding globulin (SHBG), HDL cholesterol, and apolipoprotein 1A. Finally, the 3 genes 466 

in cluster 7 (including TM6SF2 and FTO) were associated with increased inflammatory markers, 467 

but lower apolipoprotein B1, total and LDL cholesterol. Interestingly, for a total of 9 SNPs 468 

(TRIB1, PPARG, SLC30A10 [former LYPLAL1], MLXIP, CEBPA, COBLL1, C6orf223, MIR5702, and 469 

SH2B3) the cALT risk allele was associated with lower BMI, consistent with a “lean NAFLD” 470 

phenotype. Similarly, the cALT risk alleles of SERPINA1 and OSGIN1 loci seemed to be 471 

associated with lower rates of type 2 diabetes, and SH2B3 and SLC2A2 with lower glucose and 472 

HbA1c. Overall, these directional associations define distinct characteristics for each loci and 473 

clusters with potential biological implications. 474 

 475 

Discussion 476 

In this study, we describe the first of its kind multi-ancestry GWAS of cALT as a proxy for NAFLD, 477 

which resulted in a total of 77 trans-ancestry loci, of which 25 have not been associated with 478 

NAFLD or ALT before. We additionally identified three ancestry-specific loci, as well as 29 479 

conditionally independent SNPs in EAs and six in AAs. We assembled two external replication 480 

cohorts with histologically confirmed NAFLD (7,397 NAFLD cases and 56,785 population 481 

controls) and hepatic fat defined by imaging (n = 44,289), and validated the association of 17 482 
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SNPs with NAFLD, of which nine are novel (TRIB1, PPARG, MTTP, SERPINA1, FTO, IL1RN, 483 

COBLL1, APOH, and IFI30). Furthermore, a GRS based on novel SNPs alone was predictive of 484 

histologically defined NAFLD.  485 

Pleiotropy analysis allowed us to characterize the genetic architecture of NAFLD and all 486 

validated SNPs showed significant associations with metabolic risk factors and/or inflammatory 487 

traits, the most common being plasma lipid-related, followed by glycemic traits, hypertension, 488 

and cardiovascular disease. A GRS based on the subset of SNPs that are associated with cALT, 489 

cardiometabolic traits, and inflammatory markers showed the highest capacity to predict 490 

histological NAFLD. Our ensemble variant-to-gene mapping method nominated a single causal 491 

effector gene at 53 genomic loci. We found that these genes were highly expressed in one or 492 

more cell types in the liver and have prior biological connections to liver metabolism, 493 

physiology, or disease, making this list compelling for further interrogation. Our directional 494 

pleiotropy analysis for metabolic risk factors are overall concordant with the results from Sliz et 495 

al, which investigated 4 NAFLD SNPs (LYPLAL1, PNPLA3, GCKR, and TM6SF2).
48

 In addition to 496 

associations with inflammatory markers, we show that the risk alleles of TM6SF2, PNPLA3, and 497 

SLC30A10 (former LYPLAL1) are positively associated with type 2 diabetes and HbA1c. 498 

Collectively, our findings offer a comprehensive, expanded, and refined view of the genetic 499 

contribution to cALT with potential clinical, pathogenic, and therapeutic relevance.  500 

 Our proxy NAFLD phenotype was based on chronic ALT elevation with the exclusion of 501 

other known diagnoses of liver disease or causes of ALT elevation (e.g. viral hepatitis, alcoholic 502 

liver disease, hemochromatosis), based on previous validation within VA population
21,31

. In this 503 

regard, several GWAS studies of liver enzyme levels have been reported, particularly of serum 504 
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ALT
10,11,16,34,35

, but not all studies systematically excluded other causes of ALT elevation. For 505 

example, Pazoki et al. recently reported 230 locis related to ALT, of which 52 were also included 506 

in our panel of 77 (67.5%) lead cALT loci
34,35

. While our cALT approach was designed to enhance 507 

the specifity of non-invasive NAFLD diagnosis
21,31

, this overlap is not surprising  given the high 508 

prevalence of NAFLD in the general population. Furthermore, we noted that inflammatory traits 509 

were associated with over half of the cALT loci in our study. Indeed, while ALT can be normal in 510 

patients with hepatic steatosis, we focused on chronic ALT elevation that represents ongoing 511 

hepatocellular injury that can promote liver disease progression. For our controls, we excluded 512 

individuals with mild ALT elevation and selected healthier ‘super-controls’ to minimize potential 513 

phenotype misclassification (e.g. attributing cases as controls). We recognize that some cALT 514 

loci such as GPT may be involved more directly in ALT biology rather than NAFLD. Based on the 515 

observation that replicated SNPs had higher effect sizes in the histological cohort than for cALT, 516 

we hypothesize that 22 non-replicated SNPs with higher effect sizes for histological NAFLD than 517 

cALT are candidate loci for NAFLD. In addition, our pleiotropy analyses suggest that 24 non-518 

replicated cALT SNPs associated with metabolic and inflammatory traits are more likely to be 519 

related to NAFLD, of which 12 SNPs overlap with the list of candidate NAFLD loci. 520 

The MVP is one of the world’s largest and most ancestrally diverse biobanks, of which 521 

25% of the participants are of non-white ancestry, and this diversity enhanced the value of this 522 

study. Utilizing data from multiple ancestries allowed us to narrow down putative causal 523 

variants for NAFLD through trans-ancestry fine-mapping. Moreover, we identified two cALT 524 

NAFLD loci specifically in AAs. For example, the lead SNP at the ABCB4 locus (rs115038698) was 525 

in high LD with the missense variant rs61730509 (Ala934Thr, AFR r
2
=0.92) and had a very 526 
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potent effect (OR=1.87, CI=1.64-2.14, P=1.8x10
-20

). This variant is of low frequency in AA 527 

(MAF=1.2%) but virtually absent in EA and ASN. ABCB4, also known as multidrug resistance 528 

protein 3 (MDR3), is a compelling candidate gene, as it is involved in hepatocyte lipid transport 529 

and has been previously implicated in cholestasis, gallbladder disease, and adult biliary 530 

fibrosis/cirrhosis
49-51

.  531 

Ultimately, the affirmative external validation of our lead cALT loci in NAFLD cohorts 532 

with liver biopsies and imaging supports the relevance of our proxy phenotype for NAFLD. A 533 

total of 17 loci associated with cALT were also significantly associated with hepatic fat based on 534 

liver biopsy and/or radiological imaging. These included loci previously associated with NAFLD 535 

or all-cause cirrhosis (e.g., PNPLA3, TM6SF2, HSD17B13, MTARC1, ERLIN1, GPAM, and APOE), 536 

but also included several of the novel loci reported here (e.g., TRIB1, SERPINA1, MTTP, IL1RN, 537 

IFI30, COBLL1, APOH, FTO, PPP1R3B and PPARG). For all loci except PPP1R3B, we observed 538 

concordant directionality of effects between cALT and hepatic fat. The apparent discrepancy in 539 

the PPP1R3B locus has been reported before
12

 and may represent diffuse attenuation on 540 

radiologic images due to hepatic accumulation of glycogen
36,52

 rather than triglycerides
53

. These 541 

novel and validated genes make excellent gene candidates for NAFLD. In addition, our study 542 

failed to replicate the GCKR locus, where a common missense variant (rs780094) has been 543 

repeatedly shown to confer susceptibility to NAFLD 
20

. The SNP is a risk factor for increased 544 

triglycerides, C-reactive protein, LDL cholesterol, but seems to be protective for T2D, fasting 545 

glucose, alcohol intake, AUD, BMI, and monocyte percentage. It his hypothesized that the 546 

variant GCKR protein loses interaction efficiency with glucokinase, which promotes hepatic 547 

glucose metabolism, decreases plasma glucose levels, and increases NAFLD risk
54

. Our 548 
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phenotype might not be a suitable proxy for NAFLD for SNPs that act through multiple 549 

pathways with opposing effects on ALT.  550 

A substantial fraction of our cALT loci showed a shared genetic co-architecture with 551 

metabolic traits (Figure 4).  Of interest is that for 9 SNPs the cALT risk allele was associated with 552 

lower BMI, including PPARG. These SNPs seem to exhibit mild lipodystrophic effects, 553 

characterized by reduced adipose tissue and increased hepatic steatosis. Further study is 554 

required to clarify whether and which loci are working primarily in adipose tissue with a 555 

secondary effect on liver steatosis. 556 

Several genes and liver-enriched transcription factors involved in LDL and triglyceride 557 

pathways have been indentified, such as the liver-biopsy and/or imaging validated TRIB1, 558 

