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Abstract: Interventional cardiology procedure is an important type of minimally invasive surgery 11 
that deals with the catheter-based treatment of cardiovascular diseases, such as coronary artery 12 
diseases, strokes, peripheral arterial diseases and aortic diseases. Ultrasound imaging, also called 13 
echocardiography, is a typical imaging tool that monitors catheter puncturing. Localising a medical 14 
device accurately during cardiac interventions can help improve the procedure’s safety and 15 
reliability under ultrasound imaging. However, external device tracking and image-based tracking 16 
methods can only provide a partial solution. Thus, we proposed a hybrid framework, with the 17 
combination of both methods to localise the catheter tip target in an automatic way. The external 18 
device used was an electromagnetic tracking system from North Digital Inc (NDI) and the 19 
ultrasound image analysis was based on UNet, a deep learning network for semantic segmentation. 20 
From the external method, the tip’s location was determined precisely, and the deep learning 21 
platform segmented the exact catheter tip automatically.  22 

Keywords: cardiac intervention, echocardiography, electromagnetic (EM) tracking, deep learning, 23 
catheter localisation 24 

1. Introduction 25 

A cardiac interventional procedure, also known as an interventional cardiology procedure, is an 26 
important type of minimally invasive surgery that deals with catheter-based treatment of 27 
cardiovascular diseases, such as coronary artery diseases, strokes, peripheral arterial diseases and 28 
aortic diseases [1]. Generally, it can be classified into the following categories: cardiac catheterization, 29 
percutaneous coronary intervention, stents, embolic protection, percutaneous valve repair, balloon 30 
valvuloplasty and atherectomy. Catheter is the medical device used in most cardiac interventions 31 
that can be inserted into the body, which functionally allows for drainage, administration of fluids or 32 
gases, ablation and other tasks [2]. There are various types of catheters aiming at different medical 33 
applications, for example, the ablation catheter is specifically used for tissue ablation with the 34 
generated heat on the electrodes, the pacemaker catheter is to help heart pump, a central venous 35 
catheter is a conduit to give drugs positioned either in a vein near the heart or inside the atrium.  36 

Image guidance during cardiac intervention is a key concept to guarantee patient safety while 37 
the direct line of sight is inhibited. X-ray imaging, traditionally, dominates the guidance during 38 
cardiovascular interventional procedures, but it provides limited views when the interventions 39 
involve the myocardium, pericardium and cardiac valves. Therefore, cardiac ultrasound 40 
(echocardiography) was introduced to navigate these challenges. Compared to cardiac X-ray imaging, 41 
echocardiography is especially useful for transcatheter puncture, percutaneous mitral valve 42 
procedures and left atrial appendage closure. Echocardiography fulfils the requirements by 43 
providing a real-time imaging solution, with both device and cardiac inner structure demonstration 44 
simultaneously [3]. There are three types of echocardiography that can be used during intervention: 45 
Transthoracic echocardiography (TTE), intracardiac echocardiography (ICE) and transoesophageal 46 
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echocardiography (TEE/TOE). TTE is widely available and portable. It is a non-invasive imaging 47 
procedure [4]. However, it possesses limited ability to visualise the back of the heart and is difficult 48 
to use during interventional procedures. ICE has also demonstrated great potential for in-vivo 49 
medical device monitoring, where a thin probe is inserted inside a patient, but this phased array 50 
probe is expensive and can only be used once. Additionally, ICE offers no standard views [5]. As a 51 
trade-off between the image quality and imaging cost obtained through an echocardiography, TOE 52 
imaging is commonly chosen during the catheter-based intervention. Prior to imaging, the patient 53 
lies in the left lateral decubitus position, and swallows the probe following the instruction during 54 
probe insertion. Mild to moderate sedation is induced in the patient to ease discomfort and to 55 
decrease the gag reflex by providing medications, such as midazolam. This makes the ultrasound 56 
probe pass easily into the oesophagus. 57 

