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Abstract 

 

In the absence of sufficient testing capacity for COVID-19, a substantial number of 

infecteds are expected to remain undetected, and hence, are not quarantined. This, in turn, 

defeats the whole purpose of non-medical containment measures, like quarantine, lockdown, 

travel ban, physical distancing etc., by keeping the average reproduction rate above 1. To 

stress upon the importance of extensive random testing for breaking the chains of 

transmissions, we have formulated a detailed framework for carrying out cost-effectiveness 

analysis (CEA) of extensive random testing in comparison to targeted testing (the existing 

testing policy followed by most countries). This framework can be easily extended for CEA 

of any other non-medical or even medical interventions for containing epidemics.  

 

We have developed a new version of the basic susceptible-infected-removed (SIR) 

compartmental model, called the susceptible-infected (quarantined/ free) - recovered- 

deceased [SI(Q/F)RD] model, to incorporate the impact of undetected cases on the 

transmission dynamics of the epidemic. Further, we have presented a Dirichlet-Beta state-

space formulation of the SI(Q/F)RD model for the estimation of its parameters using 

posterior realizations from Gibbs sampling procedure. As an application, the proposed 

methodology is implemented to forecast the COVID-19 transmission in California and 

Florida, and further carry out CEA of extensive random testing over targeted testing. 

 

Keywords: State-space epidemic model; excess deaths; case fatality rate; MCMC; 

underreporting; Cost-effectiveness analysis. 

 

 
Highlights 

 

• Estimated values of excess deaths associated with COVID-19 are used to 

account for underreporting, and for calibrating data to obtain actual counts of cases.  

• A new flexible version of SIR compartmental model, called SI(Q/F)RD, is 

introduced to facilitate in the CEA exercise. 

• Dirichlet-Beta state-space formulation of the SI(Q/F)RD model is used to 

predict the transmission dynamics of the epidemic. 

• CEA is conducted in terms of outcome (reduction in infections and deaths) 

and total cost of tests. 

• Proposed methodology is applied on the data of California and Florida. 
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1. Introduction 

 

 Whenever we encounter an epidemic, the best medical intervention we can think 

about for containing its spread is a quick resort to mass vaccination of the susceptible 

population. However, when we face a pandemic like COVID-19, caused by the SARS-CoV-2 

virus, the novelty of the virus puts up an arduous challenge before the scientists to develop an 

effective vaccine in a short span of time. Further, the necessary safety protocols underlining 

the testing and approval of vaccines, followed by the herculean task of manufacturing it in 

abundance, makes it practically impossible to get a potent vaccine within a year of the 

outbreak of the pandemic. Consequently, it is of paramount importance to strategically 

implement non-medical interventions, like physical distancing, quarantine, lockdown 

measures etc., to minimize the spread of the infection. The rationale behind these non-

medical containment measures is to break the chain of infections by bringing down the basic 

reproduction number/ rate, R0, below one. R0 is an important factor for risk assessment of any 

epidemic and is defined as the expected number of secondary cases that arise from a typical 

infectious index-case in a completely susceptible host population. When R0 is less than one, 

an infected case is expected to produce less than one new infected. This marks the decline in 

the number of infecteds over time and, eventually, the epidemic dies out. 

 

As per the scientific brief of the World Health Organization (WHO) published on its 

website on 9 July 2020, transmission of SARS-CoV-2 occurs primarily between people 

through direct, indirect, or close contact with infected people through infected secretions such 

as saliva and respiratory secretions, or through their respiratory droplets, which are expelled 

when an infected person coughs, sneezes, talks or sings; refer WHO (2020 a). That is, in 

order to break the chains of transmissions of SARS-CoV-2, the objective of the preventive 

measures should be to minimize the contact of susceptibles with infected people. The first 

step towards this goal is to identify the infecteds so that they can be kept in quarantine till 

they are no longer infectious. However, high variability in the level and the nature of 

symptoms in infecteds, coupled with a significant length of incubation period, poses a 

difficult challenge to frame a targeted testing strategy which can serve the purpose 

effectively. Although contract tracing can help in identifying the chains of transmission 

associated with detected cases, presence of a high proportion of asymptomatic cases 

[Byambasuren et al. (2020), CDC (2020 a)], also capable of transmitting infection, flags 

concerns about the reliability of the strategy. Further, in the presence of high proportion of 

asymptomatic cases, limiting testing to the symptomatic individuals will also fail to serve the 

objective of detecting and quarantining all infecteds. So, apart from testing symptomatic 

individuals (mild or severe), and identifying and testing high risk individuals having history 

of contact with infected people, the situation demands aggressive random testing to isolate 

even the asymptomatic cases from the population. In the absence of adequate amount of 

random testing, a significant number of infecteds, especially asymptomatic individuals, may 

remain undetected (i.e., number of cases will remain significantly underreported). Since the 

undetected cases are not quarantined, they are expected to remain infectious in the population 

for a relatively much longer period as compared to those who are detected and quarantined. 

Lack of any visible symptom in the undetected cases increase the likelihood of susceptibles 

spending prolonged period in their close proximity. Thus, the undetected cases can exhibit a 

strikingly higher reproduction rate as compared to that of their quarantined counterparts. To 

be precise, aggressive random testing is imperative towards fulfilling the objective of 

breaking the chains of transmissions of SARS-CoV-2 using non-medical containment 

measures.  
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Despite repeated appeals and advisories to all countries from the WHO to employ 

extensive random testing, only few countries have shown intentions to conduct adequate 

number of COVID-19 tests [WHO (2020 b)]. Rate of positive tests at a place can give an 

indication about the adequacy, or inadequacy, of the number of tests being carried out in the 

region. New Zealand has set an extraordinary example in quickly containing the epidemic by 

efficiently adhering to the strategy of aggressive testing and isolation of infecteds to break the 

chains of infection. As on 25 August 2020, New Zealand has reported a total of 1690 

confirmed cases of which 1539 have recovered, 129 are active and 22 have died. These are 

very encouraging figures, especially when compared with those of the countries like USA, 

Brazil, UK, India, Russia and many others. Till 19 August 2020, the overall percentage of 

positive tests in New Zealand is reported to be 0.23% [Ministry of Health (2020)]. While in 

USA, the percentage of positive tests has remained quite high since the beginning, with the 

overall positive percentage staring at 9%. Also, there is a lot of variation between the 

percentages of positive tests reported by different states in USA, which varies between 0.53% 

(Vermont) to 100% (Washington) as reported on 26 August 2020 by the Johns Hopkins 

University [JHU (2020)]. As per the recommendation of the WHO, the rates of positivity in 

testing should remain at 5% or lower for at least 14 days at a stretch before governments 

decide about relaxing the containment/ lockdown measures. This advisory from the WHO is 

based on the rationale that very high positive rates may indicate that people with only severe 

symptoms are getting tested and all the asymptomatic cases or cases with mild symptoms are 

being left out. That is, a high rate of positivity may imply that the testing capacity of the state/ 

country is insufficient to gauge the actual size of the outbreak, leading to a significant amount 

of underreporting of cases.   

 

 The above discussion stresses on the fact that the success of any non-medical 

containment measure relies heavily on the ability to have sufficient testing capacity to 

identify and isolate the infected people. Even the strongest of the lockdown measures will fail 

to serve its purpose of breaking transmission chains unless it is accompanied with sufficient 

amount of random testing. Or, in other words, in the absence of sufficient testing capacity, 

lockdown measures can only succeed in delaying the spread of the epidemic. Citing these 

reasons, we have considered analysing the effectiveness of extensive random testing over 

targeted testing as a non-medical intervention in containing the spread of COVID-19- both in 

terms of effectiveness in reducing transmission rates and the associated costs. By the phrase 

‘targeted testing’ we imply testing of only symptomatic and high-risk people. To perform the 

cost-effectiveness analysis (CEA), we have considered the case of two of the worst affected 

states of USA, California and Florida, which have very high percentages of positive tests. 

Since the level of testing, and protocols/ procedure of reporting of number of deaths vary 

between different state jurisdictions, the level of underreporting of deaths and cases can also 

be expected to vary between states. This is the reason that we have performed state-wise 

analyses, rather than analysing the combined data of the USA. For forecasting the 

transmission dynamics of the pandemic under different assumptions regarding prevalence of 

underreporting, we have developed a new extension of the state-space SIR model given by 

Osthus et al. (2017). It should be noted that, although underreporting of cases can occur 

because of various other reasons, like poor communication between state and hospitals, 

conscious data manipulation to conceal failures of administration, anomalies in protocols 

used for declaring epidemic related deaths, lack of proper digital infrastructure to keep 

reliable records, to name a few, we have assumed that lack of sufficient testing is the sole (or 

at least major) reason for underreporting. This assumption definitely holds for a developed 
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country like USA, where other reasons like lack of proper communication or digital 

infrastructure can be conveniently crossed off.  

 

2. Methodology 

  

To realize the objective of conducting CEA of extensive random testing against 

targeted testing, we propose the following sequence of steps, which are then implemented on 

the COVID-19 time-series data of California and Florida.  

 

2.1. Estimation of underreporting of deaths due to COVID-19 

 

Underreporting of deaths has been estimated using the concept of excess deaths. Excess 

deaths due to an epidemic (COVID-19 in our case) can be estimated as the difference 

between the total number of deaths reported in the period of epidemic (from all causes) and 

the expected number of baseline deaths due to all other causes in the absence of COVID-19. 

One popular method to calculate the expected number of baseline deaths in the absence of 

COVID-19  is to fit a Poisson regression to the time-series (weekly) data of death counts, and 

then projecting the baseline death counts till the required future point in time. An over-

dispersed Poisson generalized linear models with spline terms is used to model trends in 

counts, accounting for seasonality [CDC (2020 b), Weinberger et al. (2020), Rivera et al. 

(2020)]. The model is also adjusted for year-to-year baseline variation and any pre-existing 

epidemic, like influenza epidemic. For our study we have used weekly estimates of excess 

deaths published by the Centers for Disease Control and Prevention (CDC) for the two states 

under consideration for the CEA [CDC (2020 b)]. The estimated excess death counts in the 

presence of COVID-19 are taken as the estimates of actual number of deaths due to the 

pandemic. The reported daily deaths due to COVID-19 are summed over weeks to find 

weekly reported deaths. The difference between the weekly excess deaths and weekly 

reported deaths give us the estimate of the unreported deaths due to the pandemic. For further 

analysis, the weekly estimate of unreported deaths due to COVID-19 is distributed among 

each day of the corresponding week as per the proportion of the number of pandemic related 

deaths reported on a day out of the total number of deaths due to the pandemic reported in 

that week. If all days of a week have zero reported deaths, the total number of unreported 

deaths is equally distributed among all seven days. Combining the additional death counts 

assigned to each day to the already reported death counts for the day gives us the calibrated 

daily time-series data on actual number of deaths due to COVID-19. The calibrated data is 

smoothed using the method of LOESS regression before proceeding with further calculations. 

 

2.2. Estimation of underreporting of number of infecteds and total confirmed cases 

 

Actual daily number of infecteds can be estimated using a reliable estimate of case 

fatality rate (CFR). As the reported data on number of cases is expected to suffer from 

underreporting, the CFR estimated on the basis of the population level data will be 

misleading. If we assume that the level (or proportion) of underreporting of deaths and 

infecteds are same, the CFR estimated from the reported data will be a reliable estimate of the 

true CFR. However, this is hardly the case observed in reality, and the proportions of 

underreporting of deaths and infecteds usually differ considerably. An estimate of CFR based 

on a (follow-up) individual patient level data is deemed as most reliable [Atkins et al. 

(2015)]. So, a simple rule of thumb to know if the levels of underreporting of deaths and 

infecteds can be assumed to be same is to compare the delayed CFR obtained from reported 

data with the one obtained from the individual patient level data. If they vary significantly, 
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we should assume that the levels of underreporting are different for number of deaths and 

number of infecteds. In such a situation, it is advisable to use the CFR obtained from the 

individual patient level data as the best estimate for the true CFR of the epidemic. Once a 

reliable estimate of the CFR is obtained, it can be used to calibrate the data for the number of 

true infecteds on each day using the estimated counts of true deaths and the average delay 

between infection and death. That is, if the average duration between infection (or detection/ 

reporting of infection) and death associated with COVID-19 is known to be, say, h days, and 

suppose that Dt number of people have died of the infection on a particular day t, then IC
t-h+1 

= (Dt / CFR) number of new cases are expected to be actively infected h days prior to the day 

of death. 