FTO
55,56

, COBLL1
57,58

, MTTP, TM6SF2, PPARG, APOE, and GPAM
59-62

, but also the cALT-only 559 

associated variants in MLXIPL, MLXIP, CEBPA, FADS2, APOH, RORA, and HNF1A. TRIB1 560 

presumably regulates VLDL secretion by promoting the degradation carbohydrate-response 561 

element binding protein (ChREBP, encoded by MLXIPL), reducing hepatic lipogenesis and 562 

limiting triglyceride availability for apolipoprotein B (apoB) lipidation. Furthermore, TRIB1 co-563 

activates the transcription of MTTP, which encodes the microsomal triglyceride transfer protein 564 

that loads lipids onto assembling VLDL particles and facilitates their secretion by hepatocytes. 565 

Lomitapide, a small molecule inhibitor of MTTP, is approved as a treatment for lowering LDL 566 

cholesterol in homozygous familial hypercholesterolemia
63

 and a potential therapeutic target 567 

for NAFLD. TRIB1 is also involved in the degradation of the key hepatocyte transcription factor, 568 

CCAAT/enhancer-binding protein alpha (CEBPA)
64

, which together with HNF1A (HNF1 569 

Homeobox A), RORα (retinoic acid receptor-related orphan receptor-α) and MIR-122 are 570 
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involved in a feedback loop of the the liver-enriched transcription factor network to control 571 

hepatocyte differentiation
65

. RORα is also a suppressor of transcriptional activity of peroxisome 572 

proliferator-activated receptor γ (PPARγ)
66,67

. PPARG, encoding PPARγ, upregulates LDL-573 

receptor-related protein 1 (LRP1), which facilitates the hepatic uptake of triglyceride-rich 574 

lipoproteins via interaction with apolipoprotein E (apoE)
68,69

. PPARG is predominantly 575 

expressed in adipose tissue, and hepatic expression levels of PPARG are significantly increased 576 

in patients with NAFLD
70

. Large randomized controlled clinical trials have reported that the 577 

PPARG agonists rosiglitazone and pioglitazone improve NAFLD-related hepatic steatosis, 578 

hepatic inflammation, and fibrosis
71-75

. However, the treatment is frequently accompanied with 579 

weight gain and fluid retention, limiting its application and potential long-term drug adherence. 580 

RORα however, competes with PPARγ for binding to PPARγ target promoters, and therapeutic 581 

strategies designed to modulate RORα activity in conjunction with PPARγ may be beneficial for 582 

the treatment of NAFLD. ApoE and ApoH
59

 play an important role in the production and 583 

clearance of VLDL by facilitating the hepatic uptake of triglyceride-rich lipoproteins
76-79

. ApoE 584 

deficiency is suggested to affect hepatic lipid deposition in dietary-challenged murine models
80

. 585 

Similarly, a Western high-fat cholesterol-rich diet accelerates the formation of NASH with 586 

fibrosis in ApoE-deficient mice
81

.  587 

  More than half of our cALT loci had a significant association with at least one 588 

inflammatory trait (Figure 4), consistent with the multiple-hit hypothesis of NAFLD
82

. For 589 

example, the transcription factor MafB regulates macrophage differentiation
83

 and genetic 590 

variation in MAFB has been associated with hyperlipidemia and hypercholesterolemia
27

. Mice 591 

with macrophage-specific Mafb-deficiency are more susceptible to obesity and 592 
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atherosclerosis
84,85

. FADS1 and FADS2 are markedly induced during monocyte to macrophage 593 

differentiation, and it is hypothesized that they impact metabolic disease by balancing 594 

proinflammatory and proresolving lipid mediators
86,87

. Another interesting locus is IL1RN, which 595 

in our study is associated with lower risk of cALT and liver-biopsy characterized NAFLD. GTEx 596 

data shows heterogeneous directions of effect across various tissues, with the minor G-allele 597 

being associated with increased IL1RN expression in liver but decreased expression in 598 

subcutaneous adipose tissue. IL1RN encodes the anti-inflammatory cytokine interleukin-1 599 

receptor antagonist (IL-1Ra) and is a natural inhibitor of IL-1 activity by blocking the binding of 600 

IL-1β to IL-1R, and is considered a potential therapeutic target for NAFLD treatment
88

. IL-1β has 601 

been shown to lead to chronic low-grade inflammation
89-91

, insulin resistance and hepatic fat, 602 

and promotes hepatic steatosis, inflammation and fibrosis
92,93

. A study in mice has shown that 603 

IL-1R-deficiency protects from liver fibrosis
94

, and the deletion of IL-1R reduces liver injury in 604 

acute liver disease by blocking IL-1 driven autoinflammation
95

. In two studies of patients with 605 

diabetes, blockade of IL-1 signaling with Anakinra (a recombinant form of IL-1Ra) improved 606 

glycemic control
96-98

. It remains to be investigated whether remodeling of the adipose tissue 607 

inflammasome via IL-1 signaling blockade in obesity-associated NAFLD offers potential 608 

therapeutic benefit.  Other loci implicated with inflammatory traits include RORA
99,100

, 609 

IFI30
101,102

, CD276
103-105

, FCGR2A
106

, and P2RX7
107-109

.  Interestingly, these inflammation-related 610 

genes and pathways emerged from our cALT GWAS despite the indirect assessment of our 611 

phenotype, clearly implicating inflammation early in NAFLD.  612 

Finally, PANX1 and MERTK genes that are associated with liver traits only seem 613 

particulary interesting. For PANX1, the directional concordance of effects between cALT and 614 
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PANX1 gene expression in the liver suggests possible relevance as a therapeutic target. It has 615 

been reported that the genetic deletion of Pannexin 1 (encoded by PANX1) has a protective 616 

effect in a mouse model of acute and chronic liver disease
110,111

, and our data demonstrate that 617 

a SNP near PANX1 was associated with reduced PANX1 expression and reduced risk of NAFLD. 618 

These data nominate PANX1 as a therapeutic target for silencing in NAFLD treatment. For 619 

MerTK, two missense variants (Arg466Lys and Ile518Val, r
2
=0.98) were predicted to affect 620 

protein function. MerTK signaling in hepatic macrophages was recently shown to mediate 621 

hepatic stellate cell activation and promote hepatic fibrosis progression
112

. Variants in MERTK 622 

were associated with liver fibrosis progression in HCV-infected patients
113

, raising the possibility 623 

for MerTK as a novel therapeutic target against fibrosis
114

. We emphasize that functional 624 

studies of our nominated causal genes are needed to demonstrate casual relevance, their 625 

impact on hepatosteatosis, and ultimately to determine their underlying mechanisms. 626 