Currently, 2-D multiplane imaging is the most widely used mode of TOE, providing 20 standard 58 
trans-oesophageal echocardiographic views that can facilitate and provide consistency in training, 59 
reporting, archiving and quality assurance (as published by the American Society of 60 
Echocardiography (ASE) and the Society of Cardiovascular Anaesthesiologists (SCA)) [6]. In clinical 61 
practice, before localising and tracking the device from echocardiography, a specific standard view 62 
should be determined first. For instance, to view the general four chambers, the probe is positioned 63 
at the mid-oesophagus with a zero degree rotation. It is then placed at the same position with a 40 64 
degrees rotation. The aortic valve short-axis view can be obtained when the probe goes deeper into 65 
the stomach. The right ventricle and left ventricle views can be obtained at the same time from the 66 
transgastric apical short-axis view. 67 

To ensure that the catheter tip is accurately localised during a safe interventional procedure 68 
when obtaining TOE imaging views, a reliable tracking solution is required. Currently, solutions, in 69 
general, can be categorized into two classes: the external tracking system and image-based method. 70 
The external tracking system needs to utilise an extra device to determine the catheter tip location; 71 
for example, the Bard Access product that employs the tip confirmation system (TCS) displays 72 
different electrocardiogram (ECG) signals, corresponding to different catheter locations [7]. However, 73 
surgeons require additional time and knowledge to analyse the external device and, occasionally, 74 
these external devices are largely affected by clinical environments. In comparison with external 75 
tracking methods, an image-based method is more distinct and easier to apply. Consequently, in 76 
recent years, the image-based method has attracted a lot of research attention. Previously, many 77 
image-based catheter tracking algorithms were performed on X-ray datasets instead of 78 
echocardiography datasets because X-ray images, electrodes or catheter tips possess distinct 79 
characteristic features that can be used for tracking and detection. At the same time, these features 80 
were vague in an ultrasound, which led to difficulties in localisation using only the image-based 81 
method. The classic image-based methods could only be applied on a small number of images. The 82 
methods utilised hand-crafted features. On the contrary, with deep learning, image tasks of greater 83 
difficultly can be achieved by end-to-end convolutional neural networks (CNN) [8]. Recently, the use 84 
of deep learning has been increasing rapidly in the medical imaging field, including computer-aided 85 
diagnosis (CAD), radiomics and medical image analysis [9]. 86 

However, the previous external tracking and image-based methods were two distinct 87 
localisation solutions to determine the catheter tip and no combination of these two methods was 88 
proposed with previous research studies.   89 

The echocardiography images are collected on a 3D-printed, tissue-mimicking cardiac phantom 90 
[10] obtained from several standard TOE views with the Philips IE33 ultrasound machine [11]. Prior 91 
to ultrasound imaging, the catheter tip is first localised by the NDI EM tracking systems [12] using a 92 
pivot calibration [13] with an error less than 0.1 mm. Following data collection, all echocardiography 93 
images are processed with the Python 3 platform, using the UNet [14] automatic segmentation kernel. 94 
This hybrid localisation network can provide a reliable reference for new sonographers and doctors 95 
during catherization. 96 

2. Materials and Methods  97 
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2.1. Echocardiography Image Collection for Catheter Localisation Model Training 98 

To obtain the catheter tip information, at the same time, instead of using real patient data, the 99 
cardiac interventional procedure was simulated on a 3-D printed Lay-Fomm 40 phantom, which can 100 
fully resemble an adult patient heart. During imaging, the Philips S5-1 broadband sector array probe 101 
was placed on top of the cardiac phantom, while the phantom was fixed at the bottom of a plastic 102 
water tank. Subsequently, several TOE standard views were acquired by probe manipulation, such 103 
as the upper aortic valve view (commonly chosen in a real patient case). During the simulation, the 104 
Philips IE33 ultrasound machine was set to full volume mode with each image acquisition lasting for 105 
five seconds. All the DICOM images were then exported to blank CDs and analysed with ITK-SNAP 106 
[15]. 107 

