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2 

 

Abstract 30 

The prevalence of HIV varies greatly between and within countries. We therefore developed a 31 

flexible individual-based mathematical model for HIV transmission, that comprises a spatial 32 

representation and individual-level determinants. We tested this model by calibrating it to the HIV 33 

epidemic in Malawi and exploring whether the heterogeneity in HIV prevalence could be caused 34 

without accounting for heterogeneity in behaviour. We ran the model for Malawi between years 35 

1975-2030 with five alternative realizations of the geographical structure and mobility: (I) no 36 

geographical structure; 28 administrative districts including (II) only permanent relocations between 37 

districts, (III) permanent relocations and between-district casual sexual relationships, or (IV) 38 

permanent relocations between districts and to/from abroad and between-district casual sex; and (V) 39 

a grid of 10x10km2 cells, with permanent relocations and between-cell casual relationships. We 40 

assumed HIV was present in 1975 in the districts with >10% prevalence in 2010. We calibrated the 41 

models to national and district-level prevalence estimates.  42 

Reaching the national prevalence required all adults to have at least 20 casual sex acts/year until 43 

1990. Models II, III and V reproduced the geographical heterogeneity in prevalence to some extent if 44 

between-district relationships were either excluded (Model II) or restricted to minimum (Models III, 45 

V). Long-distance casual partnership mixing (Models III-V) mitigated the differences in prevalence 46 

substantially; with international migration the differences disappeared completely (Model IV). 47 

National prevalence was projected to decrease to 4-5% by 2030. Our model sustained the major 48 

differences in HIV prevalence across Malawi, if casual relationships between districts were kept at 49 

sufficiently low level. An earlier introduction of HIV into the Southern part of Malawi may thus be 50 

one of the explanations to the present heterogeneity in HIV prevalence.  51 

Keywords: HIV; Malawi, Disease transmission, infectious; Computer simulation; Spatio-temporal 52 

analysis 53 
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Author summary 54 

The prevalence of HIV varies greatly across the settings, both globally and within countries. The 55 

ability of the commonly used compartmental models to account for the geographical structure and 56 

individual-level determinants that cause this heterogeneity is limited. In this project, we developed 57 

an individual-based simulation framework for modelling HIV transmission in a real setting. We built 58 

the model to take into account an unlimited number of individual-level characteristics, and a 59 

geographical representation of the setting that can be defined using an arbitrary resolution and 60 

distance matrices. We demonstrate the use of this model by simulating the HIV epidemic of Malawi 61 

1975-2030 and exploring whether the observed heterogeneity could be preserved without taking 62 

into account any spatial heterogeneity in sexual behaviour. A relatively simple version of the model 63 

reproduced the broad-scale differences in HIV prevalence, but the detailed differences will need 64 

further investigation.   65 
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Introduction 66 

HIV is one of the most serious global health emergencies that occurred during the past few decades. 67 

The severity of the HIV epidemic varies greatly across the world. Currently, adult HIV prevalence in 68 

the southernmost countries of Africa ranges between 9% and 27%, whereas outside of Africa there is 69 

no country with a prevalence above 2%.[1] Differences exist also within countries.[2] In 2019, Malawi 70 

had a national HIV prevalence of 8.9% with the district-level prevalence ranging between 4% and 22% 71 

and the epidemic being more severe in the southern part of the country. [3] 72 

The reasons behind the variability remain disputed. The risk of HIV depends on a complex network of 73 

biomedical, socioeconomic, cultural and behavioural factors and geographical structure.[4] People 74 

living in densely populated or well-connected areas may have a broader contact network, and thus 75 

the likelihood to have at least one partner who is infected is higher. International connectivity may 76 

also play a role. It is however unclear to what extent the varying burden of HIV is a result from the 77 

times and locations where HIV was first introduced into the country and the connections between 78 

the different geographical locations.   79 

Mathematical models are an essential tool in the evaluation of dynamics of infectious disease 80 

epidemics. We developed an individual-based mathematical model including a geographical 81 

structure to simulate the course of the Malawian HIV epidemic between 1975 and 2030. In the 82 

present study, we describe the technical details of the model, test if the observed variability in HIV 83 

prevalence can be reproduced by differences in the early stages of the epidemic, and make future 84 

projections for district-level HIV prevalence. 85 

 86 

Methods 87 

Model description 88 
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Our individual-based model consists of two interacting modules (Fig. 1; Text S1, Table S1; the full 89 

model code is available on https://gitlab.com/igh-idmm-public/agent-based-hiv-transmission-model). 90 