In conclusion, we discovered 77 genomic loci associated with cALT in a large, ancestrally 627 

diverse cohort.  Our cases of cALT were excluded for other known causes of liver disease or 628 

elevated ALT and, not surprisingly, were substantially enriched for metabolic disorders.  We 629 

replicated our findings in external cohorts with hepatic fat defined by liver biopsy or radiologic 630 

imaging. The genetic architecture of the lead loci indicate a predominant involvement of 631 

metabolic and inflammatory pathways. This study constitutes a much-needed large-scale, 632 

multi-ancestry genetic resource  that can be used to build genetic prediction models, identify 633 

causal mechanisms, and understand biological pathways contributing to NAFLD initiation and 634 

disease progression. 635 

  636 
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Table 1a. Gene nominations at loci with strongest evidence for coding variants.  637 

SNP Position Gene AA-Change SIFT/PP2
* e/sQTL

** Other 
† Pleiotropy

‡ 

rs6541349 1:93787867 CCDC18 p.Leu1134Val +/- + . M 

rs2642438 1:220970028 MTARC1 p.Thr165Ala -/- + (A) + M 

rs11683409 2:112770134 MERTK p.Arg466Lys -/- . ++ . 

rs17036160 3:12329783 PPARG p.Pro12Ala -/- + ++ M 

rs17598226 4:100496891 MTTP p.Ile128Thr -/- + + . 

rs115038698 7:87024718 ABCB4 p.Ala934Thr +/+ + + M,I 

rs799165 7:73052057 MLXIPL p.Gln241His -/+ + + M,I 

  p.Ala358Val -/- + + M,I 

rs7041363 9:117146043 AKNA p.Pro624Leu +/- + + M 

rs10883451 10:101924418 ERLIN1 p.Ile291Val -/- . ++ M 

rs4918722 10:113947040 GPAM p.Ile43Val -/- + ++ M 

rs11601507 11:5701074 TRIM5 p.Val112Phe -/- . ++ M,I 

rs1626329 12:121622023 P2RX7 p.Ala348Thr -/- + + . 

rs11621792 14:24871926 NYNRIN p.Ala978Thr -/- + (L,A) + M,I 

rs28929474 14:94844947 SERPINA1 p.Glu366Lys -/+ . +++ M,I 

rs7168849 15:90346227 ANPEP p.Ala311Val -/- + (L) + . 

rs1801689 17:64210580 APOH p.Cys325Gly +/+ . ++ M,I 

rs132665 22:36564170 APOL3 p.Ser39Arg -/- + (A) + . 

rs738408 22:44324730 PNPLA3 p.Ile148Met +/+ . +++ M,I 

Genes nominated with various sources of evidence are listed as follows. 638 
*
Prio to the slash symbol: '+' indicates 'deleterious' in SIFT and '-' otherwise. After slash symbol: '+' 639 

denotes probably damaging in Polyphen-2 and '-' otherwise.  640 
** 

The '+' indicates colocalization between NAFLD GWAS variant and GTEx QTL varint (COLOC 641 
PP4/(PP3+PP4) > 0.9). (L) denotes QTL effect in Liver, (A) denotes QTL in Adipose.  642 
†Each '+' represent evidence from DEPICT, PPI data, or if the lead SNP is within the transcript; coding 643 
variants also include '+' from hQTLs/Capture-C evidence.  644 
‡Pleiotropy is limited to association with Metabolic (M) or Inflammatory (I) Traits 645 
 646 
  647 
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Table 1b. Gene nominations at loci with strongest evidence for non-coding variants.  648 

SNP Position Gene hQTL  CaptureC  e/sQTL
** Other 

† Pleiotropy
‡ 

rs36086195 1:16510894 EPHA2 . + + (L,A) + M 

rs6734238 2:113841030 IL1RN . + + (A) ++ I 

rs10201587 2:202202791 CASP8 . + + + M 

rs11683367 2:233510011 EFHD1 + . + (L) + . 

rs61791108 3:170732742 SLC2A2 . + . +++ M 

rs7653249 3:136005792 PCCB . . + ++ M,I 

rs12500824 4:77416627 SHROOM3 . + + (L) + M 

rs10433937 4:88230100 HSD17B13 . . + (L,A) + M,I 

rs799165 7:73052057 BCL7B . + + + M,I 

rs687621 9:136137065 ABO . . + + M,I 

rs35199395 10:70983936 HKDC1 . + + (L,A) + M 

rs174535 11:61551356 FADS2 + . + (A) ++ M,I 

rs56175344 11:93864393 PANX1 . . + (L,A) ++ . 

rs34123446 12:122511238 MLXIP . + + + M,I 

rs12149380 16:72043546 DHODH . + + + M,I 

 
HP . + + (A) . M,I 

rs2727324 17:61922102 DDX42 . + + + M 

 
SMARCD2 . . + + M 

rs5117 19:45418790 APOC1 . . + ++ M,I 

Genes nominated with various sources of evidence are listed as follows. 649 
*
Prio to the slash symbol: '+' indicates 'deleterious' in SIFT and '-' otherwise. After slash symbol: '+' 650 

denotes probably damaging in Polyphen-2 and '-' otherwise.  651 
** 

The '+' indicates colocalization between NAFLD GWAS variant and GTEx QTL varint (COLOC 652 
PP4/(PP3+PP4) > 0.9). (L) denotes QTL effect in Liver, (A) denotes QTL in Adipose.  653 
†Each '+' represent evidence from DEPICT, PPI data, or if the lead SNP is within the transcript; coding 654 
variants also include '+' from hQTLs/Capture-C evidence.  655 
‡Pleiotropy is limited to association with Metabolic (M) or Inflammatory (I) Traits 656 

 657 

  658 
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Figure 1. Overview of analysis pipeline. 659 

 660 
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The flow diagram shows in the red box our study design with initial inclusion of 430,400 Million Veteran Program 661 

participants with genotyping and ancestry classification by HARE, exclusion of individuals with known liver disease 662 

or alcohol dependence and inclusion of subjects based on chronic ALT elevation (case) or normal ALT (control). 663 

This resulted in 90,408 NAFLD cases and 128,187 controls with EA, AA, HISP and ASN ancestries that were 664 

examined in primary trans-ancestry and ancestry-specific genome-wide association scans. The orange box of the 665 

flow diagram highlights our results of trans-ancestry and ancestry-specific meta-analyses identifying 77 trans-666 

ancestry loci + 1 EA-specific + 2 AA-specific loci that met genome-wide significance. The green box summarizes the 667 

results from external replication cohorts, whereas the blue box indicates all the post-GWAS annotation analyses 668 

that we performed, which include secondary signal analysis, fine-mapping (95% credible sets), (tissue-specific) 669 

heritability estimation, genetic correlations analysis, variant-to-gene mapping and pleiotropy analysis.  670 

  671 
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Figure 2. Manhattan plot of NAFLD GWAS of 90,408 NAFLD and 128, 187 controls in trans-672 

ancestry meta-analysis.  673 

 674 

Nominated genes are indicated for 77 loci reaching genome-wide significance (P<5x10
-8

). Previously reported 675 

NAFLD-loci with genome-wide significant association are indicated in green font. The red stars indicate the SNPs 676 

that have been validated with liver biopsy and/or radiologic imaging. 677 
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Figure 3. Venn diagram depicting overlapping liver, metabolic and inflammatory traits among 679 

NAFLD-associated loci.  680 

 681 

Overlapping liver (blackblack), metabolic (purplepurple) and/or inflammatory (green) traits are shown in 682 

association with 77 trans-ancestry and additional ancestry-specific lead SNPs. The trait categorizations reflect 683 

significant SNP-trait associations identified by: 1) LabWAS of clinical laboratory results in MVP; 2) PheWAS with 684 

