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Abstract


In this paper, we want to simulate the COVID-19 epidemic according to the Retarded SEIRS model. One of the main 
questions in the human mind is whether the COVID-19 epidemic will happen again. Therefore, a criterion must be set for 
the occurrence or non-occurrence of the disease. With the Retarded SEIRS model and this criterion, we can predict whether 
the Covid-19 will re-emerge. So far, a large number of researches that have been presented in scientific groups or 
communities have been based on the SIR or SEIR model. But we assume that each recovered individual is immune to the 
disease for a limited time, and then will be susceptible again. As we know, this assumption was also true for SARS. 
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1. Introduction


From time immemorial until now, various diseases have threatened the human race, the most influential of which in recent decades is 
COVID-19. The effects of this disease have been extended to economic and political fields. Since COVID-19 can spread significantly in the 
world, we focus on studying its recurrence after the first pandemic. Various models have been studied for this disease, the most important of 
which are ￼  and ￼ . But in fact, the question that arises here is whether it is possible for the COVID-19 to become re-epidemic. The 
answer to this question certainly depends on the model that COVID-19 follows.


	 In general, if a person is patient with a disease., three conditions may occur after recovery:


1. Immediately after recovery, he/she is prone to become patient;


2. He/she is immune to the disease for a limited time after recovery, and after that time he/she will be prone to be patient again;


3. Once he/she recovers, he/she will have lifelong immunity to the disease and will never be paatient.


For example, a child can get the tetanus vaccine and be immune to the disease for a long time, but over the years, that immunity wears off 
and he/she has to get the vaccine again. Many adult immunization schedules also suggest that the tetanus and diphtheria vaccine, called 
￼ , be given every 10 years. It should be noted that research shows this period of time can be significantly corrected [1]. The 
problem is whether such a question can also exist for the immunity of the COVID-19.


	 The details of this disease are still unknown and the related questions can hardly be answered. On the other hand, it is not logical for 
human beings to wait and find the answer to this question in the future, based on experience. Because today, possible events can be obtained 
through various simulations. We want to obtain the condition for the recurrence of COVID-19 epidemic through computer simulation. The 
model we want to use is called ￼ , and we believe that this model is more realistic than conventional ￼  models. 
Here, after studing the parameters and simulating the model, we calculate the minimum value required for the temporary immunity duration 
￼  of COVID-19, to prevent the occurrence of the second epidemic.


2. Retarded SEIRS model description


When a person becomes ill with COVID-19 disease, he/she will either die or recover. And if he/she recovers, one of the three above 
conditions will occur. So far, studies on conditions 1 and 3 have been performed. Therefore, we put our focus on the second one. To examine 
this condition, we assume that the recovered individuals lose their immunity over a period of time ￼  and become fully susceptible to disease. 
One of the most important questions is, if we make such a presumption for the spread of the disease, then how far are we from the re-
emergence of COVID-19?
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Figure 1) ￼  model overview. Susceptible individuals will be exposed by infected individuals. Exposed individuals will 
then enter the infected category after a short time. The infected individuals will recover, and then join the susceptible category again. It 
should be noted that for better understanding, births and deaths are not included in this figure. But it is clear that the births should be included 
in some categories; in addition, given that natural death occurs in all categories, another output must be considered for each category. Also, some


 individuals will die in the infected category due to the fatality of the disease.


	 To model this phenomenon, We first divide people into four categories: susceptible, exposed, infected, and recovered. Because a 
significant number of researches (such as ￼  and ￼ ) that have been proposed for this disease, 
have been based on   model. However, in this study, it should be considered that the recovered individuals return to the susceptible 
category (￼ ) after the time duration ￼ . Therefore, according to the sequence of different categories, this model can be called ￼  for 
short. But since we have not used conventional methods to transfer individuals from recovered ( ) to susceptible ( ), we have called it 
￼  model. Because we are exactly using the time latency, not transfer rate-based methods. To examine the changes of 
categories in the population over time, the dynamic equation for each category must be written. It is clear that the change in the proportion of 
each category can happen in two ways: either some individuals in a category leave the category and go to the next category, or some 
individuals of a category die or born. With these interpretations, we have assumed the dynamic equations for categories as equations 1 to 4:


