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ABSTRACT 

The agent-based model CovidSIMVL (github.com/ecsendmail/MultiverseContagion) is employed in this 
paper to delineate different network structures of transmission chains in simulated COVID-19 epidemics, 
where initial parameters are set to approximate spread from a single transmission source, and R0 ranges 
between 1.5 and 2.5.  

The resulting Transmission Trees are characterized by breadth, depth and generations needed to reach a 
target of 50% infected from a starting population of 100, or self-extinction prior to reaching that target. 
Metrics reflecting efficiency of an epidemic relate closely to topology of the trees.   

It can be shown that the notion of superspreading individuals may be a statistical artefact of 
Transmission Tree growth, while superspreader events can be readily simulated with appropriate 
parameter settings. The potential use of contact tracing data to identify chain length and shared paths is 
explored as a measure of epidemic progression. This characterization of epidemics in terms of 
topological characteristics of Transmission Trees may complement equation-based models that work 
from rates of infection. By constructing measures of efficiency of spread based on Transmission Tree 
topology and distribution, rather than rates of infection over time, the agent-based approach may 
provide a method to characterize and project risks associated with collections of transmission events, 
most notably at relatively early epidemic stages, when rates are low and equation-based approaches are 
challenged in their capacity to describe or predict. 
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MOTIVATION – MODELS KEYED TO CONTEMPLATED DECISIONS 

Outcomes are altered by changing the processes that determine them. If we wish to alter contagion-
based spread of infection as reflected in curves that characterize changes in transmission rates over 
time, we must intervene at the level of the processes that are directly involved in preventing viral 
spread. If we are going to employ models to evaluate different candidate arrays of localized preventive 
policies, those models must be posed at the same level of granularity as the entities (people enacting 
processes) to which preventive measures will be applied. As well, the models must be able to represent 
the transmission-relevant dynamics of the systems to which policies could be applied. Further, the 
parameters that govern dynamics within the models must embody the actions that are 
prescribed/proscribed by the preventive measures that are contemplated. If all of those conditions are 
met, then at a formal or structural level, the models are conformant with the provisions of the Law of 
Requisite Variety1 or the restated version of that law – the good regulator theorem.2  

On a more logistical or practical level, the models must yield summary measures that are responsive to 
changes in key parameters, highlight the dynamics, quantify outcomes associated with the dynamics, 
and communicate that information in a form that can be understood correctly by parties who are 
adjudicating on policy options.  

 If the models meet formal/structural requirements regarding requisite variety, and the parameters 
have a plausible interpretation in relationship to real-world situations, and the metrics do not overly-
distort the data contents that they summarize, then the models provide information that is directly 
relevant to decision-making processes. Models that meet these requirements will minimize the gap that 
separates models from decisions, a gap that will otherwise be filled by considerations other than the 
data used to create the models (for equation-based models) or the data generated by the simulations.  

In this work, we present an agent-based model that targets information requirements of decision-
makers who are setting policy at a local level, or translate population level directives to local entities and 
operations. We employ an agent-based modeling approach, which enables us to generate simulations 
that respond directly to the requirements of the good regulator theorem. Transmission events take 
place within a spatio-temporal frame of reference in this model, and rates are not conditioned by a 
reproduction rate (R0) that is specified a priori. Events are a function of movement and proximity. To 
summarize dynamics and associated outcomes of simulated epidemics, we employ metrics reflecting 
topological structure of transmission chains, and distributions of those structures. These measures point 
directly to dynamic features of simulated outbreaks, they operationalize the “efficiency” construct, and 
they are responsive to changes in parameters that govern dynamics of the simulations.  

BACKGROUND3 

What is CovidSIMVL, and in what are contexts may it be a useful tool? 
CovidSIMVL is short-hand for “Covid-19 Simulation, Viral Load version”.  It is an agent-based infectious 
disease modeling tool used to simulate viral transmission within a given local spatial context-- or within 
a functionally interconnected array of local spatial contexts.  

Agents are deemed susceptible, incubating, infective or inert at each simulation trial iteration and are 
located in finite spatial contexts or interconnected arrays thereof. Upon initialization, parameters are set 
to capture proximity and movement, to reflect spatial and temporal infection spread features observed 
in real world contexts. Parameters can be modified to embody various protections e.g., masking.  

Over the course of iterations within a CovidSIMVL trial, agents move stochastically within and between 
interconnected spaces, giving rise to Transmission Trees of varying structure for a given set of 
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initialization parameters. At each iteration in a simulation trial, transmission events ensue, reflecting 
pathophysiology and viral transmission mechanisms, density of agents within local contexts, and 
movement within and between contexts.  