UKBB data using SAIGE; 3) SNP lookup using the curated data in the IEU OpenGWAS projects; and 4) cross-trait 685 

colocalization analyses using COLOC of EA, AA and HISP lead loci with 36 other GWAS statistics of cardiometabolic 686 

and blood cell related traits. GenesGenes denoted in bold and color-coded in red refer to the loci also associated 687 

with quantitative hepatic fat on imaging analyses or histologically characterized NAFLD from liver biopsies. 
*
Locus 688 

identified in European-only GWAS. 
**

 Locus identified in African American-restricted analysis. ⁺Secondary signal 689 

from European analysis (e.g. HNF1A/P2RX7).  690 

 691 
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Figure  4: Seven gene clusters with distinct biomarker association profiles.   692 

 693 

The 77 loci cluster along 7 groups using stratified linkage hierarchical clustering. Each cluster has a distinct 694 

biomarker association profile, which is visualized with a heatmap. Twenty traits are clustered within their 695 

biological strata (e.g. lipids, inflammation, and metabolic). The color coding corresponds to the direction of 696 
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association of the cALT risk allele (red, positive association; blue, negative association) and the strength of the 697 

association based on the P-value.  698 

Methods 699 

We performed a large-scale trans-ancestry NAFLD GWAS in the Million Veteran Program. We 700 

subsequently conducted analyses to facilitate the prioritization of these individual findings, 701 

including transcriptome-wide predicted gene expression, secondary signal analysis, coding 702 

variant mapping, variant-to-gene mapping, and pleiotropy analysis to fine-map the genomic loci 703 

to putatively causal genes and biological mechanisms. 704 

 705 

Discovery cohort in Million Veteran Program. 706 

The Million Veteran Program (MVP) is a mega-biobank that was launched in 2011 and 707 

supported entirely by the Veterans Health Administration (VA) Office of Research and 708 

Development in the United States (US) of America, to develop a genetic repository of US 709 

Veterans with additional information through the VA electronic health record system and MVP 710 

questionnaires to learn how genes, lifestyle and military exposure affect health and disease. 711 

The MVP received ethical and study protocol approval from the VA Central Institutional Review 712 

Board (IRB) in accordance with the principles outlined in the Declaration of Helsinki. Over 60 VA 713 

Medical Centers have participated in this study nationally. The specific design, initial 714 

demographics of the MVP have been detailed previously
29

. Electronic health record information 715 

from the VA’s Corporate Data Warehouse (CDW) was used for clinical and demographic 716 

information. For genetic analyses, DNA extracted from whole blood was genotyped in 717 

customized Affymetrix Axiom Array which contains a total of 723,305 SNPs enriched for: 1) low 718 
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frequency variants in AA and HISP populations, and 2) variants associated with diseases 719 

common to the VA population
29

.  Further quality control procedures have been previously 720 

described
115

. 721 

Proxy NAFLD Phenotype: MVP NAFLD phenotype definitions were developed by combining a 722 

previously published VA CDW ALT-based approach with non-invasive clinical parameters 723 

available to practicing clinicians at the point of care 
21,31

.  The primary NAFLD phenotype 724 

(labeled “ALT-threshold”) was defined by: (i) elevated ALT >40 U/L for men or >30 U/L for 725 

women during at least two time points at least 6 months apart within a two-year window 726 

period at any point prior to enrollment and (ii) exclusion of other causes of liver disease (e.g., 727 

presence of chronic viral hepatitis B or C (defined as positive hepatitis C RNA > 0 international 728 

units/mL or positive hepatitis B surface antigen), chronic liver diseases or systemic conditions 729 

(e.g., hemochromatosis, primary biliary cholangitis, primary sclerosing cholangitis, autoimmune 730 

hepatitis, alpha-1-antitrypsin deficiency, sarcoidosis, metastatic liver cancer, secondary biliary 731 

cirrhosis, Wilson’s disease), and/or alcohol use disorder (e.g., alcohol use disorder, alcoholic 732 

liver disease, alcoholic hepatitis and/or ascites, alcoholic fibrosis and sclerosis of liver, alcoholic 733 

cirrhosis of liver and/or ascites, alcoholic hepatic failure and/or coma, and unspecified alcoholic 734 

liver disease). The control group was defined by having a: normal ALT (≤30 U/L for men, ≤20 U/L 735 

for women) and no apparent causes of liver disease or alcohol use disorder or related 736 

conditions
21

. Habitual alcohol consumption was assessed with the age-adjusted Alcohol Use 737 

Disorders Identification Test (AUDIT-C) score, a validated questionnaire annually administered 738 

by VA primary care practitioners and used previously in MVP
116,117

. Demographics of the NAFLD 739 

cohort are shown in Supplementary Table 1. The prevalence of cirrhosis and advanced fibrosis 740 
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was based on the following ICD-9 codes: 456.2, 456.21, 571.5, 572.2, 572.3 , and ICD-10 codes: 741 

K72.9, K72.91, K74.0, K74.02, K74.1, K74.2, K74.6, K74.69 742 

 743 

744 
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Single-variant autosomal analyses. 745 

We tested imputed SNPs that passed quality control (i.e. HWE > 1x10
-10

, INFO > 0.3, call rate > 746 

0.975) for association with NAFLD through logistic regression assuming an additive model of 747 

variants with MAF > 0.1% in European American (EA), and MAF > 1% in African Americans (AA), 748 

Hispanic Americans (HISP), and Asian Americans (ASN) using PLINK2a software
118

. Indels were 749 

excluded from analysis. Covariates included age, gender, age-adjusted AUDIT-C score, and first 750 

10 principal components (PC’s) of genetic ancestry. We aggregated association summary 751 

statistics from the ancestry-specific analyses and performed a trans-ancestry meta-analysis. The 752 

association summary statistics for each analysis were meta-analyzed in a fixed-effects model 753 

using METAL with inverse-variance weighting of log odds ratios
119

. Variants were clumped using 754 

a range of 500kb and/or CEU r
2
 LD > 0.05, and were considered genome-wide significant if they 755 

passed the conventional p-value threshold of 5x10
-8

. Trans-ancestry and ancestry-specific 756 

summary statistics are displayed in Supplementary Tables 2-5. 757 

 758 

Secondary signal analysis. 759 

The PLINK --condition and --condition-list parameters were used to conduct stepwise 760 

conditional analyses on individual level data in MVP to detect ancestry-specific distinct 761 

association signals nearby lead SNPs. Regional SNPs were eligible if they were located within 762 

500kb of lead SNP, had a MAF >1% and passed standard quality control criteria (INFO > 0.3, 763 

HWE P > 1.0x10
-10

, call rate > 0.975). Logistic regression was performed in a stepwise fashion, 764 

starting with a regional association analysis with the following set of covariates: lead SNP 765 

imputed allele dosage, age, gender, and 10 PC’s of genetic ancestry. If the corresponding 766 
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output file contained SNP(s) that reached locus-wide significance (P < 1.0x10
-5

), the most 767 

significant SNP was selected and added to the covariate set. The regression was repeated until 768 

no locus-wide significant SNPs remained. Secondary signals are shown in Supplementary Table 769 

11.   770 

 771 

Credible Sets. 772 

We calculated Wakefield’s approximate Bayes’ factors
41

 based on the marginal summary 773 

statistics of the trans-ancestry meta-analysis and ancestry specific summary statistics using the 774 

CRAN R package corrcoverage
120

. For each locus, the posterior probabilities of each variant 775 

being causal were calculated and a 95% credible set was generated which contains the 776 

minimum set of variants that jointly have at least 95% posterior probability (PP) of including the 777 

causal variant (Supplementary Tables 12-15).  778 

 779 

External validation in a Liver Imaging cohort. 780 

A replication lookup of lead loci was performed to evaluate the extent to which genetic 781 

predictors of hepatocellular injury (cALT) correspond with quantitative hepatic fat derived from 782 

computed tomography (CT) / magnetic resonance imaging (MRI)-measured hepatic fat in the 783 

