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Abstract

Social distancing is an effective population-level mitigation strategy to prevent COVID19 propagation but

it does not reduce the number of susceptible individuals and bears severe economic and psychological con-

sequences. A vaccine has recently been developed but its deployment will be limited and not immediate.

Designing an optimal combination of these two intervention strategies is a priority, but a mechanistic un-

derstanding of the interplay between these strategies is missing. To tackle this challenge we developed an

age-structured deterministic model in which vaccines are deployed during the pandemic to individuals who,

in the eye of public health, are susceptible (do not show symptoms). The model allows for flexible and

dynamic prioritization strategies with shifts between target groups. We find that social distancing applied

uniformly to all ages and with vaccination targeted towards adults (20-59) or elderly (60+) work in syn-

ergism but up to a threshold beyond which vaccination is not efficient. The inefficiency threshold can be

eliminated by targeting social distancing at the age groups that are not vaccinated and the optimal strategy

is to prioritize vaccines to elderly. Nevertheless, while vaccination reduces hospitalizations, it does not affect

the time it takes to eliminate the virus from the population, which is affected only by social distancing.

Finally, the same reduction in hospitalization can be achieved via different combination of strategies, giving

decision makers flexibility in choosing public health policies. Our study provides insights into the factors

that affect vaccination success and provides methodology to test different intervention strategies in a way

that will align with ethical guidelines.

Introduction

Vaccines are an essential tool for reducing, or even eliminating the burden of endemic diseases, such as

measles, hepatitis, and influenza. For such diseases, vaccine development and production is, by now, a well-

practiced process. Nevertheless, developing, producing, and deploying vaccines in the midst of a pandemic

is a great challenge. For example, during the H1N1 pandemic vaccines were limited and their deployment

required prioritization [1]. COVID19 is a typical example of such a situation. Without vaccines, the only

strategy to contain COVID19 is to cut transmission chains by reducing contacts. Public health measures

such as social distancing, improved hygiene, and face masks effectively reduce the risk of infection but do

not reduce susceptibility among the population. Moreover, social-distancing interventions also bear social,

economic, and psychological consequences [2, 3]. Therefore, vaccine development for COVID19 has been

carried out at an unprecedented pace. Nevertheless, even now, when a vaccine is available, its deployment

requires prioritization due to high demand and low supply. Thinking ahead about relevant strategies for

deployment may save not only valuable time for policy makers [1, 4], but eventually lives and it is therefore

at the forefront of debate and research [5–9].

A recent modeling study [10] examined several age-dependent vaccine prioritization strategies with a

varying vaccine efficacy. One crucial result was that vaccinating adults at the ages of 60+ reduced mortality

more than other vaccination strategies (e.g., vaccinating juveniles) for a non-leaky vaccine. In this SEIR

model, a certain proportion of the population was selected and vaccinated before the onset of disease. In

reality, however, vaccines are deployed to parts of the population during the pandemic, with some prioriti-

zation strategy. Another crucial aspect to consider is social-distancing because a major driving force of the

COVID19 disease is asymptomatic infections. When a vaccine is deployed, social-distancing is still enforced
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at some level, possibly on some age groups more than on others. Jentsch et al [11] presented an evolution-

ary game model that combined non-adherence to non-pharmaceutical interventions (lockdown, masks) and

vaccination but did not explicitly test for the optimal combination of these two strategies. The question is

therefore how to combine vaccines with social distancing in the most efficient way?

Here, we use a data-driven, age-structured, deterministic model to examine combinations of vaccine de-

ployment and social distancing and the interaction between them. Our model is flexible and novel for several

reasons. First, it contains, beyond an age structure and age-dependent contact matrices, an asymptomatic

state and a quarantined state for symptomatic individuals. Second, vaccination dynamics reflect real-world

scenarios because vaccines are deployed to individuals who, in the eye of public health, are susceptible:

asymptomatic (exposed and infectious), those that have recovered from an asymptomatic infection, and

true susceptibles (those who were never infected). In addition, vaccines are deployed after the onset of the

pandemic. The model also allows for flexible prioritization strategies: One can choose a certain order of age

groups to vaccinate, and if the number of individuals to vaccinate at a certain group is depleted but there

are still vaccines available, the model shifts dynamically to the next group. Finally, it allows modeling a

combined implementation of both social distancing and vaccination.

Our goal is to illuminate qualitative effects of the combination of vaccine deployment and social distancing

strategies on COVID-19 progression. We focus on reduction in hospitalizations because hospital care is a

limited resource in public health, which is also correlated with mortality. We show that a combination of

vaccination and social distancing has a synergistic effect, but up to a certain threshold of social distancing

above which vaccination is no longer effective. This threshold can be eliminated for efficient synergism if

social distancing is targeted at the non-vaccinated group. Moreover, the same reduction in hospitalization

can be achieved via different combination of strategies, giving decision makers flexibility in choosing public

health policies. These results were consistent for six countries.