Topology of Transmission Trees and associated distribution of branches of different lengths can be 
interpreted directly in terms of the construct “dispersion” (i.e., dispersion parameter k) 4 which is 
typically invoked to describe features of outbreaks where variation in infectiousness among individuals 
is materially consequential with regard to dynamic features of outbreaks. These features include the 
likely extent of spread, the speed at which a an infection is likely to propagate out through a population, 
and the risk for explosive outbreaks that represent sharp departures from prevailing population growth 
rates and are not reflected in the typically smooth curves that are fit to population-level data in typical 
equation-based models.5,6 Modeling of non-linear or localized features of outbreak via analysis of the 
topology of Transmission Trees is relevant to decision-making around individual-specific or context-
specific control measures. 

Compartmental Equation-based models – fitting mathematical models to events (e.g., new infections) 
Equation-based compartmental models of epidemic spread fit a system of equations to a set of 
historical data e.g., to new infections, proportion of test positives, or deaths. The data points reflect the 
outcomes of processes from which new infections arise. Future states are predicted by extrapolating 
from equations derived from historical data. Validity of those predictions rests on assuming that there is 
a pattern of transmission dynamics underlying the historical observations which will persist into the 
future, or which will be reproduced in some new setting to which the equations-based model is applied.  

Equation-based compartmental models typically operate on the “mass action incidence” principle5:  
 

C = r I S 
 

where C is the rate of new infections, r is a constant, I is the number of infectious individuals, S is the 
number of susceptible individuals. This assumes individuals within a population are evenly mixed i.e. all 
contacts are equally probable per unit time, thus probabilities of transmission from infected to 
susceptible are identical per unit time.7  

Transmission dynamics heterogeneity (reflected, for example, in different reproduction rates) or 
context-bound population vulnerabilities can be accommodated by homogeneously partitioning suitably 
large populations into local but still large sub-population contexts – “patches”8 which can be used to 
represent homes and home-based transmission, schools, long-term care facilities, or other local 
contexts. These are assembled into “meta-population” variants of the equation-based models.9  

Computational and sample size challenges may be associated with meta-population partitioning of real-
world datasets to represent relevant local transmission contexts.10 Also, when degree of infectiousness 
arises from complex interactions of host behaviour, pathogen and environmental factors, it may be 
impossible to define risk groups on a priori grounds,11 or datasets may not supply sufficient information 
required to partition data to reflect real-world assembly of contexts into a network conformant to intra-
contextual movement of persons.12 

Agent-based models – generating events  
Compartmental models of viral transmission fit systems of differential equations to health events that 
occur over time. Agent-based models iteratively generate discrete events, the properties of which may 
not always be well-represented or readily reproduced by systems of ordinary differential equations.13 
These events are intended to embody realistic transmissions in arrays of spatio-temporal contexts 
where distinct transmission dynamics are supported in each context, such as a long-term care facility 
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consisting of a mixture of staff and residents vs a very different maximum 23 hour staffed shelter for 
substance-using individuals, who spend the remainder of their 24 hour days in locations where they 
could become infected or transmit infection, such as the streets, other sheltered environments, or 
various other services for persons experiencing homelessness. CovidSIMVL’s flexibility to represent 
realistic possibilities is achieved via parameters governing agent behaviour that varies as a function of 
location and agent movement and is subject to rules reflecting transmission pathophysiology. 
Simulation events or averaged quantities reflecting them may indicate significant transmission variation 
associated with distinguishable localized subgroups contained in larger susceptible populations.   

Agent-based models – characterizing events 
Like other agent-based or individual-based infectious disease transmission models, 14,15,16 CovidSIMVL 
generates aggregate results by counting events over the course of multiple steps within a given 
simulation trial.  These aggregate results include regularly reported metrics such at R0 at a particular 
simulation step. Similar rates of infectiousness across contexts and iterations within a trial may suggest 
invariance with respect to model parameter value assignments e.g., duration of infectivity directly 
related to properties of the infectious organism. In setting the parameters to produce results of this 
nature, such results may sometimes be meaningfully summarized by parametric curves associated with 
systems of ordinary differential equations – that is, the simulation may generate results consistent with 
models governed by the “mass action incidence” principle. 

However, significant transmission variation (e.g., “superspreading events”) is usual for infectious disease 
spread.17,18,19 This variability is provided with every “opportunity” to manifest itself in an agent-based 
model. Specifically, by tracking direct linkages between events and assembling them into Transmission 
Trees, we create measures of transmission dynamics reflecting topological transmission attributes which 
may represent infection vitality in a way that is not necessarily captured in smooth curves generated by 
equation-based models.    