￼ 


￼ 


￼ 


￼ 


In equation 1, the term related to the births of the   and   categories is shown as ￼ , so that ￼  is the birth rate; in other words, even if a 
person is born in   category, he/she will be considered susceptible to the disease. The second term in equation 1 (ie, 
￼ ) refers to recovered individuals who have returned to the category of susceptible individuals after the duration ￼  
has elapsed since their recovery. In other words, this term is subtracted from equation 4 and added to equation 1. The explanation of this term 
is given in detail in the description of equation 4. Parameter   will be very important in this model, as it expresses the duration of temporary 
immunity of each individual after getting recovered. The third sentence is ￼ , which indicates the transmission of individuals from   to   
with the rate ￼ , due to exposure of   individuals to ￼ . Also, in the fourth term,   individuals will die at the rate  .


	 In equation 2, it can be seen that the birth of infans in the category  , will occur at the rate   and as  the form ￼ . The second term in this 
equation states   individuals that have been exposed to  , so they will be added to   category as ￼ . Then in term ￼ , these individuals 
enter the infected category at ￼  rate from   category. To be more precise, this term is related to the departure of   individuals from the latent 
period of the disease and their entry into the infected category. The last term, like other categories, indicates the natural death of individuals.


	 Now it will not be difficult to interpret equation 3. Term ￼  states that the birth of each infant in the infected category means that the infant 
is infected too. We have not seen this to be true yet, although it seems very reasonable (similarly, we assumed that the share of births in 
category   would be added to  ). The description of the second term is also given in the paragraph above; but the third term (￼ ) is about 
infected recovering at   rate and entering   category. Although we emphasize that a number of infected individuals will lose their lives; these 
individuals, whose share is included in the fourth term (ie ￼ ), die at ￼  rate and simply because of COVID-19.


	 Equation 4 is a very basic equation in this model. Till now, almost all transfers between categories have been controlled by rates (except 
for the second term in the first equation, which we are going to explain here). In the first term (￼ ) we see that infected individuals have 
entered   category at   rate. But the second term is written in a way independent of the rates. Being independent of the transition rate means 
that the rate   will not be used to transfer individuals from   to  . As mentioned, the second term in equation 4—ie, 
￼ —refers to recovered individuals who, after passing the duration   from the moment of their recovery, have 
returned to the category of susceptible individuals. These are the infected individuals who were excluded from   category at time ￼  and 
entered R category at the rate ￼ . Also, the presence of Heaviside function H guarantees the transition after the duration  . For this reason, the 
share of these individuals at the moment ￼ is subtracted from equation 4 and added to equation 1. The term ￼  may sound a little 
unfamiliar, but note that some of these recovered individuals will die during the duration  , due to the natural death rate ￼  per unit time. 
Therefore, only   fraction of the initial number of these individuals will be alive. We must note that ￼  and ￼  have the same dimension. 
In this model, there is an important difference compared to conventional   models; in conventional models, there is a rate for 
transferring individuals from   to  , which is basically the same as ￼ . Recovered will then enter the category of the susceptible with the term 
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￼ . But we believe that this will have unrealistic consequence. Note that   is much larger than the other time durations of COVID-19 in 
these equations—such as latent period, recovery period, etc. We also know that after the outbreak or even during it, a significant portion of 
the population falls into the R category. In fact, it is clear that as R goes, so does   term, and so a flood of recovered individuals will flow 
to the susceptible category. After R reaches its maximum value, this flood also reaches its maximum and then will decrease. But This event is 
completely unrealistic. Because we expect that even if a significant number of infected enter R category, they have to wait for their 
temporary immunity T to expire, and then enter S category. however, in conventional   models, as soon as these individuals enter R, 
the flow of them to the S will be at its maximum. So we explicitly suggest using ￼  term instead of the  . Such 
corrections can be applied to the other terms—although we did not, but it is better to correct them to make the model more realistic. We also 
note that the nature of "temporary immunity" is well considered in this method. But this was not the case with conventional   models.