 

If daily reported data on the number of recovered cases (Rt) is available, it can be 

inflated according to the proportion of underreporting estimated in the number of infecteds as 

follows. 

 

𝑝𝑡 =
𝐼𝑡

𝐶−𝐼𝑡

𝐼𝑡
                                                                 (1) 

𝑅𝑡
𝐶 = (1 + 𝑝𝑡−𝑟+1)𝑹𝒕                                                        (2) 

 

where, 𝑝𝑡 is the estimated proportion of underreporting of infecteds at time t, 𝐼𝑡
𝐶 is the 

calibrated value of number of infecteds at time t, 𝐼𝑡 is the reported value of number of 

infecteds at time t, 𝑅𝑡
𝐶 is the calibrated value of number of recovered cases at time t, 𝑹𝒕 is the 

reported number of recovered cases at time t and r is the average duration from infection to 

the recovery of patients. If the daily number of recovered cases is not reported, or if it is not 

reliable, a fairly good calibration can be done using r and (1- CFR). Calculations will be 

similar to that used for the calibration of number of infecteds. Further, sum of daily calibrated 

data of total infecteds, total recovered and total deaths will give us the estimated values of the 

total number of confirmed cases. 

 

2.3. The proposed SI(Q/F)RD epidemic model 

 

This extension of the popular Susceptible-Infected-Removed (SIR) compartmental 

model is designed to account for underreporting and its impact on the trajectory of the 

epidemic. Here, SI(Q/F)RD stands for Susceptible-Infected (Quarantined/ Free)- Recovered- 

Deceased model. Underreporting is assumed to be the result of some infected cases not 

getting detected because of the lack of adequate testing capacity. That is, a proportion of the 

infecteds are detected (p) and quarantined (mostly symptomatic cases), while the rest of the 

infecteds (mostly asymptomatic cases) are undetected and roam freely among the 

susceptibles. This leads to the belief that the undetected cases are expected to infect the 

susceptibles at a higher rate (β2), than that of their quarantined counterparts (β1). The 

proportion of detected cases, p, can vary with time if testing capacity is increased or 

decreased over the period of the epidemic, and can be taken as a function of time t, say, pt. 

The overall structure of this model is presented in Figure 1. Since the quarantined infecteds 

consist of symptomatic cases, including critical cases, quarantined infecteds can be expected 

to be at a higher risk of death on an average. Consequently, different death rates are assumed 

for quarantined and undetected cases. Although there is no strong logic behind choosing 

different average recovery rates for quarantined and undetected cases, different recovery rates 

can be assumed if any scientific evidence exists in its favour. Otherwise, we can assume that 

both groups of infecteds have equal average recovery rate.  
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Figure 1: SI(Q/F)RD model structure- pt is the proportion of infecteds detected and 

quarantined, 1-pt is the proportion of infecteds who are undetected and roaming freely 

among the susceptibles, β1 is the transmission rate associated with quarantined infecteds 

and β2 is the transmission rate associated with undetected infecteds, ϒ1 and d1 are rate 

of recovery and rate of death for quarantined cases and ϒ2 and d2 are rate of recovery 

and rate of death for undetected cases. 

 

 
 

The set of differential equations quantifying the transitions defined in Figure 1 can be 

expressed as follows. 

 
𝑑𝜃𝑡

𝑠

𝑑𝑡
= −[𝛽1𝜃𝑡

𝑄
+ 𝛽2𝜃𝑡

𝐹]𝜃𝑡
𝑆                                                                     (3) 

𝑑𝜃𝑡
𝐼

𝑑𝑡
= [𝛽1𝜃𝑡

𝑄
+ 𝛽2𝜃𝑡

𝐹]𝜃𝑡
𝑆 − 𝛾1𝜃𝑡

𝑄
− 𝛾2𝜃𝑡

𝐹 − 𝑑1𝜃𝑡
𝑄

− 𝑑2𝜃𝑡
𝐹                                      (4) 

𝑑𝜃𝑡
𝑅

𝑑𝑡
= 𝛾1𝜃𝑡

𝑄
+ 𝛾2𝜃𝑡

𝐹 =  𝛾𝜃𝑡
𝐼 (𝑖𝑓 𝛾1 = 𝛾2 = 𝛾)                                                   (5) 

𝑑𝜃𝑡
𝐷

𝑑𝑡
= 𝑑1𝜃𝑡

𝑄 + 𝑑2𝜃𝑡
𝐹                                                                          (6) 

𝑤ℎ𝑒𝑟𝑒, 𝜃𝑡
𝑄 = 𝑝𝑡𝜃𝑡

𝐼 𝑎𝑛𝑑 𝜃𝑡
𝐹 = (1 − 𝑝𝑡)𝜃𝑡

𝐼 , 𝑎𝑛𝑑 𝜃𝑡
𝑆 + 𝜃𝑡

𝐼 + 𝜃𝑡
𝑅 + 𝜃𝑡

𝐷 = 1                         (7) 
 

Here, 𝜃𝑡
𝑆, 𝜃𝑡

𝐼 , 𝜃𝑡
𝑄 , 𝜃𝑡

𝐹 , 𝜃𝑡
𝑅 and 𝜃𝑡

𝐷  are the true but unobserved (latent) prevalence of 

susceptibles, infecteds, infected and quarantined, infected and free (undetected), recovered, 

and deceased respectively. In other words, they are the probabilities of a person being in the 

respective compartments at time t. Also, let 𝜽𝑡 = (𝜃𝑡
𝑆, 𝜃𝑡

𝐼 , 𝜃𝑡
𝑅 , 𝜃𝑡

𝐷)𝑇 be the latent population 

prevalence. Solution of this set of differential equations can be obtained using Runge-Kutta 

approximation. Let 𝑓(𝜽𝑡−1, 𝜷, 𝜸, 𝒅) denotes the solution of the set of differential equations 

for time t, where the function takes the values of the vectors 𝜽𝑡−1, 𝜷 = (𝛽1, 𝛽2)𝑇 , 𝒅 =
(𝑑1, 𝑑2)𝑇and 𝜸 = (𝛾1, 𝛾2)𝑇 as the arguments. Then the fourth order Runge-Kutta 

approximation for the solution of these differential equations can be expressed as follows.  

 

𝑓(𝜽𝑡−1, 𝜷, 𝜸, 𝒅) =    

𝜃𝑡−1
𝑆 +

1

6
[𝑘𝑡−1

𝑆1 + 2𝑘𝑡−1
𝑆2 + 2𝑘𝑡−1

𝑆3 + 𝑘𝑡−1
𝑆4 ]

𝜃𝑡−1
𝐼 +

1

6
[𝑘𝑡−1

𝐼1 + 2𝑘𝑡−1
𝐼2 + 2𝑘𝑡−1

𝐼3 + 𝑘𝑡−1
𝐼4 ]

𝜃𝑡−1
𝑅 +

1

6
[𝑘𝑡−1

𝑅1 + 2𝑘𝑡−1
𝑅2 + 2𝑘𝑡−1

𝑅 + 𝑘𝑡−1
𝑅4 ]

                                    (8) 

                                 𝜃𝑡−1
𝐷 +

1

6
[𝑘𝑡−1

𝐷1 + 2𝑘𝑡−1
𝐷2 + 2𝑘𝑡−1

𝐷3 + 𝑘𝑡−1
𝐷4 ] 
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where, 

𝑘𝑡
𝑆1 = −[𝛽1𝑝𝑡 + 𝛽2(1 − 𝑝𝑡)]𝜃𝑡

𝐼𝜃𝑡
𝑆 

𝑘𝑡
𝑆2 = −[𝛽1𝑝𝑡 + 𝛽2(1 − 𝑝𝑡)][𝜃𝑡

𝐼 + 0.5𝑘𝑡
𝐼1][𝜃𝑡

𝑆 + 0.5𝑘𝑡
𝑆1] 

𝑘𝑡
𝑆3 = −[𝛽1𝑝𝑡 + 𝛽2(1 − 𝑝𝑡)][𝜃𝑡

𝐼 + 0.5𝑘𝑡
𝐼2][𝜃𝑡

𝑆 + 0.5𝑘𝑡
𝑆2] 

𝑘𝑡
𝑆4 = −[𝛽1𝑝𝑡 + 𝛽2(1 − 𝑝𝑡)][𝜃𝑡

𝐼 + 𝑘𝑡
𝐼3][𝜃𝑡

𝑆 + 𝑘𝑡
𝑆3] 

 

𝑘𝑡
𝐼1 = [𝛽1𝑝𝑡 + 𝛽2(1 − 𝑝𝑡)]𝜃𝑡

𝐼𝜃𝑡
𝑆 − [𝛾

1
𝑝

𝑡
+ 𝛾

2
(1 − 𝑝

𝑡
)]𝜃

𝑡

𝐼 − [𝑑1𝑝
𝑡

+ 𝑑2(1 − 𝑝
𝑡
)]𝜃

𝑡

𝐼
 

𝑘𝑡
𝐼2 = [𝛽1𝑝𝑡 + 𝛽2(1 − 𝑝𝑡)][𝜃𝑡

𝐼 + 0.5𝑘𝑡
𝐼1][𝜃𝑡

𝑆 + 0.5𝑘𝑡
𝑆1] − [𝛾

1
𝑝

𝑡
+ 𝛾

2
(1 − 𝑝

𝑡
) [𝜃

𝑡

𝐼
+ 0.5𝑘𝑡

𝐼1]

− [𝑑1𝑝
𝑡

+ 𝑑2(1 − 𝑝
𝑡
)] [𝜃

𝑡

𝐼
+ 0.5𝑘𝑡

𝐼1] 

𝑘𝑡
𝐼3 = [𝛽1𝑝𝑡 + 𝛽2(1 − 𝑝𝑡)][𝜃𝑡

𝐼 + 0.5𝑘𝑡
𝐼2][𝜃𝑡

𝑆 + 0.5𝑘𝑡
𝑆2] − [𝛾

1
𝑝

𝑡
+ 𝛾

2
(1 − 𝑝

𝑡
) [𝜃

𝑡

𝐼
+ 0.5𝑘𝑡

𝐼2]

− [𝑑1𝑝
𝑡

+ 𝑑2(1 − 𝑝
𝑡
)] [𝜃

𝑡

𝐼
+ 0.5𝑘𝑡

𝐼2] 

𝑘𝑡
𝐼4 = [𝛽1𝑝𝑡 + 𝛽2(1 − 𝑝𝑡)][𝜃𝑡

𝐼 + 𝑘𝑡
𝐼3][𝜃𝑡

𝑆 + 𝑘𝑡
𝑆3] − [𝛾

1
𝑝

𝑡
+ 𝛾

2
(1 − 𝑝

𝑡
) [𝜃

𝑡

𝐼
+ 𝑘𝑡

𝐼3]

− [𝑑1𝑝
𝑡

+ 𝑑2(1 − 𝑝
𝑡
)] [𝜃

𝑡

𝐼
+ 𝑘𝑡

𝐼3] 

 

𝑘𝑡
𝑅1 = [𝛾

1
𝑝

𝑡
+ 𝛾

2
(1 − 𝑝

2
)]𝜃𝑡

𝐼 

𝑘𝑡
𝑅2 = [𝛾

1
𝑝

𝑡
+ 𝛾

2
(1 − 𝑝

2
)] [𝜃

𝑡
𝐼 + 0.5𝑘𝑡

𝐼1] 

𝑘𝑡
𝑅3 = [𝛾

1
𝑝

𝑡
+ 𝛾

2
(1 − 𝑝

2
)] [𝜃

𝑡
𝐼 + 0.5𝑘𝑡

𝐼2] 