Results

We developed an age-structured deterministic compartmental model that reflects the main states of COVID19

progression (Fig. 1). We used 10-yr interval age-grouping (0-9, 10-19,...,70-79,80+), in line with previous

studies of COVID19 (e.g, [12]) and with the data management protocols of most countries. Vaccines are

deployed at a constant rate of κ vaccines per day, which we measure as the percentage of population that

a government can vaccinate a day. The amount of daily vaccines is divided equally across the target age

groups. For example, if the strategy is to vaccinate adults 60+, then each of the age groups 60-69, 70-79

and 80+ will get µj = κ/3 vaccines. The model allows for dynamic prioritization by selecting an order of

preferred target age groups and moving from one to the next when there are no individuals left to vaccinate

at the current target group (Fig. 2). We run the model for 30 weeks (Fig. S1, S2). The model and choice

of parameter values are detailed in the Methods.
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Figure 1: Model description. Individuals transition between states with rates specified by Greek letters.
Small Latin letters are probabilities. Subscripts j and l depict age groups. Individuals start at a susceptible
state (S) and upon infection with an age-dependent rate βlj become infected with the virus (E). After
an incubation period of 1α days individuals become either asymptomatic (A) with a probability mj or
symptomatic (I). Symptomatic individuals are identified and removed to quarantine (R) within η days or,
with a given probability hj develop severe symptoms and go to the hospital (H). Asymptomatic individuals
naturally recover (U) within γ days. All individuals that do not show symptoms can get a vaccine (V )
at a constant rate of µj vaccines per day. See Methods for a comprehensive description of the model and
parameters. Running the model without vaccination and starting with a single infected individual, we
obtained similar disease dynamics as those observed in empirical data (Fig. S4).

We measure the effectiveness of a vaccine as the percent of reduction in hospitalizations compared to a

no-vaccination scenario within each age group as

F jH = 1 − Hj
κ

Hj
κ=0

, (1)

where Hj
κ is the total number of hospitalizations in age group j for a given deployment rate κ, and Hj

κ=0

is the total number of hospitalizations in age group j when a vaccine is not deployed (Fig. 2). A similar

measure can be used to calculate the effectiveness of a vaccine in reducing hospitalizations across all age

groups:

F totH = 1 −
∑
j H

j
κ∑

j H
j
k=0

. (2)
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Figure 2: Model dynamics example. The model follows a population divided to nine age groups as
depicted in the figure. Dashed lines depict control (no vaccine). Solid lines depict a strategy in which we
first vaccinate elderly (60+) and then adults (20-59). In this example we use a single value of κ = 0.2 (0.2%
of the population is vaccinated per day) and there is no social distancing. Around 40 days there are no more
elderly to vaccinate and the model shifts to vaccinating adults (gray solid line). It is clear that most of the
reduction in hospitalizations is obtained for the elderly groups (compare dashed to solid black lines). The
orange and green dots mark the Hj

κ=0.2 and Hj
κ=0 values (for j = 80+) used in equation 1, respectively.

Model was run for 30 weeks S2) but 12 weeks are plotted here for clarity. I : infectious and symptomatic
(red); H : hospitalized (black); V : vaccinated (gray).

We present results in the main text for Israel, a small country of ≈ 8.7 million people, but we also tested

our model using age demographics and contact matrices for Italy, Belgium, Finland, Germany, and Luxem-

bourg and results were qualitatively the same for all countries, including Israel (Supplementary Information).

Vaccinating elderly is more effective than adults in reducing hospitalizations

As a benchmark, we first explore two vaccination strategies with no social distancing: (i) vaccinating all

elderly (60+) and then all adults (20-59) and (ii) vaccinating all adults and then all elderly. Vaccines are

currently not developed for children and we therefore did not include ages 0-19 in vaccination strategies.

Because the proportion of elderly in the population is low, in the first strategy the switch to vaccinating

adults occurs faster than the switch to vaccinating elderly in the second strategy (Fig. S5). F totH is clearly

greater for the first strategy (Fig. 3). It is important to note however that vaccinating a certain age group

affects almost exclusively this age group alone (Fig. S6).
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Figure 3: Comparison between prioritization strategies with no social distancing. The plot
depicts the F totH (y-axis) as a function of increasing vaccination rates (κ), measured as the proportion of
the population vaccinated per day (e.g., κ = 0.2 translates to deployment of 16,000 vaccines per day in
a population of 8 million people. Vaccinating elderly (60+) and then adults (20-59)–depicted in the blue
line–is more effective than vaccinating adults and then elderly (red line).

A comparison to simulations in which the probability of hospitalizations is uniform across all age groups

clearly shows that age-dependent disease severity underlies the increased reduction in hospitalizations ob-

tained when vaccinating elderly first (Fig S7).

A threshold to the synergy between vaccination and uniform social distancing

Now that we have presented the two main prioritization strategies, we can address the main goal of this

work: examining a combination of intervention measures. We test a scenario in which vaccines are deployed

while social distancing is still in place – a highly likely scenario in every country. A combination of social

distancing and vaccination is expected to have a synergistic, stronger effect in decreasing hospitalizations

than any of these measures alone, and this effect should increase with stronger social distancing and higher

vaccination rates. To test this hypothesis, we apply a uniform social distancing strategy by reducing contacts

at the contact matrix by the same factor to all ages, including juveniles (see Methods).

