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Abstract 

Background: Electronic frailty indices can be useful surrogate measures of frailty. We 

assessed the role of machine learning to develop an electronic frailty index, incorporating 

demographics, baseline comorbidities, healthcare utilization characteristics, 

electrocardiographic measurements, and laboratory examinations, and used this to predict all-

cause mortality in patients undergoing transaortic valvular replacement (TAVR). 

Methods: This was a territory-wide observational study of patients admitted to public 

hospitals from Hong Kong between 1 January 2000 and 31 December 2019 for TAVR. 

Significant univariate and multivariate predictors of all-cause mortality were identified using 

Cox regression. Importance ranking of variables was obtained with a gradient boosting 

survival tree (GBST) model, a supervised sequential ensemble learning algorithm, and used 

to build the frailty models. Comparisons were made between multivariate Cox, GBST and 

random survival forest models. 

Results: A total of 450 patients (49% females; median age at procedure 82.3 (interquartile 

range, IQR 79.0-86.0)) were included, of which 22 died during follow-up. A machine 

learning survival analysis model found that the most important predictors of mortality were 

APTT, followed by INR, severity of tricuspid regurgitation, cumulative hospital stays, 

cumulative number of readmissions, creatinine, urate, ALP, and QTc/QT intervals. GBST 

significantly outperformed random survival forests and multivariate Cox regression 

(precision: 0.91, recall: 0.89, AUC: 0.93, C-index: 0.96, and KS-index: 0.50) for mortality 

prediction.  
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Conclusions: An electronic frailty index incorporating multi-domain data can efficiently 

predict all-cause mortality in patients undergoing TAVR. A machine learning survival 

learning model significantly improves the risk prediction performance of the frailty models.  

 

Introduction 

Aortic stenosis (AS), reduction in the effective orifice area of the semilunar cardiac 

valve at the interface of the left ventricle and the systemic arterial circulation,  is a significant 

medical problem globally 1. AS has a prevalence of 2-9% of the population over 65 years and 

4% in those who are over 85 2. It is associated with aging and confers a poor prognosis 3. 

There are different types of operations for the treatment of AS. Of these, transcatheter aortic 

valve replacement (TAVR) is a less invasive alternative to surgical aortic valve replacement 

for patients with severe, symptomatic AS, especially for those who are at high risk or 

intermediate risk of adverse events, e.g. those with a high number of comorbidities 4. 

Moreover, recent work has found that TAVR in low-risk patients is noninferior to surgical 

management 5. 

  TAVR has been shown to have a satisfactory efficacy and safety and 

recommendations by guidelines from various international societies 6, 7. However, recent 

studies have found that frailty is a common finding in AS patients and is associated with 

increased mortality. Approximately half of patients who undergo TAVR die within four 

years of the procedure 8. It is therefore crucial to weigh up risks and benefits before when 

offering TAVR to patients, in particular, trying to select those in whom the procedure is 

likely to confer greater gains in symptoms and prognosis, and identifying those who may not 

benefit, or indeed suffer harm, following TAVR.  

 Machine learning techniques have been widely applied in medical research. 

Specifically, a gradient boosting survival tree model has recently been explored as an 
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efficient method for diagnosing coronary artery disease 9. In this territory-wide study, we 

tested the hypothesis that an electronic frailty index incorporating demographics, baseline 

comorbidities, healthcare utilization characteristics, electrocardiographic measurements, and 

laboratory examinations using a gradient boosting approach can improve risk prediction for 

all-cause mortality. 

 

Methods 

Study design 

This study was approved by The Joint Chinese University of Hong Kong - New 

Territories East Cluster Clinical Research Ethics Committee. This population-based territory-

wide cohort study included patients undergoing TAVR as managed by the Hong Kong 

Hospital Authority during the period 1 January 2000 and 31 December 2019. Patients were 

identified from the Clinical Data Analysis and Reporting System (CDARS), a healthcare 

database that integrates patient information across all 43 publicly funded hospitals and their 

associated ambulatory and primary care facilities in Hong Kong to establish comprehensive 

medical records. The available information includes demographics, clinical characteristics, 

disease diagnoses, laboratory examinations, drug prescription details, and admission statistics.  

 

Data extraction and variables 

The following data were extracted: 1) Baseline characteristics of gender, age at 

TAVR, age at first presentation with AS, TR severity, AR severity, MR severity, PR severity, 

complete recovery status, INR on the day of TAVR procedure; 2) baseline comorbidities 

including bradyarrhythmia, atrial fibrillation/flutter, tachyarrhythmia, diabetes mellitus, 
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hypertension, hyperlipidaemia, respiratory diseases, kidney diseases, endocrine disorders 

(other than diabetes mellitus) and gastrointestinal diseases using corresponding ICD-9 codes; 

3) ECG measurements of ventricular rate, P-wave duration (PWD), PR interval, QRS 

duration, QT interval, corrected QT interval (QTc), P-wave axis, QRS axis, T-wave axis, R-

wave amplitude in V5, and S-wave amplitude in V1; 4) healthcare utilization characteristics 

before TAVR presentation: cumulative hospital stay, cumulative number of hospital 

readmissions, and number of emergency readmissions (within 28 days of discharge); 5) 

laboratory tests: complete blood count, liver function tests, renal function tests. Details of 

ICD codes used for comorbidity identification are provided in the Supplementary Appendix. 