Because CovidSIMVL agent-based simulations evolve from properties of individual agents who are not a 
priori inherently mutually differentiated, heterogeneity for agent-based models can be reflected directly 
by initial agent positions. Parameter settings capture transmission-relevant properties. Consequently, in 
modeling scenarios where heterogeneity is required based on “prior” knowledge of distinctive 
characteristics of local settings, and stochastic and spatial effects contribute to system dynamics,20 
agent-based models are suited to the task.  

Transmission Chains, Transmission Trees and Transmission Forests 
A Transmission Chain C is a finite sequence Cn of individuals where the first element of the sequence C0 
an infectious agent, and for all applicable n we have viral transmission events between consecutive 
agents i.e. Cn  infects Cn+1. So C traces transmission events along a path. For convenience we state C to be 
rooted at C0. A Transmission Tree T (rooted at T0 where T0 is an initially infectious individual) is a 
directed graph (V,E) where the node set V is comprised of T0  plus any individuals belonging to 
Transmission Chains such that C0  = T0. Then the directed edge set E consists of all ordered pairs (Cn, Cn+1) 
comprised of consecutive agents belonging to any Transmission Chain corresponding to Transmission 
Chains C such that C0  = T0. Then the degree of a node is the number of individuals subsequently infected 
by that node. Finally, a Transmission Forest is a set of Transmission Trees with distinct roots. 

Since CovidSIMVL tracks transmission events Cn  infects Cn+1 for all agents at each step of a given 
simulation trial, the tool characterizes outbreaks as sets of Transmission Chains, relating the progression 
within a single array or a heterogeneous array of local transmission contexts, to the emergence of 
topologically distinct networked chains of varying lengths. These chains determine a rooted 
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Transmission Tree for a simulation trial seeded with a single infective agent, or determine a 
Transmission Forest should the simulation be primed with multiple infective agents.   

This process of constructing Transmission Trees from CovidSIMVL simulations differs from the inferred 
tree structures derived from epidemiological data consisting of new case dates and location within 
geographical division that may or may not map directly or cleanly onto the spaces within which 
transmission events occurs. These trees are statistical reconstructions whose validity reflects level of 
detail in contact information.21 In CovidSIMVL Transmission Trees are encoded directly from an event log 
generated over the course of a simulation trial. No inference is involved in constructing these trees. 

Fit-for-purpose modeling 
Models should be fit for the purpose of adapting to intended scope and scale of phenomena, including 
scope and scale of decisions to be supported or rationalized by the models. Equation-based models 
describing populations holistically and treating population members as functionally identical may be 
most transparently relevant and interpretable when contemplating policies to be applied at population 
level, where stochasticity and heterogeneity at the level of local transmission may not be relevant. Use 
of equation-based models at this scale of policy setting may conform well to the Law of Requisite 
Variety, and the models and metrics may provide best possible evidence to support decision making. 

Agent-based models may more flexibly illuminate early stages of infection transmission, when rates are 
low and infection has not dispersed throughout communities, where stochasticity is an important factor 
in determine breadth and level of spread, or when local context-specific decision supports are needed 
e.g., in considering targeted selective restart of ambulatory services to manage risk for healthcare 
associated transmission, or in considering operational continuity for short-term emergency shelters 
while possibly incurring cross-over transmission risk for populations experiencing homelessness.  

Regarding compartmental equation-based vs agent-based models, we need not consider either 
exclusively. A “most-transparently useful and demonstrably valid” issue may warrant different 
approaches given different envisioned informational uses moreover agent-based models and equation-
based models are treated as complementary, as reflected in the two modeling streams promoted by 
organizations such as the Public Health Agency of Canada.22 Further, hybrid models fully integrating both 
approaches are developed, and are demonstrably useful approaches to overcoming limitations inherent 
in reliance on one or the other approach.23 The work presented in this paper may be considered to be 
preparatory to such an approach. 

Single universe, multiverse implementation of CovdSIMVL 
CovidSIMVL can be configured to simulate spread among a prescribed number of susceptible persons 
occupying a single physically delimited spatial context (“Universe”). In a previous paper, simulations 
within these single Universes calibrate key CovidSIMVL parameters against growth curves associated 
with different R0 values24. The same single-Universe version of CovidSIMVL generates the Transmission 
Chains examined in this manuscript. 