As expected, the intervention measures work synergistically. However, there is a threshold of social

distancing beyond which vaccination is no longer effective (F totH decreases; Fig. 4). This threshold is a result

of an overly-effective social distancing, which by itself prevents hospitalizations, overriding the need for

vaccinations. Crucially, this does not mean that a vaccine is not necessary. Strong social distancing keeps

the number of susceptible individuals high but without vaccine, individuals are bound to be infected.
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The results also indicate that while vaccination is more effective when given to the elderly (higher F totH for

the same value of κ; compare left to right panels in Fig. 4), F totH increases faster with social distancing when

adults are vaccinated. This is because adults are more connected in the social network and are therefore

more affected by social distancing than the elderly.

An important observation is that the same level of efficiency in reducing hospitalizations (F totH ), can be

obtained via different combinations of social distancing, vaccine prioritization and vaccine deployment rates.

For example, a 30% efficiency (dotted line in Fig. 4) can be obtained by either: (i) vaccinating adults at a

rate of 0.2% of the population per day with approximately 55% reduction in contacts; or (ii) vaccinating

elderly at a rate of ≈ 0.1% of the population per day with the same level of social distancing. This does

not mean however that the same number of hospital beds can be spared as vaccine efficiency is measured

compared to a no-vaccine control.
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Figure 4: Comparison between prioritization strategies with uniform social distancing. The
plot depicts the F totH (y-axis) as a function of increasing social distancing (0: no social distancing; 1: no
contacts). F totH is calculated at the end of 30 weeks. Line colors depict κ, the proportion of the population
vaccinated per day. Two strategies are shown: Vaccinating all elderly (60+) and then all adults (20-59)
(left panel); and vaccinating adults and then elderly (right panel). In both strategies there is a threshold of
reduction in contacts (dashed vertical line) above which vaccination is no longer effective. Horizontal dotted
line provides an example of how the same level of vaccine efficiency (here, F totH = 0.3) can be achieved using
different combinations of social distancing, vaccine prioritization and vaccine deployment rates.

Targeted social distancing eliminates threshold in vaccine efficiency

One advantage of a vaccine is that is may provide a way to alleviate social distancing. We therefore modified

our two strategies by applying social distancing only to the group that is not vaccinated: (i) vaccinating all
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elderly (60+) and then all adults (20-59), while enforcing social distancing on adults (0-19 and 60+ maintain

benchmark contact rates); and (ii) vaccinating all adults and then all elderly while enforcing social distancing

on the elderly (0-59 maintain benchmark contact rates).

Targeted social distancing indeed eliminated the threshold but it also has dramatically different effects in

both strategies. In this scenario, prioritizing vaccines to adults does not reduce hospitalizations as effectively

as when prioritizing to elderly. Seemingly, the best strategy in reducing hospitalizations is prioritizing

vaccines to elderly while applying social distancing to adults.

Elderly then adults; (SD for adults) Adults then elderly; (SD for elderly)
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Figure 5: Comparison between prioritization strategies with targeted social distancing. The
plot depicts the F totH (y-axis) as a function of increasing social distancing (0: no social distancing; 1: no
contacts). Line colors depict κ, the proportion of the population vaccinated per day. Two strategies are
shown: Vaccinating all elderly (60+) and then all adults (20-59), while applying social distancing only in
the adult group (left panel); and vaccinating adults and then elderly, while applying social distancing only
in the elderly group (right panel). Horizontal dotted line at F totH = 0.3 is the same as in Fig. 4. Vaccination
has a minor effect on F totH when prioritized to adults.

Time for virus elimination increases with social distancing, but is not affected

by vaccination

Another important consideration when combining strategies is the time it takes to bring the number of

infected cases to a level that would eliminate the disease. Typically, this is measured using R0. Nevertheless,

regardless of how it is derived (e.g., using next-generation matrix), R0 is defined as the average number of

secondary cases at the beginning of the outbreak; that is, in a completely susceptible population. This is

clearly not the case here and we therefore opted for two different approaches: (i) the percent of change in
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the number of infected (I + A); and (ii) the time in which growth rate is dI/dt + dA/dt ≤ 0. The two

approaches showed that vaccination had little effect on the time it takes to eliminate the disease, but that

increasing social distancing slowed the time to mitigation. We detail specific results for the former approach

and present the later in the Supplementary Information.

Eliminating the disease requires a negative change in the percent of increase in infected and asymptomatic

people (negative growth). We calculate this as rp = zt−zt−1

zt−1
, where z = I + A. Under uniform social

distancing, we find that the time to obtain rp = 0 increases with social distancing in the same way as F totH

(Fig. 4) and is little affected by vaccination amount or strategy (Fig. 6). Social distancing increases the time

to reach rp = 0 because it prevents infections, keeping a larger pool of susceptible individuals for longer

periods of time that the virus can infect. Once it reaches 0, however, rp stays negative (Fig. S8). Under

targeted social distancing, the time to reach rp = 0 decreases considerably (see y-axis differences between

upper and lower rows in Fig. 6) because more individuals are infected at the same amount of time (compared

to uniform social distancing).