 

Primary outcome and statistical analysis 

The primary outcome was all-cause mortality. Descriptive statistics were presented 

for the overall cohort and categorized based on mortality status. Continuous variables were 

presented as median (95% confidence interval [CI] or interquartile range [IQR]) and 

categorical variables were presented as counts (%). The Mann-Whitney U test was used to 

compare continuous variables. The χ2 test with Yates’ correction was used for 2×2 

contingency data, and Pearson’s χ2 test was used for contingency data for variables with 

more than two categories. To evaluate the significant prognostic risk factors associated with 

disease group status and primary outcomes, univariate Cox regression models were used with 

adjustments based on baseline characteristics. Significant univariable predictors were used as 

inputs in a multivariate Cox regression model to avoid overfitting. Hazard ratios (HRs) with 

corresponding 95% CIs and P values were reported accordingly. All significance tests were 

two-tailed and considered statistically significant if P values were 0.05. Data analyses were 

performed using RStudio software (Version: 1.1.456) and Python (Version: 3.6). Simulations 
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were performed were using a 15-inch MacBook Pro with 2.2 GHz Intel Core i7 Processor 

and 16 GB RAM (Hong Kong, China). 

 

Development of a gradient boosting survival tree model 

Survival analysis is a statistical method to deal with lifetime data, where the outcome 

is the time to occurrence of an event of interest, such as mortality. The most widely applied 

survival analysis model in biostatistics is the Cox proportional hazards model 10. Gradient 

boosting, a class of machine learning methods, was developed based on the concept that a 

tree-based model after being sequentially combined with previous weak models (e.g. 

decision trees) in a stage-wise way can generate superior predictions for survival and other 

outcomes. Tree-structured survival models such as survival trees 11 and random survival 

forests 12 have been used to determine survival probabilities in medical studies.  

This inspired us to use a nonparametric ensemble tree model called a gradient 

boosting survival tree (GBST) that extends the survival tree models with the concept of 

gradient boosting 13. GBST optimizes the survival probability of each time period 

simultaneously and therefore is able to significantly reduce the overall prediction error of a 

survival tree. In this study, GBST was used for mortality risk prediction of patients 

undergoing TAVR. A tree-structure based approach for ranking the importance value of 

different variables was used,  to construct a machine learning based, electronic frailty index 

for predicting mortality outcome. To examine the GBST performance of survival risk 

discrimination and compare it with baseline models of random survival forests and a 

multivariate Cox regression model, we adopted a five-fold cross validation approach. The 

concordance index (C Index) proposed by Harrell et al. (1982) was used to measure the 

goodness of fit for the survival model, as the statistic provides a global assessment of the 
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model for the continuous event. The territory-wide cohort dataset also guarantees the c-Index 

not to be limited by censoring. We applied the c-index introduced above as well as a 

precision, recall, Kolmogorov-Smirnov (KS) index and the area under the receiver operating 

characteristics curve (AUC) to measure the goodness of model fit. The R packages, gbm 

(Version 2.1.5), randomForestSRC (Version 2.9.3), survival (Version 2.42-3) and ggplot2 

(Version 3.3.2), were used to generate the mortality prediction results.  

 

Results 

Baseline cohort characteristics 

 The baseline characteristics of this cohort of patients undergoing TAVR are shown in 

Table 1. A total of 450 patients were included (female 49%; mean age at time of procedure: 

82.3 (IQR 79.0-86.0) years; median age at first hospital presentation:79 (IQR: 74.0-83.0)) 

years. A total of 22 deaths (32% female) occurred during follow-up. The Kaplan-Meier 

survival curve of patients undergoing TAVR is shown in Figure 1.  

 Further comparisons were made between the deceased and alive subgroups. 