The transmission module represents the population of the desired setting (Malawi). At the beginning 91 

of the simulation, an initial population is generated. For each individual we sample his/her age, sex, 92 

location of residence, a set of behavioural characteristics and biomedical factors, and the HIV status. 93 

Each child under age 15 is assigned a woman aged >15 years as mother, and men and women are 94 

paired to form regular partnerships. The population is updated in steps of one year, when the 95 

following events are sampled from pre-defined probabilities: an individual or family may move to 96 

another location; an individual’s socio-behavioural or biomedical characteristics may change; a 97 

couple may separate and single individuals may form partnerships; uninfected individuals may 98 

acquire HIV; an individual may die; and infants may be born to women of childbearing age. The 99 

number of locations in the model can be chosen arbitrarily, and separate distance matrices are 100 

defined for permanent relocation and for selecting casual partners.  101 

HIV transmission is determined by an algorithm consisting of two pathways: serodiscordant regular 102 

partnerships, or through casual relationships. In serodiscordant partnerships the uninfected partner 103 

may acquire HIV, and the risk depends on the infected partner’s HIV status and the frequency of sex 104 

acts. Casual partnerships are not modelled explicitly, but an average risk of getting infected is 105 

calculated for each individual. The sociobehavioural characteristics determine each individual’s 106 

number of casual sex acts, and the characteristics, age and geographical location the likelihood of 107 

each potential partner. The number of unprotected sex acts per year in casual and regular 108 

partnerships is adjusted with a year-specific coefficient to calibrate the model to observed 109 

prevalence estimates. 110 

The disease module determines the progression of each infected individual’s HIV infection (Fig. 1; 111 

Text S1, Table S2). The module is based on the R package gems and is similar to previously developed 112 

standalone HIV simulation models.[5-8] The course of infection is divided into health states based on 113 
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the natural course (primary infection, chronic infection, AIDS, HIV-related death), diagnosis status, 114 

and treatment status (off ART, 1st-line or 2nd-line; successful or failing treatment). The timings of 115 

transitions between health states are sampled from distributions. Each year, the model is called to 116 

simulate the course of infection for all individuals infected in that year. The outputs are then fed back 117 

to the transmission module to determine the infectiousness of each individual, and the time of HIV 118 

related death. 119 

Model calibration and scenarios 120 

We simulated the epidemic of Malawi for the years 1975-2030, with the aim to reproduce the 121 

differences in the epidemic across districts by the geographical structure alone. To save computing 122 

time, preliminary runs were done with a 10% sample of the total Malawian population, and the 123 

results were confirmed by running the model for the true population size, adjusting the parameters if 124 

necessary. We adapted the prior parameters from a previously published deterministic model, which 125 

we adjusted during the calibration of the model.[6] The population was divided into two risk groups 126 

that differed in terms of average frequency of unprotected sex acts. We iteratively increased the 127 

complexity of the mathematical model by adding geographical diversity, resulting in five alternative 128 

models (Table 1; Table S3). At each step, we adjusted the number of annual sex acts in both risk 129 

groups by a year-specific coefficient (using the parameters of the previous model as a starting point) 130 

so that the national adult HIV prevalence would stay between the UNAIDS lower and upper estimates, 131 

or within 5% (relative) margin of these, from 1990 to 2019.  132 

First, we ran the model without any geographical division (Model I). In the next step, we added a 133 

geographic dimension by dividing the population into 28 distinct locations, corresponding to the 134 

present administrative division of Malawi (Model II). Malawi consists of three regions (Northern, 135 