Overall, the results show that social distancing seems to be the only factor affecting virus growth and it

is better applied non-uniformly, to adults than to elderly.
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Figure 6: Time to obtain zero percent change in virus growth. The plot depicts rp–the daily
percent change in infected and asymptomatic individuals–as a function of increasing uniform (upper row)
and targeted (lower row) social distancing (0: no social distancing; 1: no contacts). Square and line colors
depict κ, the proportion of the population vaccinated per day. tZ increases with social distancing. Two
strategies are shown: Vaccinating all elderly (60+) and then all adults (20-59) (left column); and vaccinating
adults and then elderly (right column). Notice how targeted social distancing dramatically decreases the
days to achieve rp = 0.
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Methods

Ethics statement

All the data we use originates from publicly available resources, such as academic literature or online epi-

demiological sources. We do not use any clinical data that requires IRB.

Model structure

The model is a mass action model that reflects a situation in which the number of contacts is independent

of the population size–a reasonable choice for directly-transmitted diseases [13]. It follows a population of

N individuals, divided into nine age groups, depicted with the subscript j (Table S1) and is described in the

following equations:

dSj
dt

= −
∑
l

βjl(Il +Al)
Sj
Nl

− µj
Sj
Lj

(3a)

dEj
dt

=
∑
l

βjl(Il +Al)
Sj
Nl

− αEj − µj
Ej
Lj

(3b)

dIj
dt

= (1 −mj)αEj − ηIj (3c)

dAj
dt

= mjαEj − γAj − µj
Aj
Lj

(3d)

dRj
dt

= (1 − hj)ηIj (3e)

dUj
dt

= γAj − µj
Uj
Lj

(3f)

dHj

dt
= hjηIj (3g)

dVj
dt

= µj (3h)

Lj = Sj + Ej +Aj + Uj (3i)

Model states and parameters

Parameters for this kind of model are of two kinds. First, “biological” parameters, the variation of which

is less related to country-specific demographics. These include, for example, recovery time (γ), the proba-

bility of developing an asymptomatic disease (m), incubation period (α), and age-dependent probability of

hospitalization (h). We obtained these parameters from the literature (see below). Second, demographic

“social” parameters that vary greatly between countries and include age structure and contact rates between

age groups. We obtained age structure from https://unctadstat.unctad.org/wds. Contact rates were

taken from Mossong et al. [14] because this is currently the most comprehensive empirical (not inferred,

e.g. [15]) survey of contacts relevant for the transmission of diseases such as COVID19 (we used the Italian

contact network for Israel as a one for Israel is not available but results were qualitatively consistent across

countries, including Italy). Mossong et al. [14] defined physical contacts as those that included interactions

such as a kiss or a handshake and nonphysical contacts as those involving being in close proximity for a
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certain amount of time (e.g., a two-way conversation without skin-to-skin contact). Because SARS-COV-2

can also be transmitted via air droplets and aerosols, we included all physical contacts and those non-physical

contacts that lasted for 15 minutes or more.

Individuals start at a susceptible state (S) and become infected upon an encounter with infectious indi-

viduals that are either symptomatic (I) or asymptomatic (A) at a rate specified in the infection matrix βlj

(we assume that asymptomatic and symptomatic people have the same infection rates). We calculated βlj

as the product of the infection probability q (equal across age) and contact rates between age groups j and

l, given by the contact matrix Clj :

βlj = q · Clj (4)

Infection due to an encounter with individuals from the same age group occurs when l = j. We halved

the matrix diagonal to avoid counting the same interaction twice. We obtained Clj for different countries

from [14] using the R package socialmixr. The matrices describe the daily mean number of contacts that

participants have with people at different age groups (Fig. S3). Next, we calculated the average rate of

infection β̂ by fitting an exponential model of the form I(t) = eβ̂t to Israeli case data (across ages) that

describes the invasion of the virus to a completely susceptible population at the early stages of the disease

(days 1-35, before interventions were forced; Fig. S4). This model gave a value of β̂ = 0.24 infections per

day (p < 0.001, fit: R2 = 0.98). However, β̂ is an average across all the population. We therefore calculated

the infection probability given an encounter between a susceptible and infected individuals as

q = β̂/ < Clj > . (5)

Running the model without vaccination and starting with a single infected individual, we obtained the same

initial disease dynamics and number of infected cases as observed in the data (Fig. S4).

Upon infection, the virus has a latency period of 6.4 days (α = 1/6.4) [16], after which individuals

become either asymptomatic with a probability mj or develop symptoms with probability 1 − mj . The

fraction of asymptomatic COVID19 infections was estimated at 30-40% [17]. In the absence of data on

age-specific asymptomatic infections, we have set mj = 0.4 for all ages. However, our model retains the

flexibility to quantify the role of age-dependent asymptomatic probabilities in COVID19 epidemiology (mj)

because a previous study on corona viruses (not including SARS-COV-2) found that children tend to be less

symptomatic than adults [18].