Patients who died had an older age (83.8, IQR: [81.0-87.0] vs. 82.1, IQR: [79.0-86.0]) years, 

higher INR at procedure (1.32, IQR: 1.07-2.39 vs. 1.07, IQR: [1.0-1.17]). The presence of 

diabetes mellitus and hypertension were the most common comorbidities, followed by 

respiratory, gastrointestinal, and kidney diseases, atrial fibrillation/flutter, and 

hyperlipidaemia. In terms of healthcare utilization, those who died had a longer median in-

hospital length-of-stay (53 days, IQR: [10.0-121.0] vs. 18 days, IQR: [6.0-46.0]), higher 

median number of hospital admissions (12, IQR: [4.0-23.0] vs. 9, IQR: [4.0-15.0]) and 

median number of emergency readmissions within 28 days after discharge (2.5, IQR: [1.0-6.0] 

vs. 2, IQR: [1.0-4.0]) before the TAVR procedure.  
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Regarding laboratory examinations, those who died had larger mean corpuscular 

volume (91.4 fL, IQR: [88.0-96.0]), higher mean corpuscular haemoglobin (33.9 x10^9/L, 

IQR: [33.0-34.0]), higher haematocrit (0.399, L/L, IQR: [0.3805-0.4095]), higher neutrophil 

count (4.2 x10^9/L, IQR: [3.0-6.0]), higher monocyte count (0.5 x10^9/L, IQR: [0.34-0.6]) 

and longer APTT (15.2 secs, IQR: [12.0-19.0]). By contrast, they had lower lower red blood 

cell (50.6 x10^12/L, IQR: [44.0-77.0]), white blood cell (median: 6.1 x10^9/L, IQR: [5.0-

8.0]), eosinophil (0.125 x10^9/L, IQR: [0.0745-0.275]), lymphocyte (1.08 x10^9/L, IQR: 

[0.81-1.48]), blast (0.045 x10^9/L, IQR: [0.0-0.065]), metamyelocyte (0.09 x10^9/L, IQR: 

[0.055-0.165]) and myelocyte counts (0.17 x10^9/L, IQR: [0.13-0.555]) as well as lower 

platelet counts (152.5 x10^9/L, IQR: [130.0-195.0]) compared to those who remained alive 

(Table 1).  

Moreover, they had higher potassium (4.4 mmol/L, IQR: [4.0-4.8]), urate (0.43 

mmol/L, IQR: [0.36-0.48]), urea (6.6 mmol/L, IQR: [6.0-10.0]), protein (73.2 g/L, IQR: 

[67.0-76.0]), creatinine (105.9 umol/L, IQR: [78.0-150.0]), alkaline phosphatase (73.5 U/L, 

IQR: [64.0-91.0]) and bilirubin levels (13, umol/L, IQR: [9.0-19.0]), but lower sodium (140 

mmol/L, IQR: [140.0-142.0]), albumin (38.9 g/L, IQR: [36.0-41.0]), aspartate transaminase 

(median: 24.8 U/L, IQR: [22.0-32.0]) as well as HbA1c levels (12 g/dL, IQR: [11.0-13.0]). 

 In terms of ECG measurements, patients who died had higher basal ventricular rate (95, 

IQR: [78-109] vs. 78 bpm, IQR: [68-92]), lower P-wave durations (90, IQR: [90-90] vs. 120 

ms, IQR: [109-127]). PR interval, QTc interval and QRS axis were all significantly larger, 

whereas QRS duration, QT interval, P-wave axis, T-wave axis, R-wave amplitude in V5  and 

S-wave amplitude in V1 were lower in those who died compared to those who were alive 

(Table 1).  

 

Predictors of mortality and frailty model 
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Univariate Cox regression analysis was performed to identify significant predictors of 

all-cause mortality (Table 2). This identified severe tricuspid regurgitation (hazard ratio 

[HR]: 8.93, 95%CI: [3.22, 24.78], p<0.0001), international normalized ratio (HR: 2.74, 95% 

CI: [1.84, 4.09], p<0.0001), cumulative hospital length-of-stay (HR: 1.01, 95% CI: [1.00, 

1.01], p=0.0008), aspartate transaminase (HR: 1.01, 95% CI: [0.98, 1.002], p=0.0002***), 

and bilirubin (HR: 1.02, 95% CI: [1.01, 1.02], p=0.0003***) as predictors of all-cause 

mortality. Subsequently, important variables (HR≥1) were included in a multivariate 

regression analysis (Table 3). Severe tricuspid regurgitation, INR, haematocrit and 

potassium were significant predictors after adjustment (P<0.001).  

 

Results of machine learning survival analysis and frailty score construction 

The tree number in the GBST model was set to 320 according to the sensitivity analysis 

results (Supplementary Figure 1), where the association of Cox partial deviance versus the 

number of trees within the gradient boosting tree structure was depicted. The green line 

shows the validation deviance versus iteration number, with iteration almost stabilizing 

around the deviance value of 6.3 when one thousand trees were used. The black line shows 

the training error versus the iteration number. The optimal tree number was set according to 

the dashed blue line (validation).  