𝑘𝑡
𝑅4 = [𝛾

1
𝑝

𝑡
+ 𝛾

2
(1 − 𝑝

2
)] [𝜃

𝑡
𝐼 + 𝑘𝑡

𝐼3] 

 

𝑘𝑡
𝐷1 = [𝑑1𝑝

𝑡
+ 𝑑2(1 − 𝑝

2
)]𝜃𝑡

𝐼 

𝑘𝑡
𝐷2 = [𝑑1𝑝

𝑡
+ 𝑑2(1 − 𝑝

2
)] [𝜃

𝑡
𝐼 + 0.5𝑘𝑡

𝐼1] 

𝑘𝑡
𝐷3 = [𝑑1𝑝

𝑡
+ 𝑑2(1 − 𝑝

2
)] [𝜃

𝑡
𝐼 + 0.5𝑘𝑡

𝐼2] 

𝑘𝑡
𝐷4 = [𝑑1𝑝

𝑡
+ 𝑑2(1 − 𝑝

2
)] [𝜃

𝑡
𝐼 + 𝑘𝑡

𝐼3] 

 

2.4. Dirichlet-Beta state-space formulation of the SI(Q/F)RD model 

 

To account for the uncertainties in the epidemiological parameters and the transmission 

dynamics of the epidemic, we define a flexible state-space probabilistic model based on the 

deterministic SI(Q/F)RD model. Osthus et al. (2017) introduced a Dirichlet-Beta state-space 

model based on the basic SIR model. We have extended the Dirichlet-Beta state-space model 

in accordance with the SI(Q/F)RD structure to estimate the model parameters, and forecast 

the transmission dynamics of the epidemic. Let 𝑌𝑡
𝑆 , 𝑌𝑡

𝐼 , 𝑌𝑡
𝑅  and 𝑌𝑡

𝐷 be the observed proportion 

of susceptibles, infecteds, recovered and deceased respectively. Then the Bayesian 

hierarchical state-space SI(Q/F)RD model can be defined as follows. 

 

𝑌𝑡
𝐼|𝜽𝒕, 𝜏~𝐵𝑒𝑡𝑎(𝜆𝐼𝜃𝑡

𝐼 , 𝜆𝐼(1 − 𝜃𝑡
𝐼))                                              (9) 

𝑌𝑡
𝑅|𝜽𝒕, 𝜏~𝐵𝑒𝑡𝑎(𝜆𝑅𝜃𝑡

𝑅 , 𝜆𝑅(1 − 𝜃𝑡
𝑅))                                          (10) 

𝑌𝑡
𝐷|𝜽𝒕, 𝜏~𝐵𝑒𝑡𝑎(𝜆𝐷𝜃𝑡

𝐷 , 𝜆𝐷(1 − 𝜃𝑡
𝐷))                                         (11) 

and, 𝜽𝒕|𝜽𝒕−𝟏, 𝜏~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜅𝑓(𝜽𝒕−𝟏, 𝜷, 𝜸, 𝒅))                                  (12) 

 

where, 𝜏 = {𝜽𝟎, 𝜅, 𝜷, 𝜸, 𝒅, 𝜆𝐼 , 𝜆𝑅 , 𝜆𝐷}, 𝜽𝟎 is the baseline value of the vector 𝜽𝒕, and 

𝜆𝐼 , 𝜆𝑅, 𝜆𝐷 , 𝜅 > 0 control the variances of the distributions defined in equations (9), (10), (11) 
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and (12) respectively. All other notations are as they are defined in section 2.3. From 

equation (12) it is apparent that 𝜽𝒕, 𝑡 = 1,2 … , 𝑇, is a first-order markov chain. Also, the 

equations (9), (10) and (11) suggest that, for 𝑡 ≠ 𝑠, 𝑌𝑡
𝐼 is independent of 𝑌𝑠

𝐼, 𝑌𝑡
𝑅 is 

independent of 𝑌𝑠
𝑅, and 𝑌𝑡

𝐷 is independent of 𝑌𝑠
𝐷, given 𝜃𝑡

𝐼 , 𝜃𝑡
𝑅 and 𝜃𝑡

𝐷 respectively.  

 

 Prior distributions of the model parameters can be defined as follows. 

 

𝜃0
𝐼 ~𝐵𝑒𝑡𝑎(1, (𝑌1

𝐼)−1), 𝜃0
𝑅~𝐵𝑒𝑡𝑎(1, (𝑌1

𝑅)−1), 𝜃0
𝐷~𝐵𝑒𝑡𝑎(1, (𝑌1

𝐷)−1), 𝜃0
𝑆 = 1 − 𝜃0

𝐼 − 𝜃0
𝑅 − 𝜃0

𝐷  

(13) 

𝑅𝑖~𝐿𝑜𝑔𝑁(𝜇𝑟𝑖
, 𝜎𝑟𝑖

2 ), 𝜎𝑟𝑖

2 = 𝑙𝑛 (
𝑉(𝑅𝑖)+(𝐸(𝑅𝑖))2

(𝐸(𝑅𝑖))2 )  and 𝜇𝑟𝑖
= 𝑙𝑛(𝐸(𝑅𝑖)) −

𝜎𝑟𝑖
2

2
, 𝑖 = 1,2    (14) 

𝛾𝑖~𝐿𝑜𝑔𝑁(𝜇𝑔𝑖
, 𝜎𝑔𝑖

2 ), 𝜎𝑔𝑖

2 = 𝑙𝑛 (
𝑉(𝛾𝑖)+(𝐸(𝛾𝑖))2

(𝐸(𝛾𝑖))2 )  and 𝜇𝑔𝑖
= 𝑙𝑛(𝐸(𝛾𝑖)) −

𝜎𝑔𝑖
2

2
, 𝑖 = 1,2    (15) 

𝑝𝑡~𝐵𝑒𝑡𝑎(𝑎𝑝, 𝑏𝑝), ∀𝑡 = 1,2 … . . 𝑇                                                                               (16) 

 

R1 and R2 are basic (average) reproduction rates associated with quarantined (Q) and 

undetected (F) infecteds, respectively. That is, 𝑅𝑖 =
𝛽𝑖

(𝛾𝑖+𝑑𝑖)
  , 𝑖 = 1,2.  

 

𝜅~𝐺𝑎𝑚𝑚𝑎(𝑎𝑘 , 𝑏𝑘), 𝜆𝐼~𝐺𝑎𝑚𝑚𝑎(𝑎𝐼 , 𝑏𝐼), 𝜆𝑅~𝐺𝑎𝑚𝑚𝑎(𝑎𝑅 , 𝑏𝑅), 𝜆𝐷~𝐺𝑎𝑚𝑚𝑎(𝑎𝐷 , 𝑏𝐷)        (17) 

 

The hyperparameters of these Gamma prior distributions can be assumed according to 

the size of variability to be allowed in the Beta and Dirichlet distributions defined in 

equations (9)-(12). The higher the values of the parameters 𝜅, 𝜆𝐼 , 𝜆𝑅 and 𝜆𝐷, the lower will be 

the variance of the respective Beta and Dirichlet distributions. If limited prior information is 

available regarding these parameters, a relatively flat Gamma prior distribution with a high 

expected value and a relatively higher variability is assumed while choosing the values of the 

hyperparameters a’s and b’s. Hyperparameters of the prior distribution of pt are obtained 

from method of moments using the mean and variance of the daily estimates of 

underreporting. Hyperparameters of the lognormal distributions defined in the expressions 

(14) and (15) can be either based on historical knowledge on a similar epidemic, or can be 

estimated on the basis of the observed data. In our study, we have presented a time-series SIR 

(TSIR) model based technique to estimate the hyperparameter for transmission rate, 𝜷. 

Values for the hyper parameters 𝜸 and 𝒅 are calculated using required information from 

published literature on COVID-19. 𝛾1 = 𝛾2 = 𝛾 (𝑠𝑎𝑦) is taken as the inverse of the average 

recovery period. We have assumed equal recovery rates for both groups, quarantined and 

undetected, as there is no scientific evidence to suggest that there can be significant 

difference in the average recovery time of the two groups. The components of 𝒅, viz., d1 and 

d2 are estimated as, 𝑑1 =
CFR

ℎ
 and 𝑑2 =

IFR

ℎ
 , where h is the average number of days from 

infection till death and IFR is the infection fatality rate. While CFR is the ratio of the number 

of deaths divided by the number of confirmed cases of disease, IFR is the ratio of deaths 

divided by the number of actual infections with SARS-CoV-2 and is generally expected to be 

lower than CFR.  

 

2.5. Estimation of the hyperparameter 𝜷 using TSIR model 

 

The two components of the vector 𝜷 = (𝛽1, 𝛽2)𝑇 have to be estimated separately, such 

that they conform to their definitions. To do so, we have made some assumptions about the 

reported data, based on certain practical considerations. If it is known that there was no 

significant effort to quarantine infecteds or to promote physical distancing during the initial 
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period of the epidemic, the transmission rate observed during that period can be safely 

considered as an initial estimate of  𝛽2 (the transmission rate due to infecteds who are not 

quarantined). Once the containment measures are imposed, the transmission rate based on the 

reported data is expected to change (reduce) and average transmission rate observed over the 

entire period of reporting can be considered as a safe initial estimate (hyperparameter 

estimate) for 𝛽 (the overall average transmission rate as a result of both quarantined and 

undetected infecteds). This logic can be implemented using the TSIR model to estimate the 

hyperparameters as follows. 

 

In TSIR model, the response, being a count variable, is assumed to follow certain 

discrete count process distribution like Poisson distribution or Negative Binomial 

distribution. The basic structure of TSIR model can be defined as follows [(Bjørnstad et al. 

(2002), Finkenstadt et al. (2002), and Grenfell et al. (2002)]. 

 

𝑆𝑡+1 = 𝑆𝑡 − 𝐼𝑡                                                          (18) 

𝜆𝑡+1 = 𝛽0
𝑆𝑡

𝑁
𝐼𝑡

𝛼                                                           (19) 

Or, 𝑙𝑜𝑔(𝜆𝑡+1) = 𝑙𝑜𝑔𝛽0 + 𝛼𝑙𝑜𝑔𝐼𝑡 + 𝑙𝑜𝑔 (
𝑆𝑡

𝑁
)                           (20) 

 

where, St and It are the number of susceptibles and infecteds (or infectives) at time t, N is the 

population size, β0 is the transmission rate and 𝜆𝑡+1 is the expected number of new infecteds 

at time t+1. New number of infecteds is assumed to follow Negative Binomial (or Poisson) 

distribution and a generalized Negative Binomial (or Poisson) linear model with log link is 

fitted with 𝑙𝑜𝑔𝐼𝑡 as a covariate and 𝑙𝑜𝑔 (
𝑆𝑡

𝑁
) as an offset variable. The exponent α is expected 

to be just under 1 (i.e., close to 1) and is meant to account for discretizing the underlying 

continuous process. However, we use an alternative interpretation of α based on the basic SIR 

model defined in equation (21). This method is drawn from our prior work where we have 

proposed a new method for obtaining time-varying estimates of transmission rate using TSIR 

model [Deo et al. (2020)]. It is to be noted that the transmission rate is assumed to be time-

varying, and hence, denoted as 𝛽𝑡. 

 
𝑑𝜃𝑡

𝑆

𝑑𝑡
= −𝛽𝑡𝜃𝑡

𝐼𝜃𝑡
𝑆 ,

𝑑𝜃𝑡
𝐼

𝑑𝑡
= 𝛽𝑡𝜃𝑡

𝑆𝜃𝑡
𝐼 − 𝛾𝜃𝑡

𝐼 𝑎𝑛𝑑 
𝑑𝜃𝑡

𝑅

𝑑𝑡
= 𝛾𝜃𝑡

𝐼                     (21) 

 

Using (21), the expression for expected number of new infecteds at time t+1 (taking α 

= 1) with a time-varying transmission rate can be written as follows.  