 108 

 109 
Figure 1. (a) Shelley Medical Ablation Catheter. (b) Corresponding 2-D Ultrasound Image of (a). 110 

 111 

 112 
Figure 2. Catheter Tip Movement. (a) 2-D Echocardiography Image Acquisition on 3-D Printed Cardiac 113 
Phantom. (b) Corresponding Ultrasound Results of (a) Under Aortic Valve Short-Axis View 114 
 115 
The corresponding ultrasound imaging results of the Shelley medical ablation catheter movements 116 

can be observed in Figure 1. While the horizontal line is the artefact, which will not be labelled in the 117 
following works. In Figure 2, we can observe from the echo image that the background contained both 118 
the ablation catheter and the cardiac structures. In the aortic valve, the visualisation of the catheter is 119 
not only affected by the valve structure but also affected by strong reverberations from the water tank. 120 
The low-image resolution also increases the difficulty to localise the catheter tip accurately. 121 

2.2. Catheter Tip Determination via External EM Device & Pivot Calibration 122 

Before applying the deep learning network in image-based methods for automatic catheter 123 
segmentation, it was necessary to determine the exact location of the tracked catheter tip in the trained 124 
ultrasound dataset to provide the groundtruth. As illustrated in Figures 1 and 2, it is usually difficult to 125 
identify the catheter tip in the image by visual inspection alone. Therefore, mapping the physical 126 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2020.12.22.20248705doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.22.20248705


Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 10 

location of the catheter tip to where it appears in the ultrasound imaging provided an alternative 127 
approach to obtain a reliable groundtruth. 128 

 129 

 130 
Figure 3. (a) Illustration of Pivot Calibration Using NDI Aurora EM Tracking System. (b) Mapped Location 131 
of Catheter Tip in 2D Echocardiography. 132 
 133 
In this section, the NDI Aurora EM tracking system [12] depicted in Figure 3 (a) was used to 134 

arrive at the catheter tip’s location physically because of its non-radiation and real-time 3-D tracking 135 
ability. To simplify the setup, a 6-degree of freedom (DOF) catheter-type EM sensor from NDI was 136 
used to represent the catheter, as it could generate a mapped point on a 2-D ultrasound image as 137 
indicated in Figure 3 (b). The Shelley medical ablation catheter could not be directly connected to the 138 
EM tracking device. It was tied to the sensor, so that the tracked tip location could be shared. The 139 
physical location of the tip was calculated through a pivot calibration experiment. The use of external 140 
EM tracking is to determine the length of catheter tip before training the lateral network, without EM 141 
tracking, the catheter tip cannot be defined during groundtruth labelling. 142 

During tracking, all the data was recorded by the EM tracking device, saved as a text file and 143 
then processed further in MATLAB. Initially, the EM tracking device recorded the sensor’s 3-D 144 
location with the help of the tracking system coordinates. Through pivot calibration, the sensor was 145 
manually moved around a fixed pivot point near the EM field generator. The corresponding location 146 
matrix in the tracking system coordinates were transformed through formulas (1)–(5). 147 

 148 

                                             (𝑥, 𝑦, 𝑧) = 𝑡𝑖⃗⃗  ， (𝑞0, 𝑞𝑥 , 𝑞𝑦 ) = 𝑅𝑖
⃗⃗  ⃗                                                       (1) 149 

𝑅𝑖
⃗⃗  ⃗ ∙ �⃗� 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑡𝑖⃗⃗ = �⃗� 𝑓𝑖𝑥                                                             (2) 150 

                               𝑅𝑖
⃗⃗  ⃗ ∙ �⃗� 𝑜𝑓𝑓𝑠𝑒𝑡 − �⃗� 𝑓𝑖𝑥 ∙ 𝐼 = −𝑡𝑖⃗⃗                                                            (3) 151 