Asymptomatic individuals stop infecting (U) within 7 days (γ = 1/7) – an estimate from [19] that lies

between that of [20] (mean 5 days) and that of [21] (mean 11 days). Results were qualitatively the same

when we used the estimate by Davies et al [20], also used in [10]. We assume that symptomatic individuals

are identified and removed to quarantine (R) within 1.5 days (η = 1/(1.5)); results were qualitatively the

same when we used η = 1 or η = 1/2. Depending on age, with probability hj individuals can develop

severe symptoms and be hospitalized (H). We calculated hj using data from the Israel Ministry of Health

as the fraction of hospitalized cases out of those that showed symptoms. This probability is not expected

to vary greatly between countries as age-dependent hospitalization has a strong biological rather than social

component in countries which are culturally similar. Effectively, individuals in states V , U , R and H cannot

further infect. Separating between R and U is useful for scenarios in which quarantine should be considered

separately than asymptomatic recovery (e.g., for economic reasons because some quarantined individuals
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cannot work).

Interventions

Vaccination We administer vaccines to people in states S, E A, U , as they have not shown symptoms

and are therefore considered susceptible from a public health perspective. We assume a non-leaky vaccine

(prevents transmission) and that the vaccine affects all individuals in the same way. Vaccines are deployed

from the beginning of the simulation at a constant rate κ vaccines per day, which we measure as the percentage

of population that a government can vaccinate a day. For example, in Israel (population about 8.7 million),

vaccinating 0.2% of the population every day translates into deployment of about 17400 vaccines daily and

over 1.5 million vaccines in the course of 90 days.

The number of daily vaccines is divided equally across the target age groups. For example, if the strategy

is to vaccinate adults 60+, then each of the age groups 60-69, 70-79 and 80+ will get µj = κ/3 vaccines. The

µj vaccines are deployed to states Sj , Ej , Aj and Uj according to their relative proportions in the group

(see last terms in equations 3a, 3b, 3d and 3f and equation 3i). The model allows for dynamic prioritization

by selecting an order of preferred target groups. For example, a strategy of vaccinating 60+ and then 20-59

will first deploy vaccines to the age groups 60-69, 70-99, and 80+ as described above. Then, when there are

no individuals left to vaccinate, the model will switch to vaccinating individuals 20-59.

Social distancing Social distancing is the act of reducing contacts. Hence, we define βSlj = (1 − xlj)βlj ,

where elements of xlj range between 0 (no social distancing) and 1 (no contacts whatsoever), and act to

reduce contacts within and between groups. xlj is the quantity depicted on the x-axis of figures (e.g.,

Fig. 4). We note that the multiplication xljβlj is an element-by-element multiplication rather than a matrix

multiplication and that intervention is symmetric. For example, x1,1 = 0.4 will reduce contacts between

juveniles within the age group 0-9 to 60% of the non-intervention level and x3,1 = x1,3 = 0.9 is a strong

social distancing intervention reducing contacts between age groups 0-9 and 20-29 to 10% of their non-

intervention level.

Code availability

All analyses were performed in R and the code is fully available in https://github.com/Ecological-Complexity-Lab/

COVID19_vaccine_model.

Discussion

We used an age-structured model to explore the joint effects of vaccination and social-distancing interventions

on COVID19 disease dynamics. While social distancing delays infections that result in hospitalizations,

vaccination can reduce the total number of hospitalizations. Hence, a combination of these two strategies

provides greater benefits than their isolated deployment. Despite the synergism between these intervention

methods, when social distancing is applied uniformly it overrides the need for vaccinations if applied too

strongly (beyond a threshold), leading to a decrease in vaccine efficiency. Social distancing targeted only at

adults removes this threshold because it prevents infection of the elderly from adults while protecting elderly

via vaccination. Hence, both interventions are effectively working in parallel on different populations.
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Nevertheless, vaccination has little effect on the time it takes to eliminate the disease. This is because

vaccine is deployed during the pandemic, while non-vaccinated individuals continuously get infected. By

contrast, social distancing delays the time to disease elimination by preventing infections. Therefore, social

distancing is a strategy to “flatten the curve” but,as we show here, the way that it is applied and combined

with vaccinations is important. Under uniform social distancing, in which a greater portion of the population

is not infected (compared to targeted social distancing), the time it takes to mitigate the disease is longer

than under a targeted social distancing scenario. Taken together, our results clearly show that vaccinating

elderly in the ages of 60+ while applying social distancing to adults (20-59) is an optimal strategy and that

this is driven by the higher probability of severe infections in elderly. These findings are in line with another

study of vaccine prioritization [10].

Modeling is instrumental to informing policy makers and the public about possible scenarios of disease

progression and the potential efficacy of different intervention methods [12, 22–24]. It is also true, however,

that even now we have limited knowledge on the biology and epidemiology of the SARS-COV-2 virus,

hampering our ability to correctly parameterize models and that parameter values vary between human

populations and countries. Inaccurate parameterization and ignoring model assumptions (e.g., geographical

heterogeneity) could potentially lead to erroneous conclusions [25]. Our model assumes homogeneous mixing

in space and reflects an average population – for example, it does not include household, school, or work

dynamics, which are relevant when investigating epidemic infections via contacts.