 

𝜆𝑡+1 = 𝛽𝑡
𝑆𝑡

𝑁
𝐼𝑡                                                            (22) 

 

Comparing equations (19) and (22), we can see that if α = 1 (or close to 1), βt = β0 

(constant over time). However, if the value of α deviates considerably from 1, it has impact 

on the effective value of transmission rate, thus making the effective rate of transmission 

time-dependent. That is, in such cases α assimilates the empirical changes in transmission 

rate over time. Further, using equations (19) and (22), we can write, 

 

𝛽𝑡̂ = 𝛽0𝐼𝑡
𝛼−1                                                             (23) 

 

Now, suppose T1 represents the initial period of the epidemic, when proper quarantine 

protocols were not in place, and T represents the entire period for which the reported data on 
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the epidemic is available. The estimates of α and β0 obtained from the fitting of the TSIR 

model shall be used in equation (23) to find estimates of transmission rate at each time t, say 

𝛽𝑡̂ , t = 1,2,3…,T. Average of these estimates over a time period will give us the estimate of 

average transmission rate for that period. That is, the estimates of the transmission rates will 

be taken as, 𝛽̂ =
1

𝑇
∑ 𝛽̂𝑡𝑡𝜖𝑇  and 𝛽̂2 =

1

𝑇1
∑ 𝛽̂𝑡𝑡𝜖𝑇1

. Then a reliable estimate of 𝛽1, the 

transmission rate due to the infecteds who are quarantined, can be obtained using the relation, 

𝛽̂ = 𝛽̂1𝑝̅ + 𝛽̂2(1 − 𝑝̅);  𝑤ℎ𝑒𝑟𝑒 𝑝̅ =
1

𝑇
∑ 𝑝𝑡

𝑇
1 . As a simpler but logical alternative to this step 

for finding 𝛽̂1, we can make use of the fact that the infecteds who are quarantined are 

expected to spread infection for approximately only one-third of the duration as compared to 

those who are not quarantined. This estimation is based on the fact that quarantined patients 

spread infections mostly in the incubation period of around 4-5 days, prior to getting 

quarantined, while infecteds who are not quarantined are expected to freely spread infection 

for the entire average infectious period of 14 days. So, after estimating 𝛽̂2using the method 

described above, we can take 𝛽̂1 =
𝛽̂2

3
 , as the initial estimate. 

 

This exercise forms an essential part of the overall methodology presented in our study 

for conducting the CEA. This is because, the utility of extensive testing and subsequent 

quarantining of infecteds can be assessed only when we can estimate the changes in 

transmission rate expected to be brought about by these measures.  

 

2.6. Estimating parameters of the state-space SI(Q/F)RD model and forecasting 

 

Posterior realizations on the parameters of the state-space model are generated using 

Gibbs sampling MCMC approach. The model is adopted in JAGS format and implemented in 

R programming using the package R2jags. Mean of posterior realizations of a parameter is 

taken as the posterior estimate of the parameter. Further, 0.025 and 0.975 quantiles of the 

posterior realizations are taken as the 95% credible intervals (CI) of the posterior estimates. 

Let t0 be the time till which the observations are available, and suppose that we wish to 

forecast the values of observed process (𝑌𝑡
𝑆, 𝑌𝑡

𝐼 , 𝑌𝑡
𝑅 , 𝑌𝑡

𝐷) from t0+1 till the time T. We follow 

the following iterative steps to achieve our goal. 

 

a. We generate L posterior realizations on the latent prevalence process 𝜽𝑡
(𝑙), 𝑙 =

1,2 … , 𝐿 using Gibbs sampling approach, at each time point t = t0 +1, t0 + 2…..,T. Here L is a 

sufficiently large number, say 1000 or more.  

 

b. At each t (= t0 +1, t0 + 2…..,T), and at each posterior realization of the prevalence 

process 𝜽𝑡
(𝑙), 𝑙 = 1,2 … , 𝐿, values of the observed process, say 𝑌𝑡

𝐼(𝑙)
, 𝑌𝑡

𝑅(𝑙)
 and 𝑌𝑡

𝐷(𝑙)
 are 

simulated from their conditional distributions, [𝑌𝑡
𝐼|𝜽𝒕

(𝒍), 𝜏(𝑙)], [𝑌𝑡
𝑅|𝜽𝒕

(𝒍), 𝜏(𝑙)] and 

[𝑌𝑡
𝑅|𝜽𝒕

(𝒍), 𝜏(𝑙)], which are defined in the equations (9), (10) and (11), respectively. Further, 

using the posterior realizations of 𝑝𝑡
(𝑙)

, at each l and each t, 𝑌𝑡
𝑄(𝑙)

= 𝑝𝑡
(𝑙)

. 𝑌𝑡
𝐼(𝑙)

 and 𝑌𝑡
𝐹(𝑙)

=

𝑌𝑡
𝐼(𝑙)

− 𝑌𝑡
𝑄(𝑙)

 are also obtained. At each t, mean of the L simulated values serves as the 

estimate (forecasted value) of the respective variable (compartment proportion). 95% credible 

interval of each variable, at each time t, is also obtained using the 0.025 and 0.975 quantiles 

of the L values.  
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2.7. Cost-effectiveness analysis 

 

The two states of USA chosen for our study, California and Florida, have very high 

rates of positivity of tests. It indicates that instead of resorting to sufficient amount of random 

testing, these states may have relied on targeted testing, i.e., testing of only symptomatic and 

high-risk individuals. Very high CFR rates in these states also corroborate the possibility of 

insufficient testing, and hence, underreporting of cases. Thus, as mentioned earlier in the 

introduction section, our objective is to conduct CEA of extensive random testing aimed at 

isolating almost all infecteds, as recommended by the WHO, over targeted testing which is 

seem to be the strategy followed by the states. Extensive random testing can be expected to 

result in a significant rise in expenditure on the testing kits and medical personnel. However, 

it can play a major role in breaking the chains of transmission and hence, result in a 

significant reduction in the overall number of infecteds and deaths due to the COVID-19 

epidemic. The outcome of CEA will tell us how much additional overall cost is required to 

save one additional person from getting infected, or to save one additional person from dying 

due to the infection. That is, CEA will be conducted in terms of the outcomes, ‘infection’ and 

‘death’. It should also be noted that, if the total duration of the epidemic is reduced drastically 

because of the recommended intervention ‘extensive random testing’, the overall expected 

cost may even come out to be lesser than the expected cost of using targeted testing strategy. 

 

The methodological steps mentioned in the sections 2.4, 2.5, and 2.6 are associated 

with estimation and forecasting under the actual scenario based on the observed data. That is, 

the results obtained from these steps will pertain to the base intervention of ‘targeted testing’ 

which is being currently followed by the two states. To derive the outcomes pertaining to the 

recommended intervention, i.e., ‘extensive random testing’, following procedure is followed.  

 

a. In terms of the SI(Q/F)RD model, the major difference between the outcomes of 

the two scenarios will rely on the difference in the proportion of infecteds being detected and 

quarantined, i.e., pt. 

 

b.  It will be impractical to assume that 100% infecteds can be detected using 

extensive random testing. This is because even popular tests like the reverse transcription 

polymerase chain reaction (RT-PCR), which is also recommended by the WHO [WHO (2020 

c)], do not have 100% sensitivity and specificity. Sensitivity and specificity may vary 

according to the laboratory settings and expertise levels of the medical practitioners. 

Different studies have reported varying levels of sensitivity and specificity of the RT-PCR 

test, mostly ranging from around 80% to 95% [(West et al. (2020), Padhye (2020), Tahamtan 

and Ardebili (2020)]. On a conservative note, we have assumed that the average proportion of 

detection of infecteds will be 80%, i.e., pt will have a mean of 0.8. Instead of assigning a 

fixed value to pt, we have assumed pt to follow Beta distribution to introduce realistic 

variability in the calculations. The mean of the distribution is taken as 0.8 and its variance is 

obtained from the results of the state-space model estimated by the method described in 

section 2.6.   

 

c. To simulate a practically realistic situation, we have assumed that the extensive 

random testing can be applied only after first 30 days of the outbreak of the epidemic. This is 

because, extensive random testing requires procurement of testing kits and other logistic 

arrangements on a large scale, which need some time to be organized. To accommodate this 

assumption into calculations, the mean value of the distribution of pt for the first 30 days can 
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be based on the average of posterior estimates of pt for the first 30 days obtained from the 

state-space SI(Q/F)RD model. That is, we are assuming that there will not be much difference 

in the outcomes and costs associated with the two interventions in the initial days of the 

epidemic. 

 

d. Simulation exercise: 

  

i. At each t, t = 1,2,…, T, L number of values are generated on the 

parameters 𝑅1, 𝑅2, 𝛾1 and 𝛾2 from their distributions defined in the equations 

(14) and (15). The parameters of these distributions are calculated on the basis 

of their posterior estimates obtained from the state-space SI(Q/F)RD model. 

The corresponding values on pt are simulated from its distribution defined in the 

previous step c. Fixed values of the death rates, d1 and d2, remain same as those 

for the state-space SI(Q/F)RD model. 

 

ii. For each combination (t, l), t = 1,2,…, T and l = 1,2,…,L , the 

respective simulated values of the parameters are used in the fourth degree 

Runge-Kutta approximation of the solution of the set of differential equations of 

the SI(Q/F)RD model to obtain 𝑓(𝜽𝑡−1, 𝜷, 𝜸, 𝒅), i.e., the values of the latent 

process at time t as a function of their values at time t-1. At the start of the 

iteration, the initial values of these latent process variables are assigned as the 

vector 𝜽0. The mean of the L values of the latent process at a time t is taken as 

its estimate, i.e., 𝜽̂𝑡 =
1

𝐿
∑ 𝜽𝒕

(𝒍)𝐿
𝑙=1 . Sample quantiles (0.025, 0.975) are used to 

obtain 95% credible intervals at each t. 

 

iii. At each t, t = 1,2,…,T, L values of 𝜆𝐼 , 𝜆𝑅 and 𝜆𝐷 are simulated from 

their respective Gamma distributions whose parameters are calculated from the 

posterior estimates of their means and variances obtained from the state-space 

SI(Q/F)RD model. At each combination (t, l), t = 1,2,…, T and l = 1,2,…,L , 

using the estimate of the latent prevalence process, 𝜽̂𝑡, from the previous step 

and the generated values of 𝜆𝐼 , 𝜆𝑅 and 𝜆𝐷, (𝑌𝑡
𝐼(𝑙)

, 𝑌𝑡
𝑅(𝑙)

, 𝑌𝑡
𝐷(𝑙)

) are simulated 

from their respective Beta distributions. Finally, mean of these L values at a 

time t is taken as the estimate of the observed process at t. These proportions 

can be multiplied with the total number of susceptibles (total population of the 

state) and rounded to obtain the estimated counts of each compartment at time t, 

t = 1,2,…T. 

 

e. Total number of infected cases and total number of deaths, till the end of the 

epidemic, are calculated from the predictions for each case (interventions). These values give 

us the difference in outcomes (infection/ death) under two interventions. Let, (C1, D1) be the 

estimates of total number of infecteds and total number of deaths during the entire course of 

the epidemic for the base intervention, targeted testing, and (C2, D2) be the respective 

estimates for the recommended intervention, extensive random testing. 

 

To obtain the estimate of total costs associated with the two interventions we will first 

need to estimate the total number of tests that will be conducted under the two testing 

strategies (interventions). For the base intervention of targeted testing, the current percentage 

of positivity of tests in the state can be used to obtain an estimate of the total number of tests 

to be conducted by the end of the epidemic. If r1 is the current proportion of positive tests in 
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the state, the estimate of total number of tests which will be conducted under the base 

intervention will be given as, 𝑁1 =
𝑄1

𝑟1
 , where Q1 is the number of infecteds who are detected 

and quarantined. For the second intervention of extensive random testing, the proportion of 

positive tests is taken as the probability that a person in the state got infected during the entire 

duration of the epidemic and is simply given as, 𝑟2 =
𝐶2

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 . Subsequently, the total 

number of tests under the second intervention is estimated as, 𝑁2 =
𝑄2

𝑟2
 , where Q2 is the 

number of infecteds who are detected and quarantined under the intervention extensive 

random testing. As an alternative, N2 has also been taken as the total population, assuming 

that all individuals are tested (once) by the time the epidemic gets over in the state. 