                          [

𝑅1
⃗⃗⃗⃗ −𝐼 

𝑅2
⃗⃗ ⃗⃗ −𝐼 

𝑅𝑁
⃗⃗⃗⃗  ⃗ −𝐼 

] ∙ [�⃗� 𝑜𝑓𝑓𝑠𝑒𝑡 �⃗� 𝑓𝑖𝑥] = [

−𝑡1⃗⃗⃗  

−𝑡2⃗⃗  ⃗

−𝑡𝑁⃗⃗⃗⃗ 

]                                                   (4) 152 

                      [�⃗� 𝑜𝑓𝑓𝑠𝑒𝑡 �⃗� 𝑓𝑖𝑥] = 𝑝𝑠𝑢𝑒𝑑𝑜_𝑖𝑛𝑣𝑒𝑟𝑠𝑒 [

𝑅1
⃗⃗⃗⃗ −𝐼 

𝑅2
⃗⃗ ⃗⃗ −𝐼 

𝑅𝑁
⃗⃗⃗⃗  ⃗ −𝐼 

] ∗ [

−𝑡1⃗⃗⃗  

−𝑡2⃗⃗  ⃗

−𝑡𝑁⃗⃗⃗⃗ 

]                                (5) 153 

 154 

2.3. Automatic Catheter Segmentation in 2-D Echocardiography through Deep Learning. 155 

After determining the location of the ablation catheter tip physically, the state-of-the-art UNet 156 
was utilized to train the deep-learning-based automatic segmentation platform on the collected 157 
phantom echocardiography from different standard TOE views [16,17]. To make the trained model 158 
more robust, another 19 real patient TOE folders were mixed and tested at the same time. 159 

Currently, the state-of-the-art semantic segmentation model being employed is UNet [18-23], 160 
which is depicted in Figure 4 [14]. This model can be used on smaller datasets, such as medical images 161 
for faster training, while the deep learning models have to be trained on larger datasets with more 162 
variations.  163 

 164 
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 165 
Figure 4. Diagram of Deep Learning Model Trained on 2-D Echocardiography Dataset. 166 
 167 

 168 
Figure 5. Flow chart of Echocardiography UNet Model Training Procedure. 169 

 170 
The segmentation model was built on 2-D TOE images, collected from the Lay-Fomm 40 171 

cardiac phantom, fabricated prior to obtaining both standard and non-standard views, with the 172 
ablation catheter moving from random places in the image. The image dataset contained 20 image 173 
volumes with 75 slices for each volume. The example provided in Figure 4 is a bicaval view with the 174 
catheter segmentation in the right atrium, and all of the groundtruth labels were obtained from the 175 
doctors’ manual segmentation (under the reference of both EM tracking results and visual 176 
inspections). The segmentation algorithm is written in Python 3. As illustrated from Figure 5, the 177 
model training procedure is given.  178 

 179 
The parameters used in the UNet segmentation model [24-32] were:  180 
 181 

1. First ten volumes as the training dataset, second set of ten volumes as the validation 182 
dataset and testing on 14 random 2-D echocardiography volumes  183 

2. Dropout at the last layer with the rate of 0.5  184 
3. Augmenting the data offline to ten times as before 185 
4. Use early stopping with patience of 6000 iterations 186 
5. Positive and negative rate of 0.95 (when the image slice contained the segmentation 187 

target, we regarded it as a positive slice)  188 
6. Patch size of 1,448,448  189 
7. Batch size of four  190 
8. Total number of iterations (batch size) were 30000  191 
9. Iterative UNet depth of five  192 
10. Loss function: Dice loss and Laplace smoothing for preventing overfitting  193 
11: Activation function as ReLU 194 
 195 
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To better describe the performance by automatic segmentation when compared to groundtruth 196 
labelling, we introduced a Dice loss to evaluate how accurate the prediction would be (calculated 197 
through equation [37]) 198 

    𝐷𝑖𝑐𝑒 𝑙𝑜𝑠𝑠 = 1 −
2|𝑋∩𝑌|

|𝑋|+|𝑌|
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
= 1 − 𝐷𝑖𝑐𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦                         (6) 199 

3. Results and Discussion 200 

 201 
Figure 6. (a) Groundtruth segmentation of Shelley medical ablation catheter. (b) Deep learning platform 202 
predicted catheter segmentation on simulated 2-D echocardiography. 203 