With the input of important risk predictors identified by univariate Cox regression 

analysis, variable importance ranking is obtained by performing the introduced GBST model 

(Supplementary Figure 2) with the values shown in Supplementary Table 2. APTT 

showed the most important strength, followed by INR, severe TR status, cumulative in-

hospital length-of-stay, cumulative number of hospital admissions, creatinine, urate, ALP, 

QTc and QT intervals.  
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Five-fold cross validation experiments were conducted on the dataset using GBST, RSF, 

and multivariate Cox regression (Supplementary Table 3). GBST showed the best survival 

prediction performance over RSF and multivariate Cox model according to evaluation 

metrics of precision, recall, AUC, C-Index, and KS-Index. The advantage of the GBST 

model stems from its ability to sequentially add weak decision tree learning models to the 

ensemble model, which can correct the prediction errors of prior models to minimize the 

overall prediction error. The predicted out-of-bag (OOB) survivals and cumulative hazards 

with the introduced GBST model are shown in Supplementary Figure 3.  

 

Discussion 

The main findings of this territory-wide study of patients undergoing TAVR are two-

fold. Firstly, patient demographics, comorbidities, healthcare utilization statistics prior to the 

procedure, laboratory examinations and ECG measurements were significant predictors of 

mortality. Secondly, a nonparametric gradient boosting survival tree model outperformed 

random survival forest model and multivariate Cox regression model for all-cause mortality 

prediction.  

Frailty has been shown to be a strong predictor of adverse outcomes in patients with 

heart failure, and in those undergoing cardiac interventional procedures 14-20. Specifically 

related to TAVR, previous studies have examined the value of determining frailty for risk 

stratification. For example, a study in 2018 showed that 11% patients of average age of 83 

died 2 years after TAVR, and a geriatric assessment frailty score cut-off at ≥4 predicted 2-

year mortality with a specificity of 80% 21. Another study showed that 242 out of 544 TAVR 

patients were frail 1 year after the procedure based on frailty definition 22.  
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However, in clinical situations, it may be impractical to fully assess frailty status of 

patients and surrogates that can accurately model or reflect frailty would save time for patient 

assessment. Therefore, clinician-researchers have designed the electronic frailty index based 

on the concept that frailty is caused by the accumulation of health deficits 23. Segal et al. 

designed the electronic frailty index by selecting candidate variables based on their potential 

correlations with frailty state rather than mortality directly 24. An electronic frailty index has 

been used as an efficient variable to predict mortality in TAVR 25. In our territory-wide 

cohort, we developed an electronic frailty index based on predictors that were identified by 

Cox regression analysis and showed that this can predict all-cause mortality in patients 

undergoing TAVR.  

Survival analysis has been widely used in clinical and epidemiological studies based on 

electronic health records (EHRs) that provide rich and diverse information for modelling and 

prediction. Survival analysis models in the literature may be parametric or semiparametric, 

including survival tree analysis in the context of conditional inference trees 26, survival forest 

analysis considering inverse probability of censoring weighting to compensate censoring 27, 

random survival forest model with log-rank test 12, censoring unbiased regression trees and 

forests with censoring unbiased loss functions 28, ensemble tree method for right-censored 

survival data 29. Traditional Cox proportional hazard models are used to identify the linear 

combinations. Tree structure-based survival analysis models have been widely applied in 

medical studies such as mortality prediction in systolic heart failure 30. In our study, we 

demonstrated that a nonparametric gradient boosting survival tree model significantly 

improved mortality prediction in patients undergoing TAVR. 

 

Conclusions  
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An electronic frailty index incorporating multi-domain data can efficiently predict all-

cause mortality in patients undergoing TAVR. A machine learning-drive survival model 

significantly improves the risk prediction performance of the frailty models. 
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Table 1. Descriptive statistics of the TAVR cohorts 
***:<0.001; **:<0.01;*:<0.05;.:< 0.1 
 All patients (n=450) Death (n=22) Alive (n=428)  
Characteristics Median (IQR) or count (%) Median (IQR) or count (%) Median (IQR) or count (%) P 
Demographics     
Female sex 221(49.11%) 7(31.81%) 214(50.00%) 0.0026** 
Age at TAVR 82.3(79.0-86.0) 83.8(81.0-87.0) 82.1(79.0-86.0) 0.261 
Age at first visit 79(74.0-83.0) 81(78.0-84.0) 79(74.0-83.0) 0.017* 
TR Severity     
None/trivial 174(38.66%) 7(31.81%) 167(39.01%) 0.0016** 
Mild 177(39.33%) 4(18.18%) 173(40.42%) <0.0001*** 
Moderate 78(17.33%) 6(27.27%) 72(16.82%) 0.66 
Severe 21(4.66%) 5(22.72%) 16(3.73%) 0.021* 