Nevertheless, when interpreted within the known limitations, this study provides valuable insights into the

joint effect of vaccination and social distancing and the mechanisms underling their interplay. It also provides

initial guidelines for policy makers. For example, we find that the same level of overall efficiency in reducing

hospitalizations can be obtained via different combinations of social distancing, vaccine prioritization and

vaccine deployment rates, providing policy makers with a range of possibilities. Moreover, our model can be

readily used and easily modified to generate and test a range of hypotheses and strategies for vaccination. For

example, policy-makers can examine strategies that reduce deaths or those that prioritize vaccines to adults

to avoid economic inactivity. Such strategies and others can be tested by modifying the effectiveness measure

FX where X may be any combination of S,E, I, A, U,R,H, and V . In addition, we did not include children

in our targeted interventions because vaccine is not available for them (yet), and to reduce the complexity of

the experimental design. Future studies can test the effect of social distancing and/or vaccination targeted

at children. Finally, it will also be important to include information on proportion of people that refuse to

take a vaccine.

This study deals with an ethical question: Who should be vaccinated first? We do not presume to answer

this question, to which some guidelines have been laid out [8, 9]. We do, however, advocate for a mechanistic

understanding of the factors that affect vaccination success and how to combine intervention strategies in a

way that will align with those ethical guidelines. Our study provides one way towards these goals.
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Supplementary Information

S1 Methods

Table S1: Population structure of Israel and relevant parameters. j is the ID of the age group; Propor-
tion is the proportion of the age group in the Israeli population; hj is the probability of hospitalization
taken from https://datadashboard.health.gov.il/COVID-19/general. This probability is not expected
vary greatly between countries as age-dependent hospitalization has a strong biological rather than social
component in countries which are culturally similar.

i Age Proportion hj
1 0-9 0.20 0.05
2 10-19 0.16 0.04
3 20-29 0.14 0.10
4 30-39 0.13 0.12
5 40-49 0.12 0.17
6 50-59 0.09 0.24
7 60-69 0.08 0.34
8 70-79 0.05 0.52
9 80+ 0.03 0.73
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Figure S1: Epidemiological curves without vaccine. Epidemiological curves for the baseline model,
with no vaccination or social distancing. S: susceptible; E: exposed; I: infectious and symptomatic; A:
infectious and asymptomatic; R: removed to quarantine and then recovered naturally, and immune; U :
recovered naturally, and immune; H: hospitalized.
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Figure S2: Epidemiological curves with vaccine. Epidemiological curves with vaccination (κ = 0.2)
and no social distancing. S: susceptible; E: exposed; I: infectious and symptomatic; A: infectious and
asymptomatic; R: removed to quarantine and then recovered naturally, and immune; U : recovered naturally,
and immune; H: hospitalized; V : vaccinated.
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Figure S3: An example of an age-dependent contact rates. (A) Contact matrix for Italy calculated
from data collected by [14]. Matrix cells depict the mean number of daily contacts between people in different
age groups. Diagonal cells depict contacts between individuals from the same age group. (B) The same data
as in (A), represented as a network of contacts. Edge widths depict contact rates.
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Figure S4: Fitting curve for Israeli case data. We calculated the average rate of infection β̂ by

fitting an exponential model of the form I(t) = eβ̂t (blue) to observed case data across ages at the early
stages of the disease (days 1-35, before the lock-down; black curve). The exponential fit gave a value of

β̂ = 0.24 (p < 0.001, R2 = 0.98). Our epidemiological model (Fig. 1 in the main text) produced similar
curve (purple), indicating that our choice of parameters was reasonable. The source of the observed data
is https://github.com/CSSEGISandData/COVID-19.
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S2 Results

S2.1 Social distancing and vaccination
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Figure S5: Comparison of dynamics between two prioritization strategies. Dashed and solid
lines depict two strategies, respectively: (i) vaccinating all elderly (60+) and then all adults (20-59) and (ii)
vaccinating all adults and then all elderly. This example is for κ = 0.2 (0.2% of the population is vaccinated
per day) and there is no social distancing. In the first strategy, around 40 days there are no more elderly to
vaccinate and the model shifts to vaccinating adults (gray solid line). In the second strategy the number of
adults in the population is large and the switch to vaccinating elderly occurs after about 90 days. It is clear
that most of the reduction in hospitalizations is obtained when the elderly are prioritized. I : infectious and
symptomatic (red); H : hospitalized (black); V : vaccinated (gray).
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Figure S6: Comparison between prioritization strategies with no social distancing per age
group. The plot depicts the F jH (y-axis) as a function of increasing vaccination rates (κ), measured as the
proportion of the population vaccinated per day (e.g., κ = 0.2 translates to deployment of 16,000 vaccines
per day in a population of 8 million people. Each panel shows the effect of vaccination on a particular
age group (F jH). It is clear that vaccinating a certain group has a larger effect on that group (compare for
example the red line to the blue line in the 50-59 age group.
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Figure S7: Comparison between prioritization strategies with no social distancing and age-
uniform hospitalization probabilities. The plot depicts the F totH (y-axis) as a function of increasing
vaccination rates (κ), measured as the proportion of the population vaccinated per day (e.g., κ = 0.2
translates to deployment of 16,000 vaccines per day in a population of 8 million people. Vaccinating elderly
(60+) and then adults (20-59)–depicted in the blue line–is more effective than vaccinating adults and then
elderly (red line). Probability of hospitalization equals to 10% across all age 9 groups.
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Figure S8: Daily change in rp. The plot depicts rp (y-axis)–the daily percent change in infected and
asymptomatic individuals–as a function of time. Social distancing is applied uniformly to all the population.
Three values of % reduction in contacts are shown in rows.