 

Let Z be the per unit average cost of COVID-19 test, then the incremental cost-

effectiveness ratio (ICER) is calculated as the ratio of change in cost to the change in 

outcome as follows, 

 

ICERinf =
(𝑁2−𝑁1)𝑍

(𝐶1−𝐶2)
   and   ICERdeath =

(𝑁2−𝑁1)𝑍

(𝐷1−𝐷2)
                          (24) 

 

 

3. Implementation and Results 

 

3.1. Data 

 

Daily time-series data on total confirmed cases and total deaths for the states of 

California and Florida are obtained from the github repository of the Centre for Systems 

Science and Engineering (CSSE), Johns Hopkins University, Maryland, USA 

[https://github.com/CSSEGISandData/COVID-19]. Daily time-series data till 11 July 2020 

was available at the time of procurement of data, and the same has been used for the entire 

analyses. Data on weekly state-wise estimates of excess deaths associated with COVID-19 

till 11 July 2020, calculated as a difference between expected and reported number of deaths 

from all causes, is obtained from the website of CDC 

[https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.html]. Data on rates of positivity 

of COVID-19 testing for the two states, California and Florida, are obtained from the official 

website of Johns Hopkins University on 29 July 2020 [https://coronavirus.jhu.edu/ 

testing/testing-positivity].  
 

3.2. CFR and data calibration to account for underreporting 
 

To avoid the initial period of uncertain reporting due to absence of government 

measures, we have used the data from 02 March 2020 onwards for all analyses. The weekly 

excess death estimates are used to reconstruct the daily time-series data of deaths using the 

procedure discussed in section 2.1. According to the results reported by Verity et al. (2020) 

based on patient level data from mainland China, the mean duration from onset of symptoms 

to death is 17.8 days (95% credible interval 16.9–19.2). They reported the best estimate of 

case fatality ratio in China as 1.38% (1.23- 1.53), with substantially higher CFR in older age 

groups (0.32% [0.27–0.38] in those aged <60 years vs 6.4% [5.7–7.2] in those aged ≥60 

years), up to 13.4% (11.2–15.9) in those aged 80 years or older). Their estimate for overall 

IFR in China is 0.66% [0.39-1.33], with an increasing profile with age. Yang et al. (2020) 

reported that the median time from symptom onset to radiological confirmation of pneumonia 
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is 5 days (interquartile range [IQR] 3–7 days); from symptom onset to intensive care unit 

(ICU) admission is 11 days (IQR 7–14 days); and from ICU admission to death is 7 days 

(IQR 3–11 days). That is, the estimate of median time from onset of symptoms to death can 

be taken as 11 + 7 = 18 days. This estimate of time-to-event of death is consistent with the 

results of Verity et al. (2020). So according to these results, the estimate of average duration 

from onset of infection to death should be around 17.8 + 5 ≈ 23 days, where 5 days is the 

average incubation period. However, for estimating delayed CFR based on the reported data 

and for estimating actual number of infecteds from the calibrated data on number of deaths, 

we have taken average duration from infected/ reported to death as 18 days. This is because 

infecteds are generally tested on the onset of symptoms, i.e., after the incubation period. 

 

The delayed CFR values calculated on the basis of reported data came out to be quite 

high in both states. For California, the delayed CFR came out to be 3.36%, while for Florida 

it came out to be 3.17% (Table 1). Both of these estimates are quite higher than the estimate 

based on individual patient data as reported by Verity et al. (2020), i.e., 1.38%. In fact, some 

other reports have suggested even lower actual CFR of COVID-19. The Centre for Evidence-

Based Medicine (CEBM) at the University of Oxford currently estimates the CFR globally at 

0.51%, with all the caveats pertaining thereto; refer [https://www.virology.ws/ 

2020/04/05/infection-fatality-rate-a-critical-missing-piece-for-managing-covid-19/]. Since 

the estimate of CFR based on follow up data of individual patients is deemed as most 

reliable, especially during initial stages of the epidemic, as a conservative estimate, we have 

taken 1.38% as the standard CFR due to COVID-19. Thus, the results of CFR based on the 

reported data point at underreporting of number of infecteds in both states. Also, significantly 

high rates of positivity of COVID-19 testing in the two states, 7.47% in California and 

18.96% in Florida, as compared to the recommended rate of less than or equal to 5%, 

indicates lack of adequate amount of random testing. That is, it corroborates our assumption 

that the current testing strategy employed by the two states largely aim at targeted testing. 
 

Table 1: Delayed CFR estimate based on reported data. 
 

State 
Total deaths till 

16 July 2020 
Total confirmed till 

29 June 2020 
Average Delayed CFR 

California 7535 223931 0.0336 (3.36%) 

Florida 4802 151389 0.0317 (3.17%) 

 

Using a delay of 18 days (between detection of infection and death), and a CFR of 

1.38%, we employ the method discussed in section 2.2 to estimate the actual number of daily 

infected cases (new cases). It should be noted that due to the lag of 18 days in the formula, 

number of daily infected cases could be calculated till 24 June 2020 only (18 days prior to 11 

July 2020). Data on number of recovered people is not reported for the two states. So, we 

have calibrated the data for number of recovered cases using the logic that if 1.38% is the 

average CFR, 98.62% will be the average case recovery rate. Following formula is used to 

estimate the daily count of recoveries. 

 

𝑹𝒕 = 𝐼𝑡−𝑟+1
𝑛 . 𝜌, where, 𝜌~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.975,0.99) and 𝑟 = 14                  (25) 

 

Here, 𝐼𝑡
𝑛 represents new number of infecteds at time t. The recovery rate, 𝜌, is assumed 

to randomly generated between 0.975 and 0.99 to introduce some amount of uncertainty into 

the calibrated data. The average duration of recovery, r, is taken as 14 days based on a WHO 

report [WHO (2020 d)]. However, at this juncture we should also note that some other studies 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 26, 2020. ; https://doi.org/10.1101/2020.12.24.20248830doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.24.20248830
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                 15 
 
 

 

have reported higher average duration of recovery from COVID-19. Verity et al. (2020) have 

estimated mean duration from onset of symptoms to hospital discharge to be 24.7 days [95% 

CI: 22.9–28.1]. Recovery time also varies according to the severity of symptoms. Since small 

recovery time implies faster recovery rate, our choice of 14-day average recovery period 

(from the onset of symptoms) can be called as a conservative estimate and the forecasts of 

transmission dynamics based on it can also be expected to be slightly on the conservative 

side. Since the formula given in equation (25) cannot give us the estimates of the first 13 

days, we have constructed the daily recovery data for these initial days using daily recovery 

rate taken as the inverse of the average duration of recovery. Again, to induce some 

uncertainty in the data, we have randomly generated recovery rate, 𝜑𝑡, between 0.042 (1/24) 

and 0.071 (1/14), for each day. Following formula has been applied to implement the idea. 

 

𝑹𝒕 = 𝐼𝑡. 𝜑𝑡, where, 𝜑𝑡~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.042,0.071), 𝑡 < 14                    (26) 

 

where, It is the number of (active) infecteds at time t. For t < 14, the already calculated values 

of recovered cases at time t + 13 using equation (25), Rt+13, is adjusted by subtracting Rt from 

it.   

The reconstructed/ calibrated data on number of cases in each compartment is treated as 

the true data. The ratio of reported number of infecteds and true number of infecteds gives us 

the estimates of daily proportion of reporting pt ( Qt = pt. It ). The calibrated data is provided 

in Appendix-A. Graphs of LOESS smoothed calibrated data on total number of deaths due to 

COVID-19 for the two states are presented in Figure 2. Summary statistics of pt are provided 

in Table 2. 

 

Figure 2: LOESS smoothed calibrated data on total number of deaths due to COVID-

19.  

 
 

Table 2: Summary statistics of pt, proportion of cases reported out of actual number of 

cases, obtained from the calibrated data. 

 
Summary California Florida 

pt values (proportion of reporting) Mean Variance Mean Variance 

First 30 days of the observed period 
0.034 

(3.4%) 
0.0015 

0.061 

(6.1%) 
0.008 

Last 10 days of the observed period 
0.57 

(57%) 
0.04 

0.39 

(39%) 
0.007 

Values lying between the first and the 

third sample quartiles 

0.26 

(26%) 
0.01 

0.23 

(23%) 
0.007 
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3.3. Evaluating parameters and hyperparameters of the state-space SI(Q/F)RD model  

 

In California, the first official lockdown measure was implemented on 19 March 2020, 

while in Florida it was implemented from 01 April 2020. So, the period till 18 March 2020 is 

considered as initial period of transmission for California, while the period till 31 March 

2020 is taken as the initial period of transmission in Florida, for finding initial estimate of the 

transmission rate in the absence of proper quarantine of infecteds(𝛽̂2). TSIR model described 

in section 2.5 is fitted assuming both Poisson and Negative Binomial distributions for the 

count process. Because of lower model deviance, the model with Negative Binomial 

distribution is chosen over the Poisson model. Models were fitted in IBM-SPSS version 24. 

The estimated coefficients of the Negative Binomial TSIR models [model defined in equation 

(20)], for both states, are provided in Table 3. Using these coefficient estimates in equation 

(23) and taking average over respective initial periods of the COVID-19 epidemic, 02 March 

2020- 18 March 2020 for California and 02 March 2020- 31 March 2020 for Florida, we have 

obtained the estimates of  𝛽2 for the two states. Initial estimate of 𝛽1 is calculated as one-third 

of the estimate of 𝛽2. These estimated values are also provided in Table 3. 

 

Table 3: Estimated coefficients of TSIR models with respective p-values of the Wald 

Chi-square statistic, and resultant estimates of 𝜷𝟐 and 𝜷𝟏. 

State Parameter Estimate Wald statistic p-value 

California 

loge𝛽0 3.892 0.022 

α 0.459 0.005 

Initial period 02 March 2020- 18 March 2020 

𝛽2 0.319 

𝛽1 0.106 

Florida 

loge𝛽0 3.395 0.008 

α 0.463 0.001 

Initial period 02 March- 31 March 2020 

𝛽2 0.280 

𝛽1 0.093 

  

Using the estimates of CFR and IFR, and the average duration from onset of symptom 

to death, as reported by Verity et al. (2020), we get the estimates of d1 and d2 as follows. 

 

𝑑̂1 =
0.0138

18
= 0.000767 and 𝑑̂2 =

0.0066

18
= 0.000367  

 

Also, the estimate of recovery rate is  𝛾1 = 𝛾2 = 𝛾(𝑠𝑎𝑦) =
1

14
= 0.071. These estimates 

remain same for both states. So, the initial estimates of average reproduction numbers, R1 and 

R2, will be given as, 

 

California: 𝑅1 =
0.106

(0.071 + 0.000767)
= 1.477 and 𝑅2 =  

0.319

(0.071 + 0.000367)
= 4.470 

 

Florida: 𝑅1 =
0.093

(0.071 + 0.000767)
= 1.296  and 𝑅2 =  

0.28

(0.071 + 0.000367)
= 3.923 
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These estimates of 𝛾, R1 and R2 are used to obtain informed hyperparameters of their 

prior distributions defined in equations (14) and (15). To decide on the hyperparameters of 

the Beta prior distribution of the time-varying proportion of quarantined infecteds, pt,, we use 

the descriptive statistics of its estimates over the observed period. Till the observed time 

period, the Beta prior distribution of pt is assumed to have mean equal to 𝑝̂𝑡, the estimate of pt 

based on the calibrated data, and variance equal to the overall variance of the estimates. It is 

observed that after initial period of around one month, the values of 𝑝̂𝑡 tend to first increase 

and then settle around some central value. So, for forecasting beyond the observed time 

period, sample mean and sample variance of the estimates corresponding to the last ten days 

of the observed period are taken as the mean and variance of the Beta prior distribution of pt. 

Complete list of prior distributions, along with the values of hyperparameters, used for fitting 

the state-space SI(Q/F)RD models for  the two states are listed below. 