AR Severity     
None/trivial 167(37.11%) 9(40.90%) 158(36.91%) 0.002** 
Mild 217(48.22%) 9(40.90%) 208(48.59%) <0.0001*** 
Moderate 60(13.33%) 3(13.63%) 57(13.31%) <0.0001*** 
Severe 6(1.33%) 1(4.54%) 5(1.16%) 0.121 

MR Severity     
None/trivial 140(31.11%) 4(18.18%) 136(31.77%) 0.172 
Mild 222(49.33%) 14(63.63%) 208(48.59%) <0.0001*** 
Moderate 75(16.66%) 2(9.09%) 73(17.05%) <0.0001*** 
Severe 13(2.88%) 2(9.09%) 11(2.57%) 0.012* 

PR Severity     
None/trivial 167(37.11%) 9(40.90%) 158(36.91%) 0.021* 
Mild 217(48.22%) 9(40.90%) 208(48.59%) <0.0001*** 
Moderate 60(13.33%) 3(13.63%) 57(13.31%) <0.0001*** 
Severe 6(1.33%) 1(4.54%) 5(1.16%) 0.123 

Complete recovery 129(28.66%) 0(0.00%) 129(30.14%) <0.0001*** 
INR  1.07(1.0-1.19);n=450 1.32(1.07-2.385);n=22 1.07(1.0-1.17);n=428 <0.0001*** 
Comorbidities     

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity.

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
preprint 

T
he copyright holder for this

this version posted D
ecem

ber 26, 2020. 
; 

https://doi.org/10.1101/2020.12.23.20248770
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2020.12.23.20248770
http://creativecommons.org/licenses/by/4.0/