Central and Southern), which in turn are divided into a total of 28 administrative districts. We first 136 

assumed that 1% of the population would move to another, randomly selected, district every year, 137 
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and adjusted the rates of moving to and from certain districts to keep the prevalence close to the 138 

census data.[9] We allowed casual sex acts only within each district.  139 

Next, we added the possibility to have casual sex acts between different districts (Model III). We used 140 

a distance measure that is based on the minimum number of district borders that need to be crossed 141 

between the districts (for example, the distance between neighbouring districts being 1). The 142 

likelihood to choose a partner is proportional to the negative exponent of the distance. We 143 

compared the district-level prevalence in 2010 with the estimates from DHS.[3,10] We made three 144 

attempts to either double or halve the distance scale, in order to either diminish or increase the 145 

differences in prevalence between districts, respectively, and get closer to the observed district-level 146 

prevalence.  147 

In the following step, we added international migration, using a 29th geographical location 148 

representing the population connected to Malawi residing abroad (Model IV). Approximate in- and 149 

out-migration rates were taken from the literature, combining estimates on net migration and 150 

numbers of migrants living in Malawi.[11] We included at the beginning (1975) an additional 151 

population of 2,000,000 individuals who at that time were residing abroad. For people residing each 152 

year abroad, the risk of getting infected was determined from the HIV prevalence in the most 153 

common destinations of Malawians (South Africa, Zimbabwe, Mozambique). We scaled the risk of 154 

infection abroad and the level of casual acts within Malawi to find a balance between domestic and 155 

imported infections, leading to desired prevalence levels.  156 

Finally, we ran a model with a finer geographical resolution (Model V). We divided Malawi into 946 157 

cells, corresponding to a 10x10 km2 grid. For calculating the district-level prevalence, we determined 158 

the districts so that each cell would belong to one district. We set the population size in 1975 for the 159 

cells containing the 17 largest densely populated centres of Malawi to be equal to their actual size, 160 

and used the average based on each district’s population for the remaining cells. We assumed the 161 

same rate of annual permanent moves as in Model II: because of the random allocation of the 162 
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destination cell, the vast majority of people and households who move would move to another 163 

district. For casual relationships, we used mixing based on Euclidean distance, scaled analogously to 164 

the distance in Model II (so that the maximum distance within the country would be equivalent). 165 

International migration was not considered in this model. We adjusted the sex acts and scale of 166 

mixing between cells to calibrate the model for the national and district-level prevalence data. 167 

 168 

Results 169 

In all models, the whole adult population needed at least monthly unprotected sex with a casual 170 

partner to reach the observed prevalence level (Fig. 2). The average number of annual casual sex acts 171 

producing the best fit in Model I was 20 for low-risk and 70 for high-risk individuals until early 1991. 172 

Between 1992 and 1995, the corresponding numbers were set at 16 and 54, between 1996 and 2002 173 

at 10 and 34, and from 2003 onwards, 12 and 40, respectively (Fig. S1). The corresponding numbers 174 

in models II to V were similar although small differences existed. HIV prevalence stayed within or 175 

close to the UNAIDS estimated range in all models after parameter adjustments. The decreasing 176 

trend was projected to continue from 2020 onwards, with the national prevalence reaching about 5% 177 

in 2030 in all models. 178 

In the models with districts (Models II to IV), the moving rates out of Dedza, Dowa, Ntcheu and 179 

Zomba districts had to be increased from the default level 1% to 2% per year, and out of all other 180 

districts except Chitipa, Karonga, Mzimba, Lilongwe, Machinga, Mangochi and Neno to a lesser 181 

extent, to keep within the population distribution (Supplemental Digital Content Table S4). In turn, 182 

the attractivity of Neno district as a destination had to be increased by 50%. With these assumptions, 183 

the population sizes of all districts remained within a 10% margin of the census data. 184 

When Likoma Island (no data) is excluded, the observed district-level prevalence among adults aged 185 

15-49 years in 2010 ranged between 4.4% (Chitipa) and 21.6% (Thyolo), the prevalence being 186 
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generally highest in the Southern region.[10] The heterogeneity between the three regions was 187 

preserved in the district-level model without international migration or inter-district causal 188 

relationships (Model II; Fig. 3). The prevalence distribution in 2010 was highest in the same districts 189 

where the infections were seeded in 1975, and the prevalence was generally higher in the Southern 190 

region than the rest of the country. The models however could not reproduce the finer-scale 191 

patterns, such as the concentration of highest prevalence into the densely populated districts of 192 