 

California: 

𝑅1~𝐿𝑜𝑔𝑁(0.201,0.377), 𝐸(𝑅1) = 1.477, 𝑉(𝑅1) = 1; 𝛽1 = 𝑅1(𝛾 + 𝑑1)                 (27) 

 

𝑅2~𝐿𝑜𝑔𝑁(1.473,0.049), 𝐸(𝑅2) = 4.47, 𝑉(𝑅2) = 1; 𝛽2 = 𝑅2(𝛾 + 𝑑2)                   (28) 

 

𝛾~𝐿𝑜𝑔𝑁(−2.736,0.181), 𝐸(𝛾) = 0.071, 𝑉(𝛾) = 0.001                                           (29) 

 

𝑝𝑡~𝐵𝑒𝑡𝑎(𝑎𝑡 , 𝑏𝑡), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐸(𝑝𝑡) = 𝑝̂𝑡 , 𝑉(𝑝𝑡) =
1

𝑛
∑(𝑝̂𝑡 − 𝑝̂𝑡̅)2 ∀𝑡 ∈  observed period  (30)    

  

𝑝𝑡~𝐵𝑒𝑡𝑎(2.89,2.21), 𝐸(𝑝𝑡) = 0.57, 𝑉(𝑝𝑡) = 0.04 ∀𝑡 ∈ forecasting period                    (31)   

 

Florida: 

𝑅1~𝐿𝑜𝑔𝑁(0.026,0.467), 𝐸(𝑅1) = 1.296, 𝑉(𝑅1) = 1; 𝛽1 = 𝑅1(𝛾 + 𝑑1)                  (32) 

 

𝑅2~𝐿𝑜𝑔𝑁(1.335,0.063), 𝐸(𝑅2) = 3.923, 𝑉(𝑅2) = 1; 𝛽2 = 𝑅2(𝛾 + 𝑑2)                 (33) 

 

𝛾~𝐿𝑜𝑔𝑁(−2.736,0.181), 𝐸(𝛾) = 0.071, 𝑉(𝛾) = 0.001                                           (34) 

 

𝑝𝑡~𝐵𝑒𝑡𝑎(𝑎𝑡 , 𝑏𝑡), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐸(𝑝𝑡) = 𝑝̂𝑡 , 𝑉(𝑝𝑡) =
1

𝑛
∑(𝑝̂𝑡 − 𝑝̂𝑡̅)2 ∀𝑡 ∈  observed period   (35)   

   

𝑝𝑡~𝐵𝑒𝑡𝑎(11.79,18.38), 𝐸(𝑝𝑡) = 0.39, 𝑉(𝑝𝑡) = 0.007 ∀𝑡 ∈ forecasting period               (36) 

 

Further, for models pertaining to both states, we assume, 

 

𝜅~𝐺𝑎𝑚𝑚𝑎(2,0.0001), 𝜆𝐼~𝐺𝑎𝑚𝑚𝑎(2,0.0001) 

𝜆𝑅~𝐺𝑎𝑚𝑚𝑎(2,0.0001), 𝜆𝐷~𝐺𝑎𝑚𝑚𝑎(2,0.0001) 

 

3.4. Posterior estimates and forecasts from the state-space SI(Q/F)RD model (results 

for base case/ intervention) 

 

The Dirichlet-Beta state-space SI(Q/F)RD model defined in section 2.4 is fitted on the 

calibrated data, using the parameters and hyperparameters obtained  in section 3.3. The model 

is implemented in JAGS platform using R2jags package. Three parallel markov chains were 

run, each with 20,000 iterations of which first 10,000 were discarded. After thinning at an 

interval of 10, 1000 posterior simulations were saved from each chain, i.e., total 3000 
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posterior simulations were saved for each parameter. We have developed self-written R 

programming codes for these computations. Posterior estimates of time-invariant parameters 

along with their standard deviations and 95% credible intervals for the two states are 

presented in Table 4 and Table 5. Plots of predicted values of the observed process on the 

number of infecteds (𝑌𝑡
𝐼) and the number of deaths (𝑌𝑡

𝐷), corresponding region of 95% 

credible intervals, and observed (calibrated) counts till the observed time, are exhibited for 

the two states in Figures 3 and 4. These results pertain to the base intervention, i.e., they are 

predictions based on the assumption that current level of testing (targeted testing) will be 

carried out throughout the course of the epidemic. 

 

Table 4: Posterior estimates of time-invariant parameters of the state-space SI(Q/F)RD 

model, along with their standard deviations and 95% credible intervals- California. 

Parameter Posterior mean Posterior standard deviation 95% credible interval 

R1 0.497 0.262 [0.068, 1.004] 

R2 1.464 0.155 [1.214, 1.813] 

𝜸 0.069 0.006 [0.056, 0.081] 

𝜿 336063.593 47259.956 [243264.879, 431918.329] 

𝝀𝑫 1355.195 718.277 [397.588, 2632.883] 

𝝀𝑰 1012524.750 734717.729 [1349.955, 2006982.462] 

𝝀𝑹 1633152.503 334437.988 [1073803.103, 2360304.964] 

𝜷̂𝟏 = 𝑹̂𝟏(𝜸̂ + 𝒅𝟏) 0.035 

𝜷̂𝟐 = 𝑹̂𝟐(𝜸̂ + 𝒅𝟐) 0.102 

 

Table 5: Posterior estimates of time-invariant parameters of the state-space SI(Q/F)RD 

model, along with their standard deviations and 95% credible intervals- Florida. 

Parameter Posterior mean Posterior standard deviation 95% credible interval 

R1 0.359 0.224 [0.052, 0.880] 

R2 1.612 0.097 [1.416, 1.799] 

𝜸 0.063 0.004 [0.054, 0.071] 

𝜿 500800.490 94547.445 [327261.995, 679843.447] 

𝝀𝑫 1022.341 303.916 [539.044, 1629.331] 

𝝀𝑰 999169.436 753473.727 [4778.595, 2403835.884] 

𝝀𝑹 1807366.511 365988.299 [1164580.155, 2616920.665] 

𝜷̂𝟏 = 𝑹̂𝟏(𝜸̂ + 𝒅𝟏) 0.0229 

𝜷̂𝟐 = 𝑹̂𝟐(𝜸̂ + 𝒅𝟐) 0.102 
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Figure 3: Predictions of number of infecteds and number of deaths in California under 

the base case/ intervention of targeted testing. The blue shaded ribbon is the region of 

95% credible intervals.  

 
 

Figure 4: Predictions of number of infecteds and number of deaths in Florida under the 

base case/ intervention of targeted testing. The blue shaded ribbon is the region of 95% 

credible intervals.  

 
 

3.5. Predictions under the assumption of extensive random testing (recommended 

intervention) 

 

Once the posterior estimates of the transmission parameters are obtained from the state-

space SI(Q/F)RD model, predictions of observed process under the assumption of extensive 

random testing are carried out using the steps outlined in section 2.7. Based on the posterior 

mean and standard deviation of the parameters of the state-space model, following 

specifications are used for conducting the required simulations to predict the transmission 

dynamics of the epidemic. 

 

California: 

 

𝑅1~𝐿𝑜𝑔𝑁(−0.822,0.495), 𝐸(𝑅1) = 0.497, 𝑉(𝑅1) = 0.069; 𝛽1 = 𝑅1(𝛾 + 𝑑1)       

     

𝑅2~𝐿𝑜𝑔𝑁(0.376,0.106), 𝐸(𝑅2) = 1.464, 𝑉(𝑅2) = 0.024; 𝛽2 = 𝑅2(𝛾 + 𝑑2)   

            

𝛾~𝐿𝑜𝑔𝑁(−2.68,0.087), 𝐸(𝛾) = 0.069, 𝑉(𝛾) = 0.00004                 
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𝑝𝑡~𝐵𝑒𝑡𝑎(4.49,59.61), 𝐸(𝑝𝑡) = 0.07, 𝑉(𝑝𝑡) = 0.001 ∀𝑡 ≤ 30  
                                               
𝑝𝑡~𝐵𝑒𝑡𝑎(15.2,3.8), 𝐸(𝑝𝑡) = 0.8, 𝑉(𝑝𝑡) = 0.008 ∀𝑡 > 30   

                                                   
𝜆𝐼~𝐺𝑎𝑚𝑚𝑎(1012524.75, 1.88𝑒 − 06), 𝜆𝑅~𝐺𝑎𝑚𝑚𝑎(1633152.503, 1.46𝑒 − 05),

𝜆𝐷~𝐺𝑎𝑚𝑚𝑎(1355.195, 0.00262) 

 

Florida: 

 

𝑅1~𝐿𝑜𝑔𝑁(−1.19,0.573), 𝐸(𝑅1) = 0.359, 𝑉(𝑅1) = 0.05; 𝛽1 = 𝑅1(𝛾 + 𝑑1)          

       

𝑅2~𝐿𝑜𝑔𝑁(0.476,0.06), 𝐸(𝑅2) = 1.612, 𝑉(𝑅2) = 0.009; 𝛽2 = 𝑅2(𝛾 + 𝑑2)     

            

𝛾~𝐿𝑜𝑔𝑁(−2.77,0.063), 𝐸(𝛾) = 0.063, 𝑉(𝛾) = 0.00002              

                                
𝑝𝑡~𝐵𝑒𝑡𝑎(1.39,8.55), 𝐸(𝑝𝑡) = 0.14, 𝑉(𝑝𝑡) = 0.011 ∀𝑡 ≤ 30        
                                           
𝑝𝑡~𝐵𝑒𝑡𝑎(41.87,10.47), 𝐸(𝑝𝑡) = 0.8, 𝑉(𝑝𝑡) = 0.003 ∀𝑡 > 30        

                                      
𝜆𝐼~𝐺𝑎𝑚𝑚𝑎(999169.436,1.76𝑒 − 06), 𝜆𝑅~𝐺𝑎𝑚𝑚𝑎(1807366.511,1.35𝑒 − 05),

 𝜆𝐷~𝐺𝑎𝑚𝑚𝑎(1022.341, 0.011) 

 

The entire simulation exercise for this section is implemented in R programming 

through self-written codes. Plots of predicted values of daily number of active infected cases 

and cumulative deaths, along with their 95% confidence intervals, are shown in Figures 5 and 

6. For a comparative assessment of the predictions of transmission trajectory of the epidemic 

under the two interventions, daily counts of active infecteds and cumulative number of deaths 

for both cases are plotted together in Figures 7 and 8. 
 

Figure 5: California- Predictions under the assumption of extensive random testing. The 

blue shaded region depicts the region of 95% confidence intervals based on simulated 

values. The confidence region for number of infecteds is too narrow to be visible in the 

graph. 
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Figure 6: Florida- Predictions under the assumption of extensive random testing. The blue 

shaded region depicts the region of 95% confidence intervals based on simulated values. The 

confidence region for number of infecteds is too narrow to be visible in the graph. 

 
 

Figure 7: California- Comparative graphs of predictions of cases under both interventions.  

 
 

Figure 8: Florida- Comparative graphs of predictions of cases under both interventions. 

 
 

3.6. CEA of extensive random testing over targeted testing 

 

To estimate the cost incremental we first need the estimates of total number of tests to 

be conducted under both interventions. The rates of positivity of COVID-19 testing, as 

reported till 29 July 2020, were 7.47% in California and 18.96% in Florida. These 

percentages were taken as r1 for estimating number of tests under the base intervention of 

targeted testing. The rates of positivity of tests under the assumption of extensive random 

testing, r2 are obtained as 𝑟2 =
𝐶2

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 for the two states and are provided in Table 6. 
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Table 6: Estimates of rates of positivity of tests under extensive random testing. 

Intervention= Extensive random testing California Florida 

C2, total no. of infecteds by the end of the epidemic 45,819 108,290 

Total no. of susceptibles at the start of the epidemic 

(Taken as total population of the state) 
39,512,223 21,477,737 

r2 (considered as the probability that a person in 

the state got infected during the entire duration of the epidemic) 

= 0.0012 

(0.12%) 

= 0.005 

(0.5%) 

 

Values of cost incremental, changes in outcome measures (both in terms of number of 

infections and number of deaths), and ICERs are calculated by implementing these values of 

r1 and r2 in the steps discussed in part e. of section 2.7. Cost of COVID-19 test (RT-PCR) 

varies considerably across USA. However, leaving out some extreme cases, the average cost 

per unit of the RT-PCR test is around $100 in USA [Kliff (2020)]. We have used this average 

cost for evaluating cost incremental owing to increment in the number of tests. Results on the 

difference in number of tests, cost increment (or decrement), and changes in the outcomes of 

number of infections and number of deaths, on using the proposed intervention ‘extensive 

random testing’ over the base intervention ‘targeted testing’, are furnished in Table 7. 