Penn Medicine Biobank (PMBB), UK Biobank, Multi-Ethnic Study of Atherosclerosis (MESA), 784 

Framingham Heart Study (FHS), and University of Maryland Older Order Amish study 785 

(Supplementary Table 8). Attenuation was measured in Hounsfield units. The difference 786 

between the spleen and liver attenuation was measured for PMBB; a ratio between liver 787 

attenuation/spleen attenuation was used for MESA and Amish; and liver attenuation/phantom 788 
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attenuation ratio in FHS as previously described by Speliotes et al
12

. Abdominal MRI data from 789 

UK Biobank data were used to quantify liver fat using a two-stage machine learning approach 790 

with deep convolutional neural networks
121

. CT-measured hepatic fat was estimated using a 791 

multi-stage series of neural networks for presence of scan contrast and liver segmentation 792 

using convolutional neural networks. The PMBB included CT data on 2,979 EA and 1,250 AA 793 

participants
122

, the FHS included a total of 3,011 EA participants, the Amish study 754 EA 794 

participants, and MESA contributed 1,525 EA, 1,048 AA, 923 HISP, and 360 ASN participants for 795 

concordance analysis. The UK Biobank included MRI image data from 36,703 EA participants. All 796 

cohorts underwent individual-level linear regression analysis on hepatic fat, adjusted for the 797 

covariates of age, gender, first 10 principal components of genetic ancestry, and alcohol intake 798 

if available. If the lead SNP was not available in any of the studies, a proxy SNP in high LD with 799 

the lead variant was used (r
2
 > 0.7) or if no such variant was identified, the SNP was set to 800 

missing for that respective study. The study-specific ancestry-stratified summary statistics were 801 

first standardized to generate standard scores or normal deviates (z-scores), and then meta-802 

analyzed using METAL in a fixed-effects model with inverse-variance weighting of regression 803 

coefficients
119

. In a first round of meta-analysis, ancestry-specific summary statistics were 804 

generated, which then served as input for a subsequent round of meta-analysis that represents 805 

the trans-ancestry effects of our lead SNPs on quantitative hepatic fat.  806 

 807 

External validation in a Liver Biopsy cohort  808 

Available data from the following groups contributed to the Liver Biopsy Cohort. 809 
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Non-Alcoholic Steatohepatitis Clinical Research Network (NASH CRN) studies with Hispanic 810 

Boys, FLINT, PIVENS and NASH Women Studies: Results from several studies of EA and HISP 811 

participants were included from the Lundquist Institute. The Hispanic American cases are 812 

derived from the NAFLD Pediatric Database I (NAFLD Peds DB1), a prospective, longitudinal, 813 

multicenter, observational study cohort of adults and children initiated in 2002 and contains 814 

over 4,400 subjects
123

. Clinical and histologic features of database participants have been 815 

described by Patton et al
124

. Biopsy specimens were reviewed and scored centrally by the Non-816 

Alcoholic Steatohepatitis Clinical Research Network (NASH CRN) Pathology Committee 817 

according to the histology scoring system established by the NASH CRN
125

. Genotyping was 818 

performed using the Illumina HumanCNV370-Quadv3 BeadChip at the Medical Genetics 819 

Institute at Cedars–Sinai Medical Center (HumanCNV370-Quadv3 BeadChips; Illumina, San 820 

Diego, CA, USA). The Hispanic American controls from NASH-CRN are derived from the Long QT 821 

Screening (LQTS) study
126

. Saliva samples were used for genotyping with the Illumina 822 

HumanCore-24 BeadChips at the Institute for Translational Genomics and Population Sciences 823 

of the Lundquist Institute at Harbor-UCLA Medical Center. For all Hispanic American samples, 824 

SNP data were imputed to the 1000 Genomes Project phase 3 dataset version 5 (AMR 825 

population) on the Michigan imputation server.  The final dataset consisted of 787 samples, 826 

including 208 cases from NASH Boys and 579 controls from LQTS, and the top 3 PCs were 827 

included in the association analysis. The NASH CRN database and clinical trials were reviewed 828 

and approved by the individual institutional review boards at each participating site. All 829 

participants signed an informed consent prior to their enrollment into these consents and their 830 

de-identitied genetic data to be used for future liver disease research by the NASH CRN 831 
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investigators and by their collaborators. These studies have been monitored by an NIDDK-832 

sponsored data safety and monitoring board. 833 

The European American NAFLD samples from Lundquist Institute are derived from 834 

FLINT, PIVENS, and NASH women studies, and the controls are derived from the Cholesterol 835 

and Atherosclerosis Pharmacogenetics (CAP) trial. The details of the FLINT study have been 836 

published previously
127

. Liver histology was blindly and centrally assessed by the NASH Clinical 837 

Research Network (NASH CRN) Pathology Committee according the NASH CRN system
125

. A 838 

total of 244 patients with available DNA were genotyped of whom 198 (81%) were White
128

. 839 

Genotyping was performed using the Omni2.5 content GWAS chip. The PIVENS study, a study of 840 

Pioglitazone versus Vitamin E versus Placebo in non-diabetic adults has been described 841 

previously
71

. Genotyping was performed on 432 PIVENS samples along with the FLINT samples 842 

using the Omni2.5 content GWAS chip. Subjects were removed for failed genotyping, 843 

unresolvable gender discrepancies, being outliers by principal component analyses, and by 844 

relatedness. In total, 197 White samples remained in the analysis dataset. The NASH Women 845 

study included a subset of patients who were into the NAFLD Database Study of NASH CRN 846 

whose liver biopsy specimens were reviewed and scored centrally by the NASH CRN Pathology 847 

Subcommittee. For the GWAS ancillary study
22

 genotyping was performed at the Medical 848 

Genetics Institute at Cedars–Sinai Medical Center with the use of Infinium HD technology 849 

(HumanCNV370-Quadv3 BeadChips; Illumina, San Diego, CA). The controls for the European 850 

American analysis from Lundquist Institute are derived from the CAP trial involved 944 healthy 851 

volunteers, 609 of whom were Caucasian
129

. In total, 591 subjects were genotyped on the 852 

Illumina HumanHap300 BeadChip or Illumina HumanCNV610-Quad beadchip. Imputation was 853 
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performed using the Michigan Imputation Server with the reference panel of the Haplotype 854 

Reference Consortium (HRC) 1.1 release in 2016. After final QC of European American cohorts, 855 

the final 1,225 samples in the analysis including 650 cases and 575 controls, and the top 3 PCs 856 

for genetic ancestry were included in the association analysis.  857 

EPoS Consortium Cohort: Results from EPoS consortium cohort were included from Newcastle 858 

University. A total 1,483 histologically characterized NAFLD cases were included and 17,781 859 

genetically matched controls, with the cases recruited into the European NAFLD Registry 860 

(ClinicalTrials.gov Identifier: NCT04442334) from clinics at several leading European tertiary 861 

liver centres
20

. Details of inclusion/exclusion criteria have previously been described
20,130

. All 862 

patients had undergone liver biopsy as part of the routine diagnostic workup for presumed 863 

NAFLD, and routinely assessed according to accepted criteria by experienced liver pathologists 864 

and scored using the well validated NIDDK NASH-CRN system
125

. Genotyping was performed 865 

using the Illumina OmniExpress BeadChip by Edinburgh Clinical Research Centre. The 17,781 866 

population controls were recruited from existing genome-wide genotype data: Wellcome Trust 867 

Case Control Consortium, (n=5,159) typed on the Illumina Human1.2M-Duo; the Hypergenes 868 

cohort (n=1,520) typed on the Illumina Human1M-Duo, KORA (n=1,835) genotyped on the 869 