Bradyarrhythmia 23(5.11%) 1(4.54%) 22(5.14%) <0.0001*** 
Tachyarrhythmia 34(7.55%) 0(0.00%) 34(7.94%) <0.0001*** 
Diabetes/Hypertension 318(70.66%) 17(77.27%) 301(70.32%) <0.0001*** 
Hyperlipidaemia 143(31.77%) 5(22.72%) 138(32.24%) <0.0001*** 
Atrial fibrillation/flutter 156(34.66%) 11(50.00%) 145(33.87%) 0.0016** 
Respiratory 269(59.77%) 16(72.72%) 253(59.11%) <0.0001*** 
Kidney 174(38.66%) 12(54.54%) 162(37.85%) <0.0001*** 
Endocrine 23(5.11%) 1(4.54%) 22(5.14%) 0.0172* 
Gastrointestinal 249(55.33%) 9(40.90%) 240(56.07%) 0.016* 
ECG Measurements     
Ventricular Rate 79(68.0-93.0);n=375 95(78.0-109.0);n=17 78(68.0-92.0);n=358 0.172 
PWD 119(109.0-127.0);n=137 89.5(90.0-90.0);n=2 120(109.0-127.0);n=135 <0.0001*** 
PR interval 173(154.0-196.0);n=290 175.5(146.0-190.0);n=12 173(154.0-196.0);n=278 0.187 
QRS 98(90.0-110.0);n=375 95(90.0-106.0);n=17 98(90.0-110.0);n=358 0.23 
QT 390(358.0-424.0);n=375 379(341.0-402.0);n=17 391(360.0-424.0);n=358 0.012* 
QTc 439(420.0-459.0);n=376 449(433.0-471.0);n=17 438(419.0-459.0);n=359 0.611 
P-wave axis 54(30.0-72.0);n=329 49(32.0-94.0);n=11 54(30.0-72.0);n=318 0.341 
QRS axis 45(22.0-70.0);n=375 54(20.0-70.0);n=17 45(22.0-70.0);n=358 0.62 
T-wave axis 71(39.0-115.0);n=372 61(30.0-131.0);n=15 72(39.0-115.0);n=357 0.0023** 
R-wave amp in V5 1.87(1.27-2.44);n=236 1.5(1.0-2.0);n=4 1.87(1.28-2.44);n=232 0.102 
S-wave amp in V1 1(1.0-2.0);n=235 0.8(0.0-1.0);n=4 0.95(0.526-1.535);n=231 0.081 
Hospitalization characteristics     
Cumulative LOS 18(6.0-48.0);n=395 53(10.0-121.0);n=19 18(6.0-46.0);n=376 <0.0001*** 
Cumulative no. of admissions  9(4.0-15.0);n=395 12(4.0-23.0);n=19 9(4.0-15.0);n=376 0.0267* 
Emergency no. of readmission  2(1.0-5.0);n=155 2.5(1.0-6.0);n=12 2(1.0-4.0);n=143 0.261 
CBC examinations     
MCV, fL 90.9(87.0-94.0);n=444 91.4(88.0-96.0);n=22 90.9(87.0-94.0);n=422 0.7512 
Basophil, x10^9/L 0.02(0.01-0.04);n=393 0.02(0.01-0.025);n=17 0.02(0.01-0.04);n=376 0.97 
Eosinophil, x10^9/L 0.16(0.1-0.27);n=442 0.125(0.0745-0.275);n=22 0.17(0.1-0.27);n=420 0.781 
HbA1C, g/dL 12.2(11.0-14.0);n=444 12(11.0-13.0);n=22 12.2(11.0-14.0);n=422 0.0561 
Lymphocyte, x10^9/L 1.5(1.1-1.975);n=442 1.08(0.81-1.48);n=22 1.5(1.0-2.0);n=420 <0.0001*** 
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Blast, x10^9/L 0.056(0.0-0.1);n=139 0.045(0.0-0.065);n=12 0.054(0.0-0.1);n=127 0.0281* 
Metamyelocyte, x10^9/L 0.11(0.075-0.19);n=16 0.09(0.055-0.165);n=4 0.115(0.08-0.225);n=12 <0.0001*** 
Monocyte, x10^9/L 0.45(0.35-0.63);n=442 0.5(0.34-0.6);n=22 0.4(0.0-1.0);n=420 0.2711 
APTT, sec 12.1(11.0-14.0);n=439 15.2(12.0-19.0);n=22 12.1(11.0-14.0);n=417 <0.0001*** 
Neutrophil, x10^9/L 4.1(3.14-5.385);n=442 4.2(3.0-6.0);n=22 4.1(3.0-5.0);n=420 0.271 
WBC, x10^9/L 6.5(5.0-8.0);n=444 6.1(5.0-8.0);n=22 6.5(5.0-8.0);n=422 0.251 
MCH, g/dL 33.5(33.0-34.0);n=444 33.9(33.0-34.0);n=22 33.5(33.0-34.0);n=422 0.325 
Myelocyte, x10^9/L 0.18(0.105-0.27);n=18 0.17(0.13-0.555);n=3 0.19(0.095-0.27);n=15 0.0182* 
Platelet, x10^9/L 189.5(153.0-232.0);n=444 152.5(130.0-195.0);n=22 190(155.0-233.0);n=422 <0.0001*** 
Reticulocyte, x10^9/L 55.2(40.0-79.0);n=65 50.6(44.0-77.0);n=5 55.2(39.0-80.0);n=60 <0.0001*** 
RBC, x10^12/L 4.13(3.685-4.52);n=444 3.945(3.585-4.45);n=22 4.1(4.0-5.0);n=422 <0.0001*** 
HCT, L/L 0.352(0.32-0.39);n=201 0.399(0.3805-0.4095);n=6 0.35(0.32-0.39);n=195 0.0207* 
LRFT examinations     
Potassium, mmol/L 4.2(4.0-4.0);n=421 4.4(4.0-4.8);n=20 4.2(3.8-4.5);n=340 <0.0001*** 
Urate, mmol/L 0.39(0.32-0.47);n=240 0.43(0.36-0.48);n=16 0.39(0.32-0.47);n=224 0.0016** 
Albumin, g/L 40(37.0-43.0);n=445 38.9(36.0-41.0);n=22 40(37.0-43.0);n=423 0.0121* 
Urea, mmol/L 6.4(5.0-8.0);n=445 6.6(6.0-10.0);n=22 6.4(5.0-8.0);n=423 0.0132* 
Sodium, mmol/L 140.1(138.0-142.0);n=360 140.7(139.0-143.0);n=20 140(138.0-142.0);n=340 0.271 
Protein, g/L 72(68.0-76.0);n=400 73.2(67.0-76.0);n=20 72(68.0-76.0);n=380 0.835 
Creatinine, umol/L 88.4(71.0-110.0);n=445 105.9(78.0-150.0);n=22 88(70.0-108.0);n=423 <0.0001*** 
ALP, U/L 70(59.0-86.0);n=445 73.5(64.0-91.0);n=22 70(58.0-86.0);n=423 0.356 
Aspartate Transaminase, U/L 26(21.0-34.0);n=260 24.8(22.0-32.0);n=8 26(21.0-34.0);n=252 0.161 
ALT, U/L 18(13.0-24.0);n=442 14.5(12.0-19.0);n=22 18(13.0-24.0);n=420 <0.0001*** 
Bilirubin, umol/L 10.4(8.0-14.0);n=445 13(9.0-19.0);n=22 10.3(8.0-14.0);n=423 0.0015** 
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Table 2. Univariate regression analysis to identify the predictors of TAVR mortality 
***:<0.001; **:<0.01;*:<0.05;.:< 0.1 
Characteristics Hazard ratio (95% CI) Z value P 
Demographics    
Female sex 0.41[0.17, 1.01] -1.947 0.0515 
Age at TAVR 0.98[0.95, 1.02] -1.099 0.272 
First presentation age 0.99[0.95, 1.02] -0.735 0.462 
TR Severity    