The Multiverse version of CovidSIMVL simulates epidemics in arrays of local spatial contexts that may be 
heterogeneous with respect to parameters determining rate and extent of spread. This Multiverse 
version consists of up to nine CovidSIMVL Universes (e.g., school, homes, restaurants, long-term care 
facilities) traversed by agents according to schedules reflecting patterned movements over the course of 
weekly schedules. As individual agents can move between Universes, this CovidSIMVL version 
accommodates arrays of agents of differing infectiousness, where the degree of infectiousness for an 
agent is assumed to modulate with agent location within a given Universe. This version supplies the 
transmission-event-based Transmission Chains and other metrics discussed in Chang, Moselle & 
Richardson, 2020 (in preparation).25  
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Configuration 
CovidSIMVL enables model calibration by employing rules organized in a three-fold hierarchy to support 
the injection of biological, behavioural and local spatially-contextual heterogeneity that we deem to be 
logically necessary to support a diversity of realistic model scenarios, as per conditions set by the “Law 
of Requisite Variety” or the closely-related “good regulator theorem”. 

1. Primary – rules/parameters embodying physiologically determined viral spread features 
e.g., usual incubation period or duration of infectivity  

2. Secondary – rules/parameters determining if/when/where a susceptible person becomes 
infected or when/where infectious transmission occurs. For example, probability of 
transmission varies with proximity which we modulate according to two parameters: 

i. HazardRadius – this parameter functions as a secondary rule to determine 
transmission risk within a microcosmic spatial reference frame (a single CovidSIMVL 
“Universe”). Specifically, HazardRadius determines the likelihood of transmission 
between agents when they are located within specified distances from one another 
in a given simulation trial step. Protections such as masking would be reflected in 
lower values on HazardRadius.  

ii. MingleFactor – this parameter incorporates movements of agents in a delimited 
“Universe”. Subject to stochastic variation according to a Pareto “random walk” 
distribution, the MingleFactor parameter, over the course of iterations, determines 
how many susceptible or infectious agents fall within a critical radius where 
transmission can take place.  

3. Tertiary – rules/parameters that prescribe behaviour for agents with patterned movements 
between local contexts. CovidSIMVL schedules describe movements of agents between 
local Universes as determinants of intra-“universe” interactions which contribute to 
generation of viral spread dynamics that entail cross-over transmission in the “Multiverse” 
(array of local contexts).   

As demonstrated Moselle & Chang (2020)26 higher HazardRadius and MingleFactor values within a finite 
space (resulting in higher density of agents) produce infection rates summarized by curves associated 
with higher R0 values. These curves need not be as smooth as those typically associated with 
compartment equation-based models, particularly since discrete-time transitions as entailed by the 
CovidSIMVL schedule may produce jumps in counts. We stop short of invoking true discontinuity here 
given the Petri-Net model27,28 of continuous discrete event simulations in a finite space. 

METHODS 

CovidSIMVL Trials 
CovidSIMVL is an open source, public domain system written in JavaScript and freely available here 
under the GNU Open License Framework: www.github.com/ecsendmail/MultiverseContagion.  

The method employed in this study of transmission chains and superspreader events entails the 
generation of an array of simulations (trials), keyed to different combinations of CovidSIMVL parameters 
HazardRadius and MingleFactor. No assumptions about reproduction rate (R0) are involved in 
determining whether viral transmission occurs. Each trial runs through multiple generations until a 
target value for % infected is achieved. Each simulation is initialized with 100 susceptible agents and one 
infective agent. The dimensions of the space within which agents interact is held constant for all trials in 
this study.   
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• At any point in time, an agent is in one of four states- susceptible, incubating, infective, or inert 
(e.g., recovered, deceased, or immunized).  

• With each generation, agent location will change, and state may change depending on intrinsic 
agent-based factors (durations associated with incubation and infectivity) or physical location. 
Neither the rate of transmission nor the length of transmission chains are conditional upon any 
prior expected values, e.g., an assumed value for R0. 

• The simulations are run until a target 50% of the initial set of susceptibles are infected, or until 
the outbreak self-extinguishes i.e., all infectives are inert before the 50% target is met. 

In modern browsers such as Chrome, Edge, Safari or Firefox: console log entries are generated at each 
step of a CovidSIMVL trial, producing a record of every transmission event. Each event is characterized 
by a sequence number for the iteration/step, a specification of the agents involved in the transmission, 
and identification of the local spatial context (“Universe”) associated with the event.  This information is 
used to construct (rooted) tree diagrams consisting of chains of transmission generated in the trial. 

For reproducibility information within exactness limits imposed by stochastic variation of HazardRadius 
and MingleFactor please see the technical reports and CovidSIMVL Handbook in the github repository 
mentioned above. 