Illumina HumanOmni2.5 Exome chip, and Understanding Societies (n=9,267) typed on the 870 

Illumina HumanCoreExome chip. Overlapping SNPs that were well genotyped in all case and 871 

control cohorts were imputed together to the Haplotype Resource Consortium panel (HRC 1.1r 872 

2016) by the Michigan Imputation Server.  873 

The Geisinger Health System (GHS) bariatric surgery cohort: This consisted of 3,599 individuals 874 

of European American descent. Wedge biopsies of the liver were obtained intraoperatively 875 
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during bariatric surgery, and liver histology was conducted by an experienced pathologist and 876 

subsequently re-reviewed by a second experienced pathologist using the NASH CRN scoring 877 

system
125

. A total of 806 participants did not have NAFLD and were classified as controls, 878 

whereas 2,793 were histologically characterized as having NAFLD. DNA sample preparation and 879 

whole-exome sequencing were performed at the Regeneron Genetics Centre
131

. Exome capture 880 

was performed using NimbleGen probes according to the manufacturer’s recommended 881 

protocol (Roche NimbleGen) multiplexed samples were sequenced on an Illumina v4 HiSeq 882 

2500. Raw sequence data from each run were uploaded to the DNAnexus platform for 883 

sequence read alignment and variant identification.  884 

STELLAR-3 and ATLAS studies: Results from two trials from Gilead Sciences were included 885 

including phase 3 STELLAR-3 study (ClinicalTrials.gov Identifier: NCT03053050), and phase 2 886 

ATLAS study (ClinicalTrials.gov Identifier: NCT03449446) which were 887 

discontinued/terminated
132

. Genotyping was performed using whole genome sequencing 888 

(Illumina) aimed at 100x coverage. The PyVCF script was used to extract allele frequencies from 889 

VCF files generated using GATK4 pipeline with hg38 as reference genome.  890 

BioVU Biorepository: BioVU subjects at Vanderbilt University underwent SNP genotyping using 891 

the Illumina Infinium Multi-Ethnic Genotyping Array (MEGAEX) platform and underwent QC 892 

analyses and imputation as previously described 
133

. Genetic data for were imputed using the 893 

Michigan Imputation Server (HRC v1.1) and genotyping data was linked to de-idenified EHR 894 

data. All available lab measurements in this cohort that occurred when the subject was at least 895 

18 years of age. BioVU participants were selected based on available pathology report for liver 896 

biopsy in the note table in Observational Medical Outcomes Partnership (OMOP), excluding 897 
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those with other conflicting diagnoses (e.g. viral hepatitis, alcohol, transplant, explant). NAFLD 898 

was defined based on pathology report defining hepatic fat as mild, moderate, severe, 5% or 899 

more. 900 

  901 

Control subjects within BIoVU were identified by selecting those with ALT levels below 30 for 902 

males and below 20 for females.  Both cases and controls were excluded for alcohol use 903 

disorders using ICD-9 and -10 codes. 904 

 905 

Penn Medicine Biobank (PMBB): The Penn Medicine Biobank includes participants recruited 906 

from the University of Pennsylvania Health System. A total of 139 biopsy proven NAFLD cases 907 

were selected using Linguamatics natural language processing on biopsy protocols of the PENN 908 

EHR. Cases were then linked to the PennMedicine BioBank. In addition, 1,995 PMBB 909 

participants were classified as controls if a recent CT scan of the liver was available, but no 910 

steatosis was present. Appropriate consent was obtained from each participant regarding 911 

storage of biological specimens, genetic sequencing, and access to all available EHR data. DNA 912 

extracted from the blood plasma of 2,134 samples were genotyped in three batches: the 913 

Illumina QuadOmni chip at the Regeneron Genetics Center; the Illumina GSA V1 chip OR on the 914 

Illumina GSA V2 chip by the Center for Applied Genomics at the Children’s Hospital of 915 

Philadelphia. Genotypes for each of the three PMBB datasets were imputed to the 1000 916 

Genomes reference panel (1000G Phase3 v5) using the Michigan Imputation Server. Results 917 

from liver biopsy data are shown in Supplemental Tables 6 and 7. 918 

 919 
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Heritability estimates and genetic correlations analysis.  920 

LD-score regression was used to estimate the heritability coefficient, and subsequently 921 

population and sample prevalence estimates were applied to estimate heritability on the 922 

liability scale
134

. A genome-wide genetic correlation analysis was performed to investigate 923 

possible co-regulation or a shared genetic basis between cALT and other complex traits and 924 

diseases (Supplementary Table 9). Pairwise genetic correlation coefficients were estimated 925 

between the meta-analyzed NAFLD GWAS summary output in EA and each of 774 precomputed 926 

and publicly available GWAS summary statistics for complex traits and diseases by using LD 927 

score regression through LD Hub v1.9.3 (http://ldsc.broadinstitute.org). Statistical significance 928 

was set to a Bonferroni-corrected level of P < 6.5 x 10
-5

. 929 

 930 

Tissue- and epigenetic-specific enrichment of NAFLD heritability.  931 

We analyzed cell type-specific annotations to identify enrichments of NAFLD heritability as 932 

shown in Supplementary Table 16. First, a baseline gene model was generated consisting of 53 933 

functional categories, including UCSC gene models, ENCODE functional annotations
135

, 934 

Roadmap epigenomic annotations
136

, and FANTOM5 enhancers
137

. Gene expression and 935 

chromatin data were also analyzed to identify disease-relevant tissues, cell types, and tissue-936 

specific epigenetic annotations. We used LDSC
37-39

 to test for enriched heritability in regions 937 

surrounding genes with the highest tissue-specific expression. Sources of data that were 938 

analyzed included 53 human tissue or cell type RNA-seq data from GTEx
28

; human, mouse, or 939 

rat tissue or cell type array data from the Franke lab
138

; 3 sets of mouse brain cell type array 940 

data from Cahoy et al
139

; 292 mouse immune cell type array data from ImmGen
140

; and 396 941 
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human epigenetic annotations from the Roadmap Epigenomics Consortium 
136

. Expression 942 

profiles are considered statistically significantly enriched for cALT susceptibility if they pass the 943 

nominal P-value threshold of 0.003. 944 

 945 

Pathway Annotation enrichment.  946 

Enrichment analyses in DEPICT
141

 were conducted using genome-wide significant (P < 5x10
-8

) 947 

NAFLD GWAS lead SNPs (Supplementary Table 18). DEPICT is based on predefined phenotypic 948 

gene sets from multiple databases and Affymetrix HGU133a2.0 expression microarray data 949 

from >37k subjects to build highly-expressed gene sets for Medical Subject Heading (MeSH) 950 

tissue and cell type annotations. Output includes a P-value for enrichment and a yes/no 951 

indicator of whether the FDR q-value is significant (P < 0.05). Tissue and gene-set enrichment 952 

features are considered. We tested for epigenomic enrichment of genetic variants using 953 

GREGOR software (Supplementary Table 19) 
142

. We selected EA-specific NAFLD lead variants 954 

with a p-value less than 5x10
−8

. We tested for enrichment of the resulting GWAS lead variants 955 

or their LD proxies (r
2
 threshold of 0.8 within 1 Mb of the GWAS lead, 1000 Genomes Phase I) in 956 

genomic features including ENCODE, Epigenome Roadmap, and manually curated data 957 

(Supplemental Table 20). Enrichment was considered significant if the enrichment p-value was 958 

less than the Bonferroni-corrected threshold of P=1.8x10
−5

 (0.05/2,725 tested features). 959 

 960 

Coding variant mapping. 961 

All imputed variants in MVP were evaluated with Ensemble variant effect predictor
143