 

Table 7: Changes in outcomes and costs on using extensive random testing instead of 

targeted testing as the intervention to contain the spread of SARS-CoV-2 infections. 

State Total Confirmed Cases Total Detected Cases 
Number of 

Tests 
Number of Deaths 

Predictions under the base case (Base intervention = Targeted testing) 

California 2384143 1328158 17779893 58292 

Florida 4793903 1873747 9882632 58937 

Predictions under the ideal case (Recommended intervention = Extensive random testing) 

(Case A- Number of tests estimated using r2 ) 

California 45819 41237 35560914 405 

Florida 108290 97461 19329963 1039 

Predictions under the ideal case (Recommended intervention = Extensive random testing) 

(Case B-Assuming that everyone was tested by the end of the epidemic) 

California 45819 41237 39512223 405 

Florida 108290 97461 21477737 1039 

Changes in Cost and Outcomes 

State 
Reduction in occurrence of 

infection 
Reduction in occurrence of 

death 
Tests 

incremental 
Testing cost 

incremental ($) 

Case A-Cost-effectiveness of extensive random testing with respect to targeted testing 

California 2338324 57887 17781021 1778102100 

Florida 4685613 57898 9447331 944733100 

Case B-Cost-effectiveness of extensive random testing with respect to targeted testing 

California 2338324 57887 21732330 2173233000 

Florida 4685613 57898 11595105 1159510500 
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Table 8: Incremental cost effectiveness ratios associated with extensive random testing 

as compared to targeted testing. 

Incremental Cost Effectiveness Ratio- ICER 

State 
Number of extra tests per unit reduction in infection 

Case A* Case B** 

California 8 9 

Florida 2 2 

 Number of extra tests per unit reduction in death 

Case A Case B 

California 307 375 

Florida 163 200 

ICER 
(infections) 

Additional testing cost per unit reduction in infection ($) 

Case A Case B 

California 760 929 

Florida 202 247 

ICER 
(deaths) 

Additional testing cost per unit reduction in death ($) 

Case A Case B 

California 30717 37543 

Florida 16317 20027 

*Case A- Number of tests estimated using r2. 

**Case B- Assuming that everyone was tested by the end of the epidemic. 
 

4. Discussion 

 

Estimates of the proportion of reported cases, pt, based on the calibrated data give us a 

good idea about the seriousness of the problem of underreporting. As can be seen from the 

summary provided in Table 2, the first 30 days of the outbreak of the COVID-19 epidemic 

have experienced extremely high level of underreporting, with the average percentages of 

underreporting for the two states being 96.6% (California) and 93.9% (Florida). This can be 

attributed to the lack of appropriate testing facilities, including resources like testing kits, and 

absence of proper response from the government (or lack of seriousness and foresightedness 

on the part of the policy makers) during the initial stage of the pandemic. With time, the 

proportion of reported cases increases steadily, and after a couple of months, it tends to 

converge around the average values of 57% for California and 39% for Florida. These 

average values of pt, calculated at the later stage of the pandemic, are representative of the 

nature and capacity of testing policy of the states. For the same reason, the hyperparameters 

of the prior distributions of pt for the purpose of forecasting are based on these later-stage 

averages. That is, due to the lack of extensive random testing in these states, around 43% 

infected cases in California and 61% infected cases in Florida, on an average, go unreported. 

These percentages of infecteds are undetected and are not quarantined, and they remain 

infectious for a much longer period than their quarantined counterparts, moving freely among 

the susceptibles. The SI(Q/F)RD epidemic model proposed by us is based on this hypothesis 

and the hypothesis is strongly supported by the posterior estimates of the transmission 

parameters obtained from the Dirichlet-Beta state-space SI(Q/F)RD model. Posterior 

estimates of average reproduction numbers associated with quarantined infecteds are 0.497 

(sd: 0.262) and 0.359 (sd: 0.224), and for the undetected infecteds are 1.464 (sd: 0.155) and 

1.612 (sd: 0.097) for California and Florida respectively. This clearly indicates that if almost 

all infecteds were quarantined; the number of active cases would have declined sharply 
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bringing the epidemic to an end at a very early stage. However, quarantining almost all 

infecteds, in the presence of a large proportion of asymptomatic cases, requires extensive 

amount of daily testing. This is clearly missing in both states under consideration, as 

indicated by very high rates of positivity of tests and high CFR values based on reported data 

for the two states. So, considering extensive random testing as an intervention to contain the 

epidemic is very essential for understanding its effectiveness both in terms of outcome 

(reducing infections and deaths) and cost (extra cost required for extensive testing instead of 

targeted testing). 

 

 For both states, CEA of extensive random testing over targeted testing has 

yielded very strong results in favour of the former; refer Table 7 and Table 8. Citing 

uncertainties because of some unknown factors and leaving some space for errors in testing, 

even if we assume that 80% of the infecteds can be detected and quarantined using extensive 

random testing, a total of around 2.3 million people in California and 4.7 million people in 

Florida could be saved from the infection by the end of the epidemic if extensive random 

testing was used instead of targeted testing. Further, it is estimated that around 58 thousand 

deaths due to COVID-19 could be averted in each state if the states resorted to extensive 

random testing (after first month of outbreak) instead of targeted testing. These are huge 

expected gains for humanity, especially when every single life matter for us. The ICER 

values (in terms of number of tests) suggest that, on an average, only around 9 and 2 

additional number of tests would be required in total to save one extra person from getting 

infected in California and Florida, respectively, by the time the epidemic ends. That is, 

around 760- 929 USD (California) and 202- 247 USD (Florida) additional expenditure on 

COVID-19 tests would be required to save every additional person from getting infected. 

Number of additional tests required to save one additional death from COVID-19 is estimated 

to be around 307- 375 for California and 163- 200 for Florida. That is, on using extensive 

random testing over targeted testing, one extra loss of life due to COVID-19 can be averted 

on an additional expenditure of around 30717- 37543 USD in California and around 16317- 

20027 USD in Florida.  

 

Comparing forecasted deaths with post-study published estimate of excess deaths- comments 

on the validity of the assumptions underlining the proposed state-space SI(Q/F)RD model 

 

Since the true number of infecteds, detected plus undetected, remain latent in the 

population, it is not possible to compare forecasted values with the true values. However, 

comparing cumulative number of deaths forecasted by the state-space SI(Q/F)RD model with 

the estimated values of excess deaths can serve as a potent alternative to assess predictive 

efficiency of the model. Estimates of epidemiological parameters and predictions obtained 

from the state-space SI(Q/F)RD model are based on the daily time-series data on number of 

cases reported till 11 July 2020 and the weekly estimates of excess deaths available till the 

same date. Predictive accuracy of the model will be determined by its ability to forecast true 

values beyond the training period of the model. From this perspective, we have plotted the 

forecasted time-series of cumulative number of deaths obtained from the fitted SI(Q/F)RD 

model along with the weekly estimated excess deaths due to COVID-19 till 14 November 

2020. The estimates of excess deaths due to COVID-19 have been retrieved from the website 

of CDC (https://www.cdc.gov/nchs/nvss/vsrr/covid19/ excess_deaths.html) on 4 December 

2020. Striking difference in the estimated values of average reproduction numbers associated 

with detected (quarantined) cases and undetected cases suggest that the assumption regarding 

future values of proportion of detected cases plays a crucial role in ascertaining high 

predictive accuracy of the model. In other words, accuracy of the predictions from the 
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proposed SI(Q/F)RD model relies greatly on the validity of the assumption regarding future 

testing policy in the region- i.e., on whether the testing capacity relative to the number of true 

cases is expected to increase, remain unchanged or decrease over time.  To stress upon this 

argument, observed time-series of rates of positivity of COVID-19 tests are also plotted 

alongside the comparative plots of the forecasted number of deaths. Figure 9 and Figure 10 

present these plots for California and Florida, respectively. In both of these figures, the left 

panel shows the comparative trends of cumulative number of deaths (predicted and excess) 

and the right panel presents the rate of positive tests over time. The trend line in blue in the 

right panel shows the average percentage of tests that were positive over the last seven days, 

i.e., a seven-day moving average of percentage of positive tests.  The time-series plots of 

rates of positive tests for the two states are sourced from the website of Johns Hopkins 

University on 08 December 2020 [https://coronavirus.jhu.edu/testing/testing-positivity].  

 

In the case of California, there is a considerable difference between the predicted 

number of deaths and estimated excess deaths due to COVID-19. However, the difference is 

majorly in the scale of the values, and the two trend lines look similar in shape over time. 

Possible reason for the difference in the scale can be explained by analysing the trend line of 

rate of positive tests. The percentage of positive tests in California was extremely high during 

March-April, but although it started dropping exceptionally towards the end of April, it 

remained around 10% till July. However, September onwards the rate of positivity came 

down below 5%, the WHO recommended threshold. The steep rise in total number of tests 

performed daily, as shown by the pink towers in the graph, clearly explains this change. That 

is, California experienced a drastic change in testing capacity in the period of forecasting. 

Since the hyperparameters of the model corresponding to the proportion of detected cases 

were defined based on the state of rate of positivity till July, the model tends to give 

overestimated forecasts of total number of deaths. Increasing the proportion of detected cases 

in the model as per the increase in testing capacity of the region would result in decrease in 

the total number of deaths. This is because the estimated rate of transmission for detected 

(quarantined) cases is relatively much lower than that of the undetected cases.  

 

The scenario of rate of positive tests over time looks entirely different for Florida. 

Percentage of positive tests dipped below 5% for only two brief periods and it remained high 

for most of the time. That is, except for few short periods, the testing capacity has remained 

below par. Insufficient testing is also indicated by the fact that the trend line of the rate of 

positive tests is mostly parallel to the changes in the peaks of the total number of tests 

conducted per day. That is, it suggests that increase in the number of tests was not sufficient 

to reduce the rate of positive tests. Ideally, in the presence of sufficient amount of random 

testing, rate of positive tests should decrease with increase in the number of tests- as can be 

seen in the case of California. In other words, no significant change in the testing policy of 

Florida is observed in the forecasting period. This further implies that the hyperparameters 

defined for the proportion of detected cases in the state-space SI(Q/F)RD model remained 

valid for the forecasting period. Consequently, the forecasted values of cumulative number of 

deaths are much closer to the estimates of excess deaths in the case of Florida as compared to 

that of California. These results reaffirm the inevitable impact of testing capacity on the 

transmission dynamics of the pandemic, which forms the conceptual backbone of the 

proposed state-space SI(Q/F)RD model. 
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Figure 9: California- Left panel shows comparison of cumulative number of deaths 

predicted by the SI(Q/F)RD model with the estimates excess deaths due to COVID-19. 

Right panel shows trend line of seven-day moving average of percentage of positive 

tests, along with daily total number of tests and daily total number of positive tests. 

 

 
Figure 10: Florida- Left panel shows comparison of cumulative number of deaths 

predicted by the SI(Q/F)RD model with the estimates excess deaths due to COVID-19. 

Right panel shows trend line of seven-day moving average of percentage of positive 

tests, along with daily total number of tests and daily total number of positive tests. 

 

 
 

5. Conclusion 

 

We have provided a detailed framework of data calibration and flexible epidemic 

modelling for conducting CEA of non-medical interventions for containing epidemics like 

COVID-19. The structure of the proposed SI(Q/F)RD model allows for adjusting the 

trajectory of the epidemic in terms of level of underreporting. The Dirichlet-Beta state-space 

formulation of the SI(Q/F)RD model provides a flexible approach to the estimation and 

prediction of both time-invariant and time-varying transmission parameters of the epidemic. 