S2.2.2 Growth rate lower than 0

We calculate the growth rate of infected and asymptomatic individuals from equations 3c and 3d as r =

dIj/dt+ dAj/dt = αEj − ηIj − γAj − µAj/Lj , and we look for the time in which r ≤ 0. The units of r are

individuals per day. We find a general pattern in which growth rate peaks (many new cases) and decreases

to 0, which corresponds to the time in which the pool of I and A compartments is more or less equal to that

of the exposed (E). After that point, the number of new infections (E) is much lower than the number of

individuals already sick (I +A), causing a negative growth. Afterwards, as individuals move from the I and

A compartments growth stabilizes on 0. As is the case for rp, social distancing and not vaccination is the

major factor affecting elimination, which is slowed down by stronger social distancing.
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Figure S9: Growth rate with no social distancing. The plot depicts daily values of growth rate r,
defined as r = dIj/dt + dAj/dt in units of individuals per day. The plot is for a strategy in which elderly
(60+) are vaccinated first and then all adults (20-59). Line colors depict κ, the proportion of the population
vaccinated per day.
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Figure S10: Growth rate with uniform social distancing of 50%. The plot depicts daily values of
growth rate r, defined as r = dIj/dt + dAj/dt in units of individuals per day. The plot is for a strategy in
which elderly (60+) are vaccinated first and then all adults (20-59). Line colors depict κ, the proportion of
the population vaccinated per day.
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Figure S11: Growth rate with uniform social distancing of 75%. The plot depicts daily values of
growth rate r, defined as r = dIj/dt + dAj/dt in units of individuals per day. The plot is for a strategy in
which elderly (60+) are vaccinated first and then all adults (20-59). Line colors depict κ, the proportion of
the population vaccinated per day.
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S3 Other countries