, and all 962 

predicted LoF and missense variants were extracted. The LD was calculated with established 963 
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variants for trans-ancestry, EA, AA, and HISP lead SNPs based on 1000 Genomes reference 964 

panel
144

. For SNPs with low allele frequencies, the MVP dataset was used for LD calculation for 965 

the respective underlying population. For the trans-ancestry coding variants, the EA panel was 966 

used for LD calculation. Coding variants that were in strong LD (r
2
 > 0.7) with lead SNPs and had 967 

a strong statistical association (P-value < 1x10
-5

) were considered the putative causal drivers of 968 

the observed association at the respective locus (Supplementary Table 22). 969 

 970 

 971 

 972 

Colocalization with gene expression 973 

GWAS summary statistics were lifted over from GRCh37 to GRCh38 using LiftOver 974 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver).  Colocalization analysis was run separately for 975 

eQTLs and sQTLs for each of the 49 tissues in GTEx v8 (Supplementary Tables 23 and 24)
28

.  For 976 

each tissue, we obtained an LD block for the genome with a sentinel SNP at P < 5x10
-8

, and then 977 

restricted analysis to the LD blocks. For each LD block with a sentinel SNP, all genes within 1Mb 978 

of the sentinel SNP (cis-Genes) were identified, and then restricted to those that were 979 

identified as eGenes in GTEx v8 at an FDR threshold of 0.05 (cis-eGenes).  For each cis-eGene, 980 

we performed colocalization using all variants within 1Mb of the gene using the default prior 981 

probabilities in the ‘coloc’ function for the coloc package in R. We first assessed each coloc 982 

result for whether there was sufficient power to test for colocalization (PP3+PP4>0.8), and for 983 

the colocalization pairs that pass the power threshold, we defined the significant colocalization 984 

threshold as PP4/(PP3+PP4)>0.9. 985 
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 986 

Overlap with open chromatin.  987 

At each of the 77 NAFLD-associated loci from the trans-ancestry meta-analysis, we looked for 988 

overlaps between any variant in the credible set, and regions of open chromatin previously 989 

identified using ATAC-Seq experiments in two cell types—3 biological replicates of HepG2
145

 990 

and 3 biological replicates of hepatocyte-like cells (HLC)
146

 produced by differentiating three 991 

biological replicates of iPSCs, which in turn were generated from peripheral blood mononuclear 992 

cells using a previously published protocol
44

. Results are shown in Supplementary Table 25. 993 

 994 

Overlap with Promoter Capture-C data.  995 

We used two promoter Capture-C datasets from two cell/tissue types to capture physical 996 

interactions between gene promoters and their regulatory elements and genes; three biological 997 

replicates of HepG2 liver carcinoma cells, and hepatocyte-like cells (HLC)
145

. The detailed 998 

protocol to prepare HepG2 or HLC cells for the promoter Capture-C experiment is previously 999 

described
44

. Briefly, for each dataset, 10 million cells were used for promoter Capture-C library 1000 

generation. Custom capture baits were designed using an Agilent SureSelect library design 1001 

targeting both ends of DpnII restriction fragments encompassing promoters (including 1002 

alternative promoters) of all human coding genes, noncoding RNA, antisense RNA, snRNA, 1003 

miRNA, snoRNA, and lincRNA transcripts, totaling 36,691 RNA baited fragments. Each library 1004 

was then sequenced on an Illumina NovoSeq (HLC), or Illumina HiSeq 4000 (HLC), generating 1005 

1.6 billion read pairs per sample (50 base pair read length.) HiCUP
147

 was used to process the 1006 

raw FastQ files into loop calls; we then used CHiCAGO
148

 to define significant looping 1007 
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interactions; a default score of 5 was defined as significant. We identified those NAFLD loci at 1008 

which at least one variant in the credible set interacted with an annotated bait in the Capture-C 1009 

data (Supplementary Table 25).  1010 

 1011 

Protein-Protein Interaction Network Analysis 1012 

We employed the search tool for retrieval of interacting genes (STRING) v11
149

 (https://string-1013 

db.org) to seek potential interactions between nominated genes. STRING integrates both 1014 

known and predicted PPIs and can be applied to predict functional interactions of proteins. In 1015 

our study, the sources for interaction were restricted to the ‘Homo Sapiens’ species and limited 1016 

to experimentally validated and curated databases. An interaction scoreQ>Q0.4 were applied to 1017 

construct the PPI networks, in which the nodes correspond to the proteins and the edges 1018 

represent the interactions (Figure 4, Supplemental Table 26).  1019 

 1020 

Ensemble variant-to-gene mapping to identify putative causal genes. 1021 

Based on DEPICT gene prediction, coding variant linkage analysis, QTL analysis, and annotation 1022 

enrichment, and PPI networks (Supplemental Tables 18-26), a total of 215 potentially relevant 1023 

genes for NAFLD were mapped to trans-ancestry 77 loci. For each locus, we counted how many 1024 

times each gene in that region was identified in the 8 analyses. We then divided this number by 1025 

the total number of experiments (i.e., 8) to calculate an evidence burden (called nomination 1026 

score) that ranges from 0 to 100%. For each genomic locus, the gene that was most frequently 1027 

identified as a causal gene was selected as the putative causal gene for that locus. In the case of 1028 

a tie break, and if the respective genes have identical nomination profiles, the gene with eQTLs 1029 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 25, 2021. ; https://doi.org/10.1101/2020.12.26.20248491doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.26.20248491
http://creativecommons.org/licenses/by/4.0/


53 

53 

in multiple tissues was selected as the putative causal gene. Similarly, gene nomination was 1030 

preferred for loci that strongly tagged (r
2
 > 0.8) a coding variant. Loci that scored with 3 distinct 1031 

sources of evidence or greater are listed for coding variant (Table 1A) and non-coding variants 1032 

(Table 1B), respectively. 1033 

 1034 

MVP LabWAS. 1035 

A total of 21 continuous traits in the discovery MVP dataset, e.g. AST, ALP, fasting TG, HDL, LDL, 1036 

TC, random glucose, HbA1c, albumin, bilirubin, platelet count, BMI, blood urea nitrogen (BUN), 1037 

creatinine, eGFR, SBP, DBP, ESR, INR, and C-reactive protein were tested in 186,681 EA’s with 1038 

association of 77 SNPs using linear regression of log-linear values. Covariates included age, 1039 

gender and the first 10 PC’s of EA ancestry (Supplementary Table 29). The Bonferonni p-value 1040 

threshold is set at 3.09x10
-05

 (0.05 / 21 traits * 77 SNPs) 1041 

 1042 

PheWAS with UK Biobank data. 1043 

For the 77 lead trans-ancestry SNPs and EA and AA specific SNPs, we performed a PheWAS in a 1044 

genome-wide association study of EHR-derived ICD billing codes from the White British 1045 

participants of the UK Biobank using PheWeb
150

. In short, phenotypes were classified into 1,403 1046 

PheWAS codes excluding SNP-PheWAS code association pairs with case counts less than fifty
151

. 1047 

All individuals were imputed using the Haplotype Reference Consortium panel
152

, resulting in 1048 

the availability of 28 million genetic variants for a total of 408,961 subjects. Analyses on binary 1049 

outcomes were conducted using a model named SAIGE, adjusted for genetic relatedness, 1050 

gender, year of birth and the first 4 PC’s of white British genetic ancestry
153

. SAIGE stands for 1051 
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Scalable and Accurate Implementation of GEneralized mixed model and represents a 1052 

generalized mixed-model association test that accounts for case-control imbalance and sample 1053 

relatedness
153

. Results are shown in Supplemental Tables 30 and 31. SNP-trait associations are 1054 

listed if they passed a nominal significance threshold of P < 0.001, and are considered Bonferoni 1055 

significant when P < 4.6x10
-7 

(0.05 / 77 SNPs * 1,403 traits).  1056 

 1057 

IEU OpenGWAS project SNP lookup. 1058 

An additional phenome-wide lookup was performed for 77 lead trans-ancestry SNPs and EA and 1059 