None/trivial 0.88[0.36, 2.16] -0.278 0.781 
Mild 0.38[0.13, 1.14] -1.726 0.0843. 
Moderate 1.09[0.42, 2.86] 0.175 0.861 
Severe 8.93[3.22, 24.78] 4.203 2.64E-05*** 

AR Severity    
None/trivial 1.38[0.59, 3.23] 0.732 0.464 
Mild 0.64[0.27, 1.50] -1.025 0.305 
Moderate 1.10[0.33, 3.73] 0.155 0.877 
Severe 2.30[0.31, 17.27] 0.81 0.418 

MR Severity    
None/trivial 0.62[0.21, 1.82] -0.877 0.381 
Mild 1.68[0.70, 4.00] 1.164 0.245 
Moderate 0.43[0.10, 1.83] -1.144 0.253 
Severe 2.79[0.64, 12.09] 1.367 0.171 

PR Severity    
None/trivial 1.38[0.59, 3.23] 0.732 0.464 
Mild 0.64[0.27, 1.50] -1.025 0.305 
Moderate 1.10[0.33, 3.73] 0.155 0.877 
Severe 2.30[0.31, 17.27] 0.81 0.418 

Complete recovery - - - 
Comorbidities    
Bradyarrhythmia 0.87[0.12, 6.47] -0.136 0.892 
Tachyarrhythmia - - - 
Diabetes/Hypertension 1.26[0.46, 3.44] 0.457 0.647 
Hyperlipidaemia 0.64[0.23, 1.73] -0.884 0.377 
Atrial fibrillation/flutter 7.23[0.96, 54.69] 1.917 0.055 
Respiratory 1.69[0.66, 4.33] 1.095 0.274 
Kidney 1.97[0.85, 4.57] 1.579 0.114 
Endocrine 0.85[0.11, 6.32] -0.159 0.874 
Gastrointestinal 0.49[0.21, 1.16] -1.624 0.104 

ECG Measurements    
Ventricular Rate 1.02[1.00, 1.03] 2.379 0.0174* 
PWD 0.94[0.88, 1.00] -2.077 0.0378* 
PR interval 0.99[0.97, 1.01] -1.059 0.29 
QRS 1.00[0.98, 1.02] 0.067 0.946 
QT 1.00[0.99, 1.01] -0.755 0.45 
QTc 1.01[1.00, 1.02] 2.434 0.0149* 
P-wave axis 1.00[1.00, 1.00] -0.095 0.924 
QRS axis 1.00[0.99, 1.02] 0.475 0.635 
T-wave axis 1.00[0.99, 1.01] -0.013 0.99 
R-wave amplitude in V5 0.64[0.22, 1.87] -0.823 0.411 
S-wave amplitude in V1 0.54[0.11, 2.55] -0.778 0.436 

Hospitalization characteristics    
Cumulative length-of-stay 1.01[1.00, 1.01] 2.618 0.001*** 
Cumulative no. of admissions  1.02[1.00, 1.04] 2.161 0.031* 
No. of emergency readmissions  1.01[0.94, 1.10] 0.337 0.736 

CBC and clotting examinations 
MCV, fL 1.04[0.97, 1.11] 1.076 0.282 
Basophil, x10^9/L 0.80[0.02, 162.40] -1.524 0.127 
Eosinophil, x10^9/L 0.75[0.10, 5.82] -0.271 0.786 
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HbA1C, g/dL 0.97[0.74, 1.28] -0.207 0.836 
Lymphocyte, x10^9/L 0.33[0.14, 0.79] -2.482 0.013* 
Blast, x10^9/L 0.08[0.00, 19481.00] -0.407 0.684 
Metamyelocyte, x10^9/L 0.12[0.00, 428.20] -0.502 0.616 
Monocyte, x10^9/L 0.62[0.09, 4.56] -0.465 0.642 
APTT, sec 1.02[1.00, 1.04] 1.708 0.088 
Neutrophil, x10^9/L 0.99[0.83, 1.19] -0.091 0.928 
WBC, x10^9/L 0.90[0.71, 1.13] -0.933 0.351 
MCH, g/dL 1.25[0.84, 1.85] 1.094 0.274 
Myelocyte, x10^9/L 1.61[0.14, 18.84] 0.38 0.704 
Platelet, x10^9/L 0.99[0.98, 1.00] -2.164 0.0305* 
Reticulocyte, x10^9/L 0.99[0.96, 1.02] -0.543 0.587 
RBC, x10^12/L 0.66[0.32, 1.37] -1.113 0.266 
HCT, L/L 22.00[0.03, 31.00] 1.584 0.113 
INR  2.74[1.84, 4.09] 4.955 7.23E-07*** 