Chiradzulu, Mulanje and Thyolo, or the zone of notably low prevalence on the north side of the 193 

capital Lilongwe. The modelled prevalence in 2010 was highest in Balaka (16.2%) and Nsanje (16.0%) 194 

districts, and clearly lowest in Likoma (2.8%), followed by Dowa (7.3%). In 2030, the highest 195 

prevalence was projected in Nsanje (6.4%). 196 

In Model III, the differences in HIV prevalence between districts almost disappeared in the first 197 

version where the distance between neighbouring districts was set to one unit. By doubling the 198 

distance three times (to 8 units per crossed district border), district-level prevalence in 2010 became 199 

clear. This metric can be interpreted as a person choosing a casual partner e
8
 = 2980 times more 200 

likely from his own district than from a neighbouring district. Similar to Model II, the prevalence in 201 

2010 was highest in the Southern region and in the few other districts where infections were seeded 202 

at the beginning of the model, but the observed heterogeneity between individual districts could not 203 

be reproduced (Fig.3). The lowest modelled prevalence in 2010 was in Mzimba (6.9%) and the 204 

highest in Balaka (16.9%). In 2030, the range across districts was 4.0%-6.3%. 205 

In contrast to Models II and III, in Model IV the geographical pattern disappeared: the prevalence in 206 

2010 was highest in the central region (about 14% in Lilongwe and the surrounding districts). The 207 

lowest prevalences were projected in Neno (1.9%), Zomba (2.4%) and Phalombe (3.3%), the two 208 

latter being known to have prevalence estimates above 16% in reality. In Model IV, the risk of getting 209 

infected had to be made twice as high than what would be expected by the prevalence abroad in 210 
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order to keep the national prevalence on an acceptable level. In 2030, the projected prevalence was 211 

below 6% in all districts in all three models.  212 

In Model V with a high geographical resolution, the geographical heterogeneity across districts in 213 

year 2010 was approximately in line with Models II and III, ranging from 6.0% (Nkhata Bay) to 16.0% 214 

(Phalombe; Fig. 4). Small clusters of cells with prevalence around 20% were found across the 215 

Southern region, but also elsewhere, for example in Mchinji district, and along the north and south 216 

borders of Rumphi district in the Northern region. The evolution of the district-level prevalence over 217 

time was also similar to Models II and III. In 2030, the prevalence was above 6% in some individual 218 

cells, mainly in the same cells that had the highest prevalence already in 2010; none of the cells were 219 

HIV free. 220 

 221 

Discussion  222 

A model with simple geographical representation can reproduce the prevalence patterns observed 223 

across Malawi to some extent. The differences in later years were essentially a result of the initial 224 

distribution of the infections at the beginning of the simulation in year 1975. A substantial mixing 225 

between people residing in different areas can smoothen the prevalence across the country very fast: 226 

the heterogeneity could be kept only if sexual relationships between people living in different 227 

geographical locations were restricted to a minimum. Considering international mobility within a 228 

reasonable rate diminished the differences in HIV prevalence rapidly. Increasing the geographical 229 

resolution of the model did not essentially influence the district-level prevalence estimates. 230 

We started all simulations with the assumption that HIV was present in 1975 only in districts where 231 

the prevalence in 2010 was at least 10%. This includes all districts of the Southern region, as well as 232 

the districts Mchinji, Ntcheu and Salima (Central region) and Karonga (Northern region). This 233 

assumption is somewhat arbitrary. The first case of HIV was officially detected in Malawi in 1985, but 234 
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it is reasonable to assume that the disease had been spreading in the country already years 235 

before.[12] The origin of HIV-1 has been localized to Central Africa.[13] Whether HIV had already 236 

spread to the entire Malawi or only selected locations by mid-1970s is unknown. A seroprevalence 237 

survey from Uganda from early 1970s found widespread antibodies in the population, suggesting 238 

that the infection was widespread in Africa already at that time.[14] But as rural areas tend to be 239 

overall less affected by HIV, it could be likely that HIV was introduced only later in places like North 240 

Malawi, which are less densely populated and have limited connections to other regions.[15] 241 

Moreover, there was a strong movement in the early 1970s of Malawian migrant workers moving 242 

back to the country from the neighbouring countries, mainly to take jobs in the growing agricultural 243 

export sector.[16] Most large plantations are located in the Southern region, so it could well be that 244 

the differences in prevalence date back to the 1970s, supporting the assumption that the spread of 245 