3. Calculating the parameters


We now describe the parameters in equations 1 to 4. To obtain the natural birth and death rates, we used a research conducted by the United 
Nations [4]. This study shows that the average number of alive births per woman (during life) is 2.5 children. Since life expectancy at birth of 
women in 2019, is reported to be 75.0 years [4], we estimate our required birth rate as:


 ￼  


Note that we ultimately intend to investigate the normalized population, and since women make up almost half of the world population, the 
coefficient ￼  would be justified. On the other hand, life expectancy at birth—for both sexes, in 2019—is 72.6 years. This value causes us to 
estimate the natural death rate:


 ￼  


for whatever reason except COVID-19.


	 A c c o r d i n g t o ￼ , t h e l a t e n t d u r a t i o n l a s t s ￼  d a y s , w h i c h r e s u l t s i n 
￼  i n f e c t i o n r a t e . T h e r e c o v e r y t i m e o f e a c h i n f e c t e d i n d i v i d u a l i s 
￼  [6] and therefore the recovery rate will be ￼ . The share of 
deaths due to COVID-19 is equal to ￼  [6], which causes the fatality rate to be estimated to be:


￼  


On the other hand, the basic reproductive number of this disease is estimated to be ￼  [7]. Given that ￼  in 
this model is obtained from the definition in equation 5 [8], the transmission rate ￼  can be estimated at ￼  using the above results. 
Note that we exactly used the definition of ￼  in ￼  model, which would be a logical calculation.


￼ 


4. Simulating the dynamics of disease outbreak


The equations 1 to 4 can be solved by different numerical methods, and we chose Fourth Order Runge-Kutta for this purpose. Before solving 
these equations, we emphasize that we have first normalized the population to 1. It means ￼  of population is infected and the rest—which is 
￼ )—are susceptible. ￼  is the total number of people in the world. In this text, we consider the initial proportion of infected to be:


￼  


which is equivalent to the proportion of one person among the total world population. Because the world's population in 2019 was 
￼  [9]. Also, at the beginning of the outbreak, we consider the proportions of ￼  and ￼  to be zero. On the other hand, due to births 
and deaths, the initially normalized population will not remain 1. So we have to keep in mind that if, for example, after a long time, the 
individuals in category ￼  have a proportion of 0.4, it means that the ratio of their population to the initial population of the world (in 2019) is 
0.4. So when we talk about ￼  and ￼  proportions, we mean the ratio of the number of individuals in each of these categories to the total 
initial population. In other words:


￼ 


	 Our intention is to calculate the number of infected individuals for different amounts of  . As the point is clear, our method is numerical 
and deterministic. It should be noted that ￼  and ￼  values can not be negative. It should also be noted that the number of individuals in a 
category cannot be reduced to any desired positive number. For example, after the first outbreak subsides, the proportion of ￼  individuals 
cannot be reduced to ￼ . Because none of the human societies—even the largest of them—have a population of ￼ , and so we can't be 
in a situation where relatively one individual in ￼  people is infected. In other words, given the world's population, which is the largest 
imaginable society, the proportion of each category must be such that the number of its individuals can be considered comparable to the 
lowest positive population proportion of humans in the world—which corresponds to one person in the world. Otherwise, we consider the 
proportion of that category to be zero. we will provide a more comprehensive explanation in this regard. 
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Figure 2) ￼  Model for COVID-19 epidemics. A) ￼  and ￼  proportions. B) ￼  and ￼  proportions. Both figures are for one 
simulation, and are drawn in two parts because of better representation. Here it is assumed that each recovered individual is immune for 
￼ . So at ￼  and after that, the immunity of individuals who got infected early in the outbreak will be lost. The 
asterisk shows the first individual who loses the immunity, which corresponds the first infected individual. After the first peak of the 
epidemic, the proportion of ￼  and ￼  will decrease sharply and then increase again. Epidemics occur every few years, approximately every 
five years. It should be noted that each of ￼  and ￼  proportions sometimes fall below ￼ —for example, between the first and second 
epidemic peaks—and these events cannot be observed in human societies. This simulation shows that the use of numerical methods, 
regardless of the ￼ , ￼ , ￼  and ￼  values, can lead to unrealistic results. The parameters used in this simulation are are shown in table 1. To view 