AA specific SNPs in Bristol University’s MRC Integrative Epidemiology Unit (IEU) GWAS 1060 

database
154

. This database consists of 126,114,500,026 genetic associations from 34,494 GWAS 1061 

summary datasets, including UK Biobank (http://www.nealelab.is/uk-biobank), FinnGen 1062 

(https://github.com/FINNGEN/pheweb), Biobank Japan (http://jenger.riken.jp/result), the 1063 

NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas), a large-scale blood metabolites 1064 

GWAS
155

, circulating metabolites GWAS
156

, the MR-Base manually curated database
157

, and a 1065 

protein level GWAS
158

. Results are shown in Supplemental Table 32. 1066 

 1067 

Regional cardiometabolic cross-trait colocalization. 1068 

Bayesian colocalization tests between NAFLD-associated signals and the following trait- and 1069 

disease-associated signals were performed using the COLOC R package
159

. To enable cross-trait 1070 

associations, we compiled summary statistics of 36 cardiometabolic and blood cell-related 1071 

quantitative traits and disease from GWAS studies conducted in EA ancestry individuals, and for 1072 

MVP-based reports also on AA and HISP. To summarize, for total, HDL, and LDL cholesterol, 1073 
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triglycerides, alcohol use disorder, alcohol intake, systolic blood pressure, diastolic blood 1074 

pressure, type 2 diabetes, BMI, CAD, we used the summary statistics available from various 1075 

MVP-based studies
27,116,160

. Of these, the summary statistics for CAD and BMI GWAS in MVP 1076 

have not been published or deposited as of yet. Data on WHR were derived from GIANT 1077 

Consortium
161

, whereas summary statistics on CKD, gout, blood urea nitrogen, urate, urinary 1078 

albumin-to-creatinine ratio, microalbuminuria, and eGFR were derived from CKD Genetics 1079 

Consortium
162-164

. Finally, summary statistics of blood cell traits (e.g. platelet count, albumin, 1080 

white blood cells, basophils, eosinophils, neutrophils, hemoglobin, hematocrit, immature 1081 

reticulocyte fraction, lymphocytes, monocytes, reticulocytes, mean corpuscular hemoglobin, 1082 

mean corpuscular volume, mean platelet volume, platelet distribution width, and red cell 1083 

distribution width) were derived from a large-scale GWAS report performed in UK Biobank and 1084 

INTERVAL studies
165

. A colocalization test was performed for all 77 NAFLD loci spanning 500kb 1085 

region around the lead SNP for all 36 compiled traits. For each association pair COLOC was run 1086 

with default parameters and priors. COLOC computed posterior probabilities for the following 1087 

five hypotheses: PP0, no association with trait 1 (cALT GWAS signal) or trait 2 (e.g., co-1088 

associated metabolic signal); PP1, association with trait 1 only (i.e., no association with trait 2); 1089 

PP2, association with trait 2 only (i.e., no association with trait 1); PP3, association with trait 1 1090 

and trait 2 by two independent signals; and PP4, association with trait 1 and trait 2 by shared 1091 

variants. Evidence of colocalization
166

 was defined by PP3 + PP4 ≥ 0.99 and PP4/PP3 ≥ 5. Results 1092 

are shown in Supplemental Table 33. 1093 

 1094 

Genetic risk scores and histologically characterized NAFLD. 1095 
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We constructed genetic risk scores (GRS) in 4 histologically characterized cohorts (e.g. 1096 

Lundquist Whites and Hispanic Americans, EPoS Consortium Whites, and BioVU Whites)  by 1097 

calculating a linear combination of weights derived from the MVP dataset of lead 77 trans-1098 

ancestry cALT variants that passed conventional genome-wide significance (GRS-77, P < 5.0x10
-1099 

8
). The GRS-77 was standardized and the risk of histologically characterized NAFLD was assessed 1100 

using a logistic regression model together with the potential confounding factors of age, 1101 

gender, and the first 3 to 5 principal components of ancestry. To delineate the potential driving 1102 

effects of known NAFLD loci, we divided the 77 loci into two sets, and generated one PRS 1103 

consisting of 9 known NAFLD SNPs only (GRS-9), and one of newly identified 68 cALT SNPs (GRS-1104 

68). The goal of this separation is to evaluate whether a GRS based on novel SNPs alone (GRS-1105 

68) showed predictive capability for biopsy-proven histologically characterized NAFLD. Both 1106 

GRS’s were added as independent predictors in a logistic regression model to explain 1107 

histologically characterized NAFLD with the confounders of age, gender, and PC’s of ancestry. 1108 

The individual effect sizes for each study were then meta-analyzed using the metagen package 1109 

in R with random effects model comparing the standardized mean difference  (SMD, mean 1110 

differences divided by their respective standard deviations) (Supplemental Table 9B). A forest 1111 

plot was created to visualize the effect estimates between the studies (Supplemental Figure 1112 

10). In similar fashion, SNPs were divided into 3 groups according to replication power, where 1113 

SNPs were divided into a Bonferroni-replicated GRS consisting of 17 SNPs, a nominally 1114 

significant with directional concordance GRS with 25 SNPs, and non-replicated GRS with 35 1115 

SNPs (Supplemental Table 9C, Supplemental Figure 11). Finally, a GRS subset was created 1116 

based on the pleiotropy analysis and Venn Diagram, where we generated subset GRS that 1117 
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reflects liver+metabolic (17 SNPs), liver+metabolic+inflammation (38 SNPs), liver+inflammation 1118 

(5 SNPs), and liver only strata (17 SNPs) (Supplemental Table 9D, Supplemental Figure 14). 1119 

 1120 

Transcription Factor Analysis. 1121 

We identified nominated genes (Supplemental Table 28) that encode for TFs based on known 1122 

motifs, inferred motifs from similar proteins, and likely sequence specific TFs according to 1123 

literature or domain structure
167

. Target genes for these TFs were extracted using DoRothEA 1124 

database
168

 in OmniPath collection
169

 using the associated Bioconductor R package 1125 

OmnipathR
170

, a gene set resource containing TF-TF target interactions curated from public 1126 

literature resources, such as ChIP-seq peaks, TF binding site motifs and interactions inferred 1127 

directly from gene expression. 1128 

 1129 

Directional Pleiotropy and Gene Cluster Analysis. 1130 

We used the R package ‘pheatmap’ for a stratified agglomerative hierarchical clustering 1131 

method named ‘complete linkage’, where each element is its own cluster at the beginning, and 1132 

two clusters of the shortest distance in between them are sequentially combined into larger 1133 

clusters until all elements are included in one single cluster, where distance is measured in 1134 

Euclidean distance. We used the 77 lead SNPs and their corresponding single-trait effect 1135 

estimates for 20 traits corresponding to 3 biological super groups (e.g. lipids, inflammation, 1136 

metabolic) as input, with the sign of each cell determined by direction of effect, and the 1137 

strength by the –log10(p-value). The alleles were oriented as such that the cALT-increasing 1138 

allele was set to the effect allele, which allows for direct comparison of the various association 1139 
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profiles. We selected the default ‘complete’ method and ‘Euclidean’ distance options to 1140 

perform hierarchical clustering, stratified by the 3 super groups of metabolic, inflammation, and 1141 

lipid traits. The results of the clustering gene set are visualized with a dendrogram on the left 1142 

side of the heatmap, which is broadly grouped into 7 distinct gene clusters. 1143 
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