LRFT examinations    
Potassium, mmol/L 2.54[0.56, 5.12] 0.526 0.091 
Urate, mmol/L 2.23[0.11, 43.72] 0.528 0.597 
Sodium, g/L 1.25[0.35, 2.11] 1.23 0.081 
Albumin, g/L 0.95[0.86, 1.04] -1.146 0.252 
Urea, mmol/L 1.08[1.02, 1.14] 2.649 0.008** 
Protein, g/L 1.02[0.95, 1.09] 0.466 0.642 
Creatinine, umol/L 1.00[1.00, 1.00] 2.469 0.014* 
ALP, U/L 1.01[1.00, 1.02] 2.335 0.020* 
Aspartate Transaminase, U/L 1.01[0.98, 1.002] 3.721 0.0002*** 
ALT, U/L 1.00[1.00, 1.01] 3.282 0.001** 
Bilirubin, umol/L 1.02[1.01, 1.02] 3.59 0.0003*** 

 

Table 3. Multivariate regression analysis to identify the predictors of TAVR 
mortality 
***:<0.001; **:<0.01;*:<0.05;.:< 0.1 
Characteristics Hazard ratio (95% CI) Z value P 
Demographics    
Age at TAVR 0.96 [0.90, 1.04] -1.015 0.310 
TR Severity    

TR Moderate 1.75 [0.22, 13.94] 0.525 0.599 
TR Severe 287.30 [19.60, 429.00] 4.132 3.59E-05*** 

AR Severity    
None/trivial 2.45 [0.54, 11.14] 1.162 0.245 
Moderate 1.49 [0.20, 10.88] 0.394 0.693 
Severe 1.10 [0.40, 3.21] 0.019 0.985 

MR Severity    
Mild 1.83 [0.41, 8.21] 0.785 0.432 
Severe 0.12 [0.01, 2.96] -1.291 0.197 

PR Severity    
None/trivial 1.53[0.18, 4.32] 0.7258 0.013* 
Moderate 1.19[0.06, 2.91] 0.1123 0.127 
Severe 2.51[1.01, 21.81] 0.7743 0.349 

    
Comorbidities    
Atrial fibrillation/flutter 1.28 [0.04, 2.07] -1.25 0.212 
Respiratory 1.01 [0.23, 4.43] 0.014 0.989 
Kidney 0.88 [0.20, 3.77] -0.176 0.860 

ECG measurements    
QRS 0.99 [0.96, 1.02] -0.596 0.551 
QT 0.98 [0.97, 0.997] -2.402 0.016* 
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QTc 1.03 [1.003, 1.05] 2.251 0.024* 
P axis 1.01 [1.00, 1.02] 1.547 0.122 
QRS axis 1.00 [0.98, 1.02] -0.03 0.976 
T axis 1.00 [0.99, 1.02] 0.787 0.431 

Hospitalization characteristics    
Cumulative LOS 1.01 [1.00, 1.02] 1.234 0.217 
Cumulative no. of admissions  1.04 [0.95, 1.11] 0.950 0.342 
No. of emergency readmissions 0.64 [0.45, 0.92] -2.396 0.017* 

CBC and clotting examinations    
MCV, fL 
 

1.00 [0.89, 1.13] 0.029 0.977 
APTT, sec 
 

1.02 [0.95, 1.09] 0.424 0.672 
MCH, g/dL 
 

1.79 [0.82, 3.92] 1.457 0.145 
Myelocyte, x10^9/L 
 

0.02 [0.002, 0.31] -2.852 0.004** 
HCT, L/L 
 

11.00 [8.12, 17.26] 2.96 0.0001*** 
INR  5.30 [1.82, 15.39] 3.063 0.0002*** 

LRFT examinations    
Potassium, mmol/L 
 

2.32 [0.05, 4.18] 2.315 0.027* 
Urate, mmol/L 
 

0.49 [0.00, 135.30] -0.247 0.805 
Urea, mmol/L 
 

1.27 [0.96, 1.68] 1.659 0.097 
Sodium, mmol/L 
 

1.12 [0.87, 1.43] 0.891 0.399 
Protein, g/L 
 

1.02 [0.91, 1.14] 0.275 0.783 
Creatinine, umol/L 
 

1.0010 [0.9880, 1.0150] 0.181 0.856 
ALP, U/L 
 

1.0140 [0.9968, 1.0310] 1.591 0.111 
Aspartate Transaminase, U/L 
 

1.0120 [0.9998, 1.0250] 1.929 0.053 
ALT, U/L 
 

0.97 [0.9239, 1.02] -1.296 0.195 
Bilirubin, umol/L 
 

0.94 [0.8546, 1.04] -1.115 0.265 
 

  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 26, 2020. ; https://doi.org/10.1101/2020.12.23.20248770doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.23.20248770
http://creativecommons.org/licenses/by/4.0/


Figure 1. Kaplan-Meier survival curves of patients undergoing TAVR. 
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