the code related to this simulation, refer to ￼  code (supplemental files).
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Table 1) Parameters and initial values used in   model simulations. Some intervals  are shown for some parameters, but 
we did not use the intervals in our simulations. We only considered the main value of each parameter.


	 We see the result of one of COVID-19 simulations over fifteen years in figure 2. As can be seen from figures ￼  and ￼ , with the 
outbreak of the disease, the significant portion of the population becomes infected and then the proportion of infected ( ) decreases. Note that 
these two figures are related to one simulation and are drawn in two parts just for better observation. In this simulation, it is assumed that the 
immunity of each recovered individual disappears after 3.0 years. After a significant portion of the recovered individuals have lost their 
immunity, to which they are added to category  , world will be ready for a re-epidemic—ie, the second epidemic. But this re-epidemic will 
not be so evident until the sixth year. Because after the first epidemic, the number of   individuals decreased so much that for several years it 
could not make a significant fraction of the population infected. Note that this is quite natural given the dynamic equations of the disease and 
the numerical method used. For example, between the first and second peaks (figure ￼ ), ￼  and ￼  proportions have the values less than 
￼ . On the other hand, given the world's population, we can never face such a proportion of the world's population, and therefore the 
disease is practically gone. As a result, the second, third, and subsequent epidemics, which occur at approximately five-year intervals (figure 
2), will not occur in the real world.


	 Another point to consider in the simulations of this text is the calculation of ￼  substeps in Fourth Order Runge-Kutta method. As 
we know, to perform the calculations of each time step, ie from ￼ to ￼ , for each of the proportions ￼ , ￼ , ￼  and ￼ , we must 
calculate four substeps. But the main problem is that there is no separate equation for  , which is time-dependent. Hence, we use the 
calculations we did for ￼  at time ￼ . In fact, using the substeps we obtained in the past for  , we affect the substeps of  . For more 
details, refer to the code of each simulation for a better understanding. Using this method, delay-dependent calculations of   can be 
performed.


	 We now turn to the question of what happens if we reduce the duration of temporary immunity ( ). In this case,   individuals stay shorter 
in the temporary immunity duration, and therefore can get to the   category sooner. So we can expect a re-epidemic by adopting a small 
number for  . We show this simulation for ￼  in figure 3. The minimum of   between the first and second epidemic is 
￼ , which would be quite significant. Because such a proportion of the world's population is equal to:


￼  


infected individuals. That is, under such circumstances, in the smallest amount, we still face several hundred thousand infected individuals. 
Then we approach the peak of the second epidemic and then the next stages. 


Figure 3) Simulation of   model, for ￼  over fifteen years. A) ￼  and ￼  proportions. B) ￼  and ￼  proportions. It is 
emphasized again that both diagrams are related to one simulation and are calculated for one-year temporary immunity duration. The other 
parameters are the same as the parameters in table 1. The first, second, and third epidemics (and even after them) can be clearly seen from the curve 
of   (or other categories). To view the code related to this simulation, refer to ￼  code (supplemental files).