S3.1 Belgium
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Figure S12: Comparison between prioritization strategies with no social distancing. The plot
depicts the F totH (y-axis) as a function of increasing vaccination rates (κ), measured as the proportion of
the population vaccinated per day. Vaccinating elderly (60+) and then adults (20-59)–depicted in the blue
line–is more effective than vaccinating adults and then elderly (red line).
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Figure S13: Comparison between prioritization strategies with uniform social distancing. The
plot depicts the F totH (y-axis) as a function of increasing social distancing (0: no social distancing; 1: no
contacts). Line colors depict κ, the proportion of the population vaccinated per day. Two strategies are
shown: Vaccinating all elderly (60+) and then all adults (20-59) (left panel); and vaccinating adults and
then elderly (right panel). In both strategies there is a threshold of reduction in contacts (dashed vertical
line) above which vaccination is no longer effective. Horizontal dotted line provides an example of how the
same level of reduction in hospitalizations (here, F totH = 0.3) can be achieved using different combinations of
social distancing, vaccine prioritization and vaccine deployment rates.
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Figure S14: Comparison between prioritization strategies with targeted social distancing. The
plot depicts the F totH (y-axis) as a function of increasing social distancing (0: no social distancing; 1: no
contacts). Line colors depict κ, the proportion of the population vaccinated per day. Two strategies are
shown: Vaccinating all elderly (60+) and then all adults (20-59), while applying social distancing only in
the adult group (left panel); and vaccinating adults and then elderly, while applying social distancing only
in the elderly group (right panel). Horizontal dotted line at F totH = 0.3 is the same as in Fig. 4 and shows
that vaccines has very little in reducing hospitalization when prioritized to adults.
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Figure S15: Comparison between prioritization strategies with no social distancing. The plot
depicts the F totH (y-axis) as a function of increasing vaccination rates (κ), measured as the proportion of
the population vaccinated per day. Vaccinating elderly (60+) and then adults (20-59)–depicted in the blue
line–is more effective than vaccinating adults and then elderly (red line).
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Figure S16: Comparison between prioritization strategies with uniform social distancing. The
plot depicts the F totH (y-axis) as a function of increasing social distancing (0: no social distancing; 1: no
contacts). Line colors depict κ, the proportion of the population vaccinated per day. Two strategies are
shown: Vaccinating all elderly (60+) and then all adults (20-59) (left panel); and vaccinating adults and
then elderly (right panel). In both strategies there is a threshold of reduction in contacts (dashed vertical
line) above which vaccination is no longer effective. Horizontal dotted line provides an example of how the
same level of reduction in hospitalizations (here, F totH = 0.3) can be achieved using different combinations of
social distancing, vaccine prioritization and vaccine deployment rates.
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Figure S17: Comparison between prioritization strategies with targeted social distancing. The
plot depicts the F totH (y-axis) as a function of increasing social distancing (0: no social distancing; 1: no
contacts). Line colors depict κ, the proportion of the population vaccinated per day. Two strategies are
shown: Vaccinating all elderly (60+) and then all adults (20-59), while applying social distancing only in
the adult group (left panel); and vaccinating adults and then elderly, while applying social distancing only
in the elderly group (right panel). Horizontal dotted line at F totH = 0.3 is the same as in Fig. 4 and shows
that vaccines has very little in reducing hospitalization when prioritized to adults.
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S3.3 Finland
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Figure S18: Comparison between prioritization strategies with no social distancing. The plot
depicts the F totH (y-axis) as a function of increasing vaccination rates (κ), measured as the proportion of
the population vaccinated per day. Vaccinating elderly (60+) and then adults (20-59)–depicted in the blue
line–is more effective than vaccinating adults and then elderly (red line).
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Figure S19: Comparison between prioritization strategies with uniform social distancing. The
plot depicts the F totH (y-axis) as a function of increasing social distancing (0: no social distancing; 1: no
contacts). Line colors depict κ, the proportion of the population vaccinated per day. Two strategies are
shown: Vaccinating all elderly (60+) and then all adults (20-59) (left panel); and vaccinating adults and
then elderly (right panel). In both strategies there is a threshold of reduction in contacts (dashed vertical
line) above which vaccination is no longer effective. Horizontal dotted line provides an example of how the
same level of reduction in hospitalizations (here, F totH = 0.3) can be achieved using different combinations of
social distancing, vaccine prioritization and vaccine deployment rates.
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Figure S20: Comparison between prioritization strategies with targeted social distancing. The
plot depicts the F totH (y-axis) as a function of increasing social distancing (0: no social distancing; 1: no
contacts). Line colors depict κ, the proportion of the population vaccinated per day. Two strategies are
shown: Vaccinating all elderly (60+) and then all adults (20-59), while applying social distancing only in
the adult group (left panel); and vaccinating adults and then elderly, while applying social distancing only
in the elderly group (right panel). Horizontal dotted line at F totH = 0.3 is the same as in Fig. 4 and shows
that vaccines has very little in reducing hospitalization when prioritized to adults.
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Figure S21: Comparison between prioritization strategies with no social distancing. The plot
depicts the F totH (y-axis) as a function of increasing vaccination rates (κ), measured as the proportion of
the population vaccinated per day. Vaccinating elderly (60+) and then adults (20-59)–depicted in the blue
line–is more effective than vaccinating adults and then elderly (red line).
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Figure S22: Comparison between prioritization strategies with uniform social distancing. The
plot depicts the F totH (y-axis) as a function of increasing social distancing (0: no social distancing; 1: no
contacts). Line colors depict κ, the proportion of the population vaccinated per day. Two strategies are
shown: Vaccinating all elderly (60+) and then all adults (20-59) (left panel); and vaccinating adults and
then elderly (right panel). In both strategies there is a threshold of reduction in contacts (dashed vertical
line) above which vaccination is no longer effective. Horizontal dotted line provides an example of how the
same level of reduction in hospitalizations (here, F totH = 0.3) can be achieved using different combinations of
social distancing, vaccine prioritization and vaccine deployment rates.
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Figure S23: Comparison between prioritization strategies with targeted social distancing. The
plot depicts the F totH (y-axis) as a function of increasing social distancing (0: no social distancing; 1: no
contacts). Line colors depict κ, the proportion of the population vaccinated per day. Two strategies are
shown: Vaccinating all elderly (60+) and then all adults (20-59), while applying social distancing only in
the adult group (left panel); and vaccinating adults and then elderly, while applying social distancing only
in the elderly group (right panel). Horizontal dotted line at F totH = 0.3 is the same as in Fig. 4 and shows
that vaccines has very little in reducing hospitalization when prioritized to adults.
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Figure S24: Comparison between prioritization strategies with no social distancing. The plot
depicts the F totH (y-axis) as a function of increasing vaccination rates (κ), measured as the proportion of
the population vaccinated per day. Vaccinating elderly (60+) and then adults (20-59)–depicted in the blue
line–is more effective than vaccinating adults and then elderly (red line).
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Figure S25: Comparison between prioritization strategies with uniform social distancing. The
plot depicts the F totH (y-axis) as a function of increasing social distancing (0: no social distancing; 1: no
contacts). Line colors depict κ, the proportion of the population vaccinated per day. Two strategies are
shown: Vaccinating all elderly (60+) and then all adults (20-59) (left panel); and vaccinating adults and
then elderly (right panel). In both strategies there is a threshold of reduction in contacts (dashed vertical
line) above which vaccination is no longer effective. Horizontal dotted line provides an example of how the
same level of reduction in hospitalizations (here, F totH = 0.3) can be achieved using different combinations of
social distancing, vaccine prioritization and vaccine deployment rates.
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Figure S26: Comparison between prioritization strategies with targeted social distancing. The
plot depicts the F totH (y-axis) as a function of increasing social distancing (0: no social distancing; 1: no
contacts). Line colors depict κ, the proportion of the population vaccinated per day. Two strategies are
shown: Vaccinating all elderly (60+) and then all adults (20-59), while applying social distancing only in
the adult group (left panel); and vaccinating adults and then elderly, while applying social distancing only
in the elderly group (right panel). Horizontal dotted line at F totH = 0.3 is the same as in Fig. 4 and shows
that vaccines has very little in reducing hospitalization when prioritized to adults.
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