 204 

 205 
Figure 7. Catheter Tip Segmentation Results by Deep Learning Platform in 2-D Echocardiography 206 
Sequences (a) 0.1s (b) 0.2s (c) 0.3s (d) 0.4s (e) 0.5s (f) 0.6s (g) 0.7s (h) 0.8s (i) 1s 207 

 208 
The physical localisation result of the targeted ablation catheter was 4.7362 ± 0.3523 mm, and 209 

the corresponding catheter’s groundtruth segmentation is indicated in Figure 6 (a). Figure 6 (b) 210 
indicates the corresponding prediction results of Figure 6 (a), trained by the deep learning platform. 211 
The original 2-D echocardiography of Figure 6 is the simulated result collected on the 3-D printed 212 
cardiac phantom. With the proposed hybrid framework, the accuracy of the catheter tip’s 213 
groundtruth location can be guaranteed to 0.1mm. When compared to the traditional groundtruth by 214 
considering a doctor’s visual inspection alone, this new groundtruth is more reliable. During the 215 
catheter movement, the final trained model could still identify the dynamic target as indicated in 216 
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Figure 7. Within one second, no catheter tip was missing in every single frame, but at the same time, 217 
as the current deep learning network has limited ability in recognizing moving target, in figure 7, 218 
some predicted segmentations are incomplete compared to the groundtruth. The corresponding Dice 219 
accuracy results are as follows:  220 

 221 
0.8138811737712837 (max), 0.6771465049473349, 0.8079201691686618,

0.7211444100551068, 0.7322477650063857, 0.7824308664136881,
0.8112021032810474, 0.6286978766145106 (min), 0.7643511925952297

 222 

 223 
The training and testing of the Dice loss plots, indicated in Figure 8, are consistent with the 224 

aforementioned accuracy results. The Dice loss on training dataset was rather low. However, on the 225 
validation dataset, the Dice loss rose significantly (which indicated that the trained model was 226 
overfitting to a certain extent). Therefore, the accuracy obtained cannot compete with the 227 
performance on CT or MRI volumes. Except for the difficulty faced (due to the target being sparse or 228 
ambiguous), another challenge attributed to the limited variation of TOE images obtained, caused 229 
the overfitting of the model, which was unavoidable. 230 

 231 

 232 
Figure 8. Training curve of the deep learning model’s training and validation loss. 233 
 234 
To validate the trained model’s ability for generalisation, the model was also tested with real 235 

patient data obtained from several standard TOE views, such as the mid-oesophagus right ventricle 236 
(ME-RV) inflow view and the transgastric basal short-axis (TG basal SAX) view. From Figure 9, the 237 
predicted results proved the generalisation ability of the proposed model with correct catheter 238 
location and shape. As the target was too blurred, the shape may have varied from the groundtruth 239 
to a certain level. 240 

 241 
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 242 
Figure 9. Validation of the model on real patient echocardiography (a)–(c): groundtruth segmentation from 243 
ME-RV inflow, TG Basal SAX and bicaval view. (d)–(f): deep learning predicted segmentation of (a)–(c)  244 
 245 

4. Conclusions 246 

EM tracking device is easily get affected by the clinical environment, and it cannot provide the 247 
visual information of the medical device; while the target in medical images cannot provide the 248 
numerical results. This new hybrid localisation framework combines the advantages of external EM 249 
tracking and deep-learning-based image methods, and successfully builds up the connection 250 
between the physical coordinate and the image coordinates, which offers a new solution for obtaining 251 
a more reliable groundtruth to train the automatic deep learning model. At the same time, 3-D printed 252 
phantoms also provide a new direction for collecting the original dataset to train the deep learning 253 
models based on our requirements. 254 

Based on the simulated dataset and EM tracking tip determinations, the reliability of deep-255 
learning-based models can be guaranteed. However, the model’s accuracy and stability need to be 256 
improved in the future.  During the future improvement, the groundtruth labels have to be derived 257 
from the EM sensor, while all the possible standard views need to be classified too. Due to the dataset 258 
limitations, all the networks built thus far faced the overfitting problem, so an adequate fully 259 
automatic solution for cardiac intervention has not yet been achieved. 260 

 261 
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