5. Finding the threshold of temporary immunity T for non-occurrence of re-epidemic


We performed the first simulation with ￼  and said that this simulation would not lead to a second epidemic (figure ￼ ). Then we 
performed the second simulation with ￼  and found that the second epidemic occurs (figure ￼ ). According to the argument made 
earlier, we should expect that in a particular  , there is a threshold for non-occurrence of the second epidemic. This   will definitely be 
between ￼  and ￼  years. But the question is, what is our criterion for diagnosing the occurrence or non-occurrence of the second 
epidemic? Our criterion is defined as follows: if the minimum of   between the first and second epidemics—in the simulation—is less than 
 , then the second epidemic will not actually occur. ￼  is the population of the world at time ￼. We have run our simulations with an 
initially normalized population. Also, we know that the smallest imaginable proportion of the population in the real world is ￼ . In other 
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words, the largest conceivable society is the entire population of the world, and so if we want to use the smallest conceivable fraction in the 
real world, we must consider a minimum number for   fraction to shrink. The term   means the share of one person in the total 
population. If in the simulations the proportion of a category reaches  , it means that the share of that category—from the point of view 
of the real world—is equal to half of a human. That is, in the largest imaginable human population, comprising the entire human population 
of the planet, we are faced with the share of half of a human. It is clear that if we choose a smaller population, we will face a smaller share of 
humans. On the other hand, in this example, we will be dealing with proportions similar to   in earlier steps, according to the method we 
use—Fourth Order Runge-Kutta. If we want to use the probabilistic interpretation for this event, we can say that in these steps we are faced 
with the product of consecutive probabilities of about ￼ . It is clear that if we multiply the numbers close to ￼  in succession, their final answer 
will be very small and therefore the probability of that event will be insignificant.


	 Although our view on this issue is deterministic, it should be noted that when the number of infected individuals is very small, the 
stochastic effects should also be considered important. These effects may go extinct the disease sooner or later compared to the deterministic 
perspective. Also, we assumed that the whole world operates symmetrically, and this assumption can be significantly modified. 


	 Now we can look for a particular   in the range of ￼  to ￼ , so that the minimum of   between the first and second 
pandemics in the figure is less than   for the first time. By performing simulations for different   values in this interval, the threshold of 
  can be easily found. If we do this, we get ￼  for the threshold of temporary immunity duration for non-occurrence of 
re-epidemic. To view the code related to this simulation, refer to ￼  (supplemental files). Thus, under this model, COVID-19 
pandemic can occur for the second time if its duration of temporary immunity is less than ￼ . In other words, if 
￼ , then the second epidemic will occur. Otherwise, COVID-19 will become extinct, although we have ignored the 
influence of other factors such as mutations. It should be noted that the current error reported for ￼  is due to the fact that each time we 
simulated, we changed the value of   by ￼  and then ran the program again. Therefore, the overall error for   will be greater than 
 , because each parameter in this model also have an error interval in reality, while the intervals are not affected in the simulation.


	 Now if we focus on the simulation we did for ￼ , we conclude that the minimum of   between the first and second pandemics 
is approximately ￼ . We also find that in the previous one and two time steps, we were dealing with approximately 
￼  and ￼ . Such a result was expected. As mentioned earlier, given the numerical method we used, we should expect 
the numbers obtained for each category in successive time steps to be slightly different. Also, ￼  is obtained for the 
minimum moment; it is clear that all three of the above numbers are less than  . 


6. An effective suggestion for researchers


We have calculated the threshold of temporary immunity of COVID-19 for non-occurrence of re-epidemic around ￼ . Now 
we have to wait for the testers to obtain the amount of temporary immunity ￼  experimentally; if ￼ , we are 
probably facing a catastrophe. For further investigation, we examined a disease that behaved similarly to COVID-19. A study of 176 patients 
with Acute Respiratory Syndrome (SARS) found that SARS antibodies persisted for an average of two years. Then in the third year, 
significant changes occurred in their bodies. Therefore, SARS patient individuals may be re-susceptible to SARS after ￼  [10]. On 
the other hand, it may be necessary to change the model to individual-based or metapopulation models to achieve more accuracy. Under any 
circumstances, our suggestion to the medical community is to monitor the first registered patients, because they may become infected for the 
second time. The sooner we know about the temporary immunity of COVID-19, the better we can react to the recurrence of the disease. We 
hope to overcome this dilemma with the best efforts of all the people in the world.
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