HIV in Malawi started in the South or other particular areas. In turn, when we explicitly included 246 

international migration from 1975 onwards in the model we could no longer reproduce the observed 247 

geographical heterogeneity. It may be that migration indeed plays a lesser role in the Malawian HIV 248 

epidemic in the recent decades. On the other hand, this shows that the assumptions on migration 249 

can entirely change the model’s results, so more attention should be paid on the true role of 250 

international mobility on the HIV epidemic. 251 

The fitted parameter for sex acts was notably high: the observed high prevalence could be reached 252 

only if all individuals had sex outside the regular partnerships at least once every three weeks, which 253 

is hardly realistic. This raises questions about the need of additional features into the model that 254 

would enhance the heterogeneity of partnerships structures. First, the high-risk population could be 255 

further categorized to include also “superspreaders”.[17] Second, the structure of regular 256 

partnerships may need to be diversified. In Malawi, 15% of men and 27% of women are estimated to 257 

be living in polygamous relationships:[18] allowing polygamous relationships with partial 258 

concurrence in the model may thus be more realistic than the current approach restricted to distinct 259 

or sequential monogamous partnerships. Third, male-to-male partnerships, currently excluded, may 260 
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accelerate the spread of HIV. The biological risk of transmission per act is about 10 times higher 261 

between males than males to females;[19] and because homosexuality in Malawi remains illegal and 262 

highly stigmatized, most men having sex with men are likely to also have regular or casual female 263 

partners.[20] 264 

All five parameterisations confirmed the future decreasing trend of HIV prevalence: we expect that 265 

by 2030, the national prevalence will be around 5%. The differences between districts will also even 266 

out. While in 2010, the model’s outputs were roughly in line with the DHS estimates, as of now (2020) 267 

the range was projected at 3% to 10%, and by 2030 no district would have a prevalence higher than 268 

6%. Data from the Malawi Population-based HIV Impact Assessment (MPHIA) showed that 269 

differences across geographical districts still existed in 2015, and the trends were similar as in the 270 

2010 DHS survey.[21] The differences may thus be levelling out slower than according to our models. 271 

This would support the hypothesis that the differences do not only depend on transmission dynamics 272 

but also on risk behaviour, which in turn could be influenced by sociobehavioural factors. Direct 273 

determinants of the risk of acquiring HIV, such as the number of unprotected sex acts and variability 274 

of partners, are strongly associated with social determinants. In the complex network of factors 275 

potentially associated with HIV, urbanity and literacy were the most central variables.  276 

The model with fine resolution led to similar results as the district-level models, with a few 277 

characteristics worth noting. The smoothening of prevalence between districts was faster than within 278 

the district-level models particularly in the Northern region, despite the fact that in only one of the 279 

six Northern districts (Karonga) HIV was assumed to be present in 1975. This could be due to the 280 

population density: in the model with fine resolution, in the North each cell had a much smaller 281 

population than the South, meaning that more people had to seek partners from outside their own 282 

cell. In turn, in the district model the number of people per district was relatively similar, since the 283 

districts in the North tend to have larger areas than in the South. Another interesting pattern was the 284 

prevalence patterns in the border areas and along the lakeshore. For example, the narrow strip in 285 
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Mangochi District between Lake Malawi and Mozambique border had cells with both very high and 286 

very low prevalence. These cells have only few other cells within a small radius, so people tend to 287 

seek partners more frequently from their own cell than in inland locations far from the borders. A 288 

similar pattern was seen in the district of Nsanje, which is almost completely surrounded by national 289 

border. Nsanje had a much lower prevalence than the rest of the Southern region in the fine 290 

resolution model, which contradicts both the data and the other models. In regions with few 291 

connections between cells, chance is likely to play also a major role in how the epidemic will develop. 292 