The state-space model allows for uncertainties in the transmission dynamics over time and 

thus, it can be considered to be superior to its deterministic counterpart. The proposed 

method, based on TSIR, for estimating hyperparameters of prior distributions of transmission 

rates (or reproduction rates) is aimed at improving the posterior estimates by enriching the 

state-space model with strong prior information. 
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The results of CEA conclude that extensive random testing, which has been strongly 

recommended by WHO, is significantly cost-effective over targeted testing. Since the R0 

values associated with quarantined infecteds in both states are estimated to be below 1, 

extensive random testing, resulting in quarantining of at least 80% infecteds, is expected to 

result in the epidemic to end quite quickly as compared to the case of targeted testing. So, 

targeted testing may imply a smaller number of tests over a much longer period of time, 

while extensive testing means a very high number of tests for a much shorter period of time. 

This simple logic is corroborated by the ICER values obtained from the CEA of extensive 

random testing over targeted testing. For California, if the state is willing to conduct around 9 

extra tests (or spend around 900 USD extra amount on testing) for saving one additional 

person from getting infected, or if the state is willing to conduct around 375 extra tests (or 

spend around 37500 USD extra amount on testing) for saving one additional person from 

dying due to COVID-19, extensive random testing can be considered as cost-effective over 

targeted testing. While for Florida, willingness to spend an extra amount of around 200 USD 

(2 extra tests) for saving one additional person from getting infected, or willingness to spend 

an extra amount of around 20,000 USD (200 extra tests) for saving one additional person 

from dying due to COVID-19, renders extensive random testing as cost-effective over 

targeted testing. 

 

Limitations and further scope of research 

 

 In the state-space SI(Q/F)RD model, we have taken the rate of death as a fixed (known) 

parameter. Using posterior estimate of the death rate, instead of defining it as a fixed 

parameter, may further improve the overall predictions from the model by introducing 

stochastic uncertainty. Also, time varying transmission rates can be introduced in the model 

using the modifier functions described in Deo et al. (2020) to make the model more robust.  
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Appendix-A 

Table A.1: Calibrated data of California and Florida 

Date I_cali p_obs_cali R_cali D_cali I_florida p_obs_florida R_florida D_florida 

2-Mar-20 1449 0.0062 0 0 217 0.0046 0 0 

3-Mar-20 2963 0.0025 80 0 569 0.0028 10 0 

4-Mar-20 4575 0.0055 279 1 1115 0.0000 44 0 

5-Mar-20 6337 0.0076 618 1 1785 0.0014 99 0 

6-Mar-20 8300 0.0033 1046 1 2604 0.0000 222 0 

7-Mar-20 10497 0.0080 1603 1 3565 0.0037 348 0 

8-Mar-20 12817 0.0045 2399 1 4573 0.0024 570 2 

9-Mar-20 15637 0.0017 3202 1 5727 0.0021 865 2 

10-Mar-20 18592 0.0106 4304 2 6976 0.0012 1283 2 

11-Mar-20 21862 0.0076 5525 4 8373 0.0050 1698 2 

12-Mar-20 25183 0.0086 7204 4 9956 0.0030 2144 2 

13-Mar-20 28787 0.0109 9107 4 11429 0.0092 2845 2 

14-Mar-20 32367 0.0149 11606 12 13140 0.0134 3447 8 

15-Mar-20 37606 0.0003 13024 22 15458 0.0142 3661 12 

16-Mar-20 43209 0.0256 14583 34 17781 0.0004 4016 15 

17-Mar-20 48952 0.0190 16361 49 20035 0.0315 4586 17 

18-Mar-20 54635 0.0169 18415 66 22286 0.0390 5304 19 

19-Mar-20 60181 0.0225 20748 86 24405 0.0414 6225 22 

20-Mar-20 65496 0.0291 23454 108 26514 0.0414 7299 27 

21-Mar-20 70606 0.0206 26507 133 28550 0.0610 8516 35 

22-Mar-20 75324 0.0287 30093 162 30523 0.0711 9939 45 

23-Mar-20 79730 0.0550 34060 195 32345 0.0644 11582 58 

24-Mar-20 83739 0.0506 38491 233 34097 0.0521 13366 73 

25-Mar-20 87259 0.0551 43406 276 35714 0.0745 15355 90 

26-Mar-20 90316 0.1063 48777 326 37266 0.1826 17479 110 

27-Mar-20 92797 0.0907 54718 382 38727 0.1441 19763 133 

28-Mar-20 94737 0.0518 61267 444 40056 0.2247 22250 158 

29-Mar-20 96359 0.0866 68272 513 41370 0.1212 24894 186 

30-Mar-20 97665 0.1474 75658 589 42624 0.3024 27668 216 

31-Mar-20 98899 0.1209 83253 673 43860 0.3019 30603 248 

1-Apr-20 99983 0.1321 90990 765 45097 0.0508 33606 283 

2-Apr-20 100788 0.1561 98927 864 46213 0.4807 36728 320 

3-Apr-20 101418 0.1398 106961 968 47172 0.3019 39933 359 

4-Apr-20 101761 0.0952 115134 1075 47931 0.3097 43263 400 

5-Apr-20 101892 0.2591 123372 1184 48549 0.2006 46661 442 

6-Apr-20 101726 0.1188 131760 1295 48994 0.2454 50158 486 

7-Apr-20 101444 0.1673 140117 1408 49321 0.3138 53699 531 

8-Apr-20 100961 0.1992 148456 1523 49510 0.2377 57304 578 

9-Apr-20 100134 0.1276 156848 1639 49521 0.2418 61013 626 

10-Apr-20 99040 0.1842 165289 1756 49375 0.3163 64806 675 

11-Apr-20 97575 0.0892 173811 1873 49005 0.2664 68749 725 

12-Apr-20 95891 0.1546 182407 1990 48586 0.3872 72740 776 

13-Apr-20 93912 0.1659 191153 2107 47958 0.3171 76867 828 

14-Apr-20 91738 0.2182 199876 2225 47240 0.1721 81083 881 
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15-Apr-20 89508 0.1989 208508 2345 46617 0.2445 85274 936 

16-Apr-20 87084 0.1554 217188 2466 46076 0.2310 89382 992 

17-Apr-20 84806 0.2348 225647 2589 45608 0.3925 93415 1050 

18-Apr-20 82661 0.2148 233973 2712 45212 0.2034 97375 1109 

19-Apr-20 80747 0.1443 242142 2834 44843 0.2277 101308 1168 

20-Apr-20 78971 0.3497 250246 2955 44550 0.2065 105166 1226 

21-Apr-20 77486 0.2782 258061 3074 44387 0.2200 108968 1283 

22-Apr-20 76352 0.2870 265600 3191 44347 0.1201 112648 1339 

23-Apr-20 75310 0.3425 272976 3306 44346 0.3623 116290 1394 

24-Apr-20 74567 0.2782 280055 3419 44416 0.2394 119862 1448 

25-Apr-20 73975 0.1571 286986 3529 44515 0.0828 123406 1501 

26-Apr-20 73507 0.1868 293725 3635 44690 0.1878 126875 1553 

27-Apr-20 73263 0.2216 300243 3738 44826 0.1642 130384 1604 

28-Apr-20 73103 0.1891 306608 3837 44889 0.1924 133967 1654 

29-Apr-20 72922 0.4194 312851 3934 44950 0.0944 137552 1704 

30-Apr-20 72685 0.2300 319007 4029 45022 0.1364 141127 1753 

1-May-20 72232 0.3230 325238 4121 45119 0.2827 144677 1802 

2-May-20 71641 0.2307 331464 4211 45201 0.2010 148241 1852 

3-May-20 70847 0.2753 337822 4299 45305 0.1688 151783 1902 

4-May-20 70073 0.1736 344161 4386 45224 0.2294 155437 1952 

5-May-20 69274 0.4551 350525 4473 45120 0.1560 159042 2002 

6-May-20 68479 0.3822 356884 4561 44915 0.1668 162675 2052 

7-May-20 67732 0.2676 363267 4650 44626 0.2516 166320 2102 

8-May-20 67050 0.2886 369585 4739 44336 0.1186 169965 2153 

9-May-20 66509 0.4782 375833 4829 44040 0.2452 173616 2204 

10-May-20 66016 0.1751 382107 4918 43772 0.1891 177239 2255 

11-May-20 65641 0.2910 388335 5007 43427 0.1308 180866 2306 

12-May-20 65506 0.2745 394395 5096 43081 0.2973 184494 2357 

13-May-20 65504 0.3023 400323 5184 42752 0.1608 188105 2408 

14-May-20 65774 0.3406 406052 5272 42473 0.2631 191739 2459 

15-May-20 66173 0.2993 411653 5359 42178 0.2948 195389 2510 

16-May-20 66646 0.3338 417182 5444 41961 0.2159 199033 2561 

17-May-20 67003 0.2396 422756 5527 41882 0.2411 202612 2612 

18-May-20 67391 0.2248 428301 5608 41990 0.2575 206076 2663 

19-May-20 67805 0.3735 433822 5687 42240 0.1572 209471 2714 

20-May-20 68022 0.3793 439469 5765 42530 0.1640 212826 2765 

21-May-20 68096 0.3516 445114 5843 42850 0.3474 216152 2815 

22-May-20 68012 0.3937 450772 5921 43158 0.2321 219491 2864 

23-May-20 67762 0.4091 456524 5999 43452 0.2056 222845 2912 

24-May-20 67327 0.2733 462387 6078 43880 0.2187 226138 2959 

25-May-20 66834 0.4360 468308 6157 44476 0.2464 229408 3006 

26-May-20 66245 0.5560 474252 6237 45269 0.1438 232698 3053 

27-May-20 65542 0.2945 480236 6318 46133 0.1085 236062 3100 

28-May-20 64809 0.5114 486249 6400 47244 0.1638 239398 3146 

29-May-20 64206 0.5198 492204 6483 48481 0.2756 242825 3192 

30-May-20 63743 0.5914 498091 6566 49851 0.2050 246337 3238 

31-May-20 63316 0.3685 504014 6650 51376 0.1600 249910 3285 
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1-Jun-20 63010 0.4859 509961 6734 53119 0.1382 253555 3332 

2-Jun-20 62889 0.4282 515795 6818 55189 0.1224 257162 3380 

3-Jun-20 63160 0.3590 521455 6901 57441 0.2363 260803 3429 

4-Jun-20 63862 0.4473 526974 6984 59937 0.2448 264416 3479 

5-Jun-20 65093 0.5269 532472 7067 62685 0.2163 268066 3530 

6-Jun-20 66892 0.3857 537910 7149 65729 0.2004 271783 3581 

7-Jun-20 69221 0.2621 543327 7229 68933 0.1798 275629 3632 

8-Jun-20 72006 0.3858 548652 7307 72167 0.1452 279663 3683 

9-Jun-20 75149 0.3379 553910 7384 75406 0.1593 283837 3734 

10-Jun-20 78417 0.3518 559189 7460 78494 0.1943 288233 3786 

11-Jun-20 81683 0.4282 564543 7536 81414 0.2358 292868 3840 

12-Jun-20 84997 0.3672 569922 7611 84132 0.2626 297702 3897 

13-Jun-20 88244 0.3817 575442 7685 86654 0.3523 302730 3956 

14-Jun-20 91418 0.2618 581035 7759 88890 0.2784 308041 4018 

15-Jun-20 94383 0.3852 586763 7834 90919 0.2422 313628 4083 

16-Jun-20 97061 0.3720 592705 7910 92781 0.3714 319452 4151 

17-Jun-20 99374 0.4487 598866 7987 94497 0.3459 325491 4222 

18-Jun-20 101044 0.5157 605523 8066 95961 0.4193 331851 4297 

19-Jun-20 101933 0.4554 612742 8146 97128 0.4933 338576 4376 

20-Jun-20 102081 0.5496 620482 8229 98159 0.5175 345506 4458 

21-Jun-20 101643 0.4445 628514 8316 98881 0.4490 352742 4543 

22-Jun-20 100482 0.8345 636900 8410 99599 0.3751 360051 4632 

23-Jun-20 98871 0.9648 645367 8511 100247 0.4159 367497 4726 

24-Jun-20 96689 0.6972 653963 8619 100906 0.6824 375001 4824 
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