Our study had several limitations. Because of the computationally expensive model structure, the 293 

parameter fitting was done on an ad hoc basis, and parameter uncertainty or the stochastic 294 

variability of the results was not estimated. The model’s findings were also based on the arbitrarily 295 

chosen distribution of HIV in 1975. Several key factors were ignored in the model, including 296 

polygamy and concurrent regular partnerships, male-to-male transmission, and the associations 297 

between high-risk behaviour and mobility. However, the model developed for this study serves as a 298 

basis for further extensions. 299 

Conclusions 300 

The high prevalence in Southern Malawi may have developed partly as a result of an earlier 301 

introduction of HIV into this region. This could possibly be related to the return of Malawians from 302 

abroad in the 1970s. On the other hand, the models required a high number of sexual contacts for 303 

the entire population to realistically represent the further spread of the epidemic. The obvious 304 

explanation would be that there are also behavioural factors that accelerated transmission, 305 

particularly in the Southern region. Our results of this project form a basis for further evaluation and 306 

understanding of both the Malawian and global HIV epidemic: our model can take into consideration, 307 

in addition to the geographical dimension, an arbitrary number of individual-level factors, and can 308 

easily be adapted to other countries or settings. Whereas the broad difference between Southern 309 

Malawi and the rest of the country may well be due to the connection network between districts, the 310 
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variability of the socio-behavioural factors and their impact on HIV transmission needs to be 311 

quantified. Implementing these differences into mathematical models may help to get an in-depth 312 

understanding of the differences in HIV prevalence within countries. 313 
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Tables 370 

Table 1. List of modelled scenarios 371 

Model Description Distinct 

locations 

Movements* 

between locations 

International 

movements* 

Mixing** 

between locations 

Fitted variables 

 

I Baseline 1 n/a n/a n/a Casual sex acts 

II District model 28 No No No Casual sex acts, district-level movement* 

rates 

III District model 

with inter-

district 

transmission 

28 Yes No Yes Casual sex acts, mixing** rates between 

districts 

IV District model 

with 

immigration 

29*** Yes Yes No Casual sex acts, infection risk abroad 

V Grid model with 

inter-cell 

transmission 

946 Yes No Yes Casual sex acts, mixing** rates between 

cells 

*Movements refer to permanent relocations (i.e. individuals moving to another geographical location for a duration of at least one year). 372 

**Mixing refers to casual relationships with unprotected sex between individuals who reside in different geographical locations. 373 

***The 29th location corresponds to the Malawian and Malawi-connected population outside the country, and is treated regarding transmission differently 374 

from the remaining locations.  375 
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Figure captions 377 

Figure 1. Schematic representation of the mathematical model. The left panel (pink) shows the 378 

main structure of the transmission model with a loop over time steps. The middle panel (yellow) 379 

shows the transmission algorithm, applied at each time step, in more detail. The right panel (green) 380 

shows the HIV disease progression simulation, which is run for each patient at the time of infection.381 

Figure 2. National HIV prevalence among adults aged 15-49 years in Malawi 1990-2030 in the five 382 

different models. Model I (black curve): no geographical structure; Model II (blue curve): 28 districts, 383 

no international migration, no casual sex between districts; Model III (green curve): 28 districts, 384 

casual sex between districts allowed, no international migration; Model IV (yellow curve): 28 districts, 385 

casual sex between districts allowed, international migration considered; Model V (red curve): 946 386 

10x10km
2
 cells, casual sex between cells allowed, no international migration. The dashed curves in 387 

panel A show the UNAIDS projections.  388 

Figure 3. HIV prevalence among adults aged 15-49 years in 2010, 2020 and 2030 in the 28 389 

administrative districts of Malawi in models with district-level geographical structure. Panel A: 390 

Data from the Demographic and Health Surveys (DHS) in 2010. Panels B-D: Model II (no international 391 

migration, no casual sex between districts). Panels E-G: Model III (casual sex between districts 392 

allowed; no international migration). Panels H-J: Model IV (casual sex between districts allowed; 393 

international migration included). 394 

Figure 4. HIV prevalence among adults aged 15-49 years in 2010, 2020 and 2030 in Malawi in the 395 

model with a geographical resolution of 10x10 km
2 

(Model V). Panel A: Data from the Demographic 396 

and Health Surveys (DHS) in 2010 for the 28 administrative districts. Panels B-D: Model estimates for 397 

the 28 administrative districts. Panels E-G: Model estimates for the 946 cells. 398 
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Supporting information 400 

Supporting information.docx (contains the following items): 401 

Text S1. Technical details of the model 402 

Table S1. Parameters of the transmission model. 403 

Table S2. Parameters of the disease progression model. 404 

Table S3. Parameters related to the geographical dimension. 405 

Table S4. District-specific in- and out-movement rates (models II to V). 406 

Figure S1. Average annual unprotected sex acts with casual partners in the models I to V. 407 
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