RESULTS 

Transmission Chains embedded in the CovidSIMVL console.log 
As follows we consider traces of transmissions for a synthetic epidemic in the console.log, which 
provides a window into detailed contagion dynamics. Figure 2 provides a snapshot view of the 
CovidSIMVL console.log.  
 
Figure 2. CovidSIMVL console.log 
 

 
 
In the following, we use the term “node” to refer to an agent. “Universe” is used to refer to an element 
of the array of delimited/localized spatial contexts within which one or more agents interact.  

The console.log transcript above depicts trial initiation with all events taking place within one Universe.  
Again, each infection event relates the identities of infected and infective nodes as well as the iteration 
sequence number for the infection event. For example, node 99 infects node 10 at generation 0 in 
Universe 0. Then Agent 10 infects 60, 0, 88, 36 and 58 – all in Universe 0. 

Likewise from Figure 3 we generate a Transmission Tree in matrix form (Table 1) where the 
Transmission Trees in that table are sorted by length, not by when the chains were initiated or 
terminated. In this table, a leaf is the unique terminal node in a chain of transmissions in a rooted tree.  
For any outbreak where the R0 for any agent >1, there will be at least two branches in the tree. The 
number of distinct chains and the number of leaves (terminal nodes) is the same.  
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From the Transmission Tree in Table 1, we can make the following observations: 
1. The maximum depth of the tree (maximum path length) is 9. 
2. The span of the tree (the number of distinct leaf nodes that have no descendants, i.e., terminal 

nodes) is 11. This is also the number of distinct chains (or paths to leaves). 
3. The unique nodes in this tree is 22. That is the number of people who become infected over a 

trial.  That count does not include infecting the initial infective agent.   
4. The trial is set to run until self-extinction or until a threshold value of 50% infected is reached. 

For the trials in this paper, that would be 50 out of an initial set of 100 susceptibles. For the trial 
depicted in Table 1, that threshold was reached on iteration 1248.  See Moselle & Chang 
(2020)29 for further illustration of the use of a standard threshold value to highlight impacts of 
systematically varying parameters in the model. 

5. An estimate of R0 can be generated for each agent that has become inert at the time of 
termination. 

6. Note that in this model R0 is not a property set at the initiation of the trial to reflect properties of 
the virus or a property of a population in a context. It is an emergent property of an individual 
agent at a specified point in an outbreak, reflecting the consequences of their movements and 
associated exposure up to that point in the simulation. 

 
Figure 3. console.log, Population = 100,  HazardRadius = 4, MingleFactor= 0.90, First 22 generations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Some assertions on the efficiency of an epidemic 
We rate efficiency of an epidemic by the largest number of infections in the shortest duration. In the 
agent-based model, where the number of transmissions that can take place within a generation is 

p=100 hr=4 nf=0.90 inf=22 r0=2.00

1I j:famKey 48:-1 infected by red i:famKey 10:-1 at gen 86 in Univ0

4simulation.js:2006 2I i:famKey 22:-1 infected by blue j:famKey 48:-1 at gen 171 in U0

4simulation.js:1990 3I j:famKey 69:-1 infected by red i:famKey 10:-1 at gen 181 in Univ0

simulation.js:1990 4I j:famKey 31:-1 infected by red i:famKey 10:-1 at gen 189 in Univ0

simulation.js:1990 5I j:famKey 79:-1 infected by red i:famKey 48:-1 at gen 205 in Univ0

simulation.js:1990 6I j:famKey 76:-1 infected by blue i:famKey 22:-1 at gen 266 in Univ0

2simulation.js:2006 7I i:famKey 32:-1 infected by red j:famKey 79:-1 at gen 457 in U0

4simulation.js:2006 8I i:famKey 47:-1 infected by red j:famKey 76:-1 at gen 494 in U0

2simulation.js:2006 9I i:famKey 36:-1 infected by red j:famKey 76:-1 at gen 533 in U0

simulation.js:1990 10I j:famKey 94:-1 infected by red i:famKey 47:-1 at gen 622 in Univ0

simulation.js:2006 11I i:famKey 87:-1 infected by blue j:famKey 94:-1 at gen 703 in U0

2simulation.js:2006 12I i:famKey 26:-1 infected by red j:famKey 36:-1 at gen 753 in U0

4simulation.js:2006 13I i:famKey 23:-1 infected by red j:famKey 36:-1 at gen 755 in U0

simulation.js:2006 14I i:famKey 33:-1 infected by blue j:famKey 87:-1 at gen 808 in U0

4simulation.js:1990 15I j:famKey 96:-1 infected by blue i:famKey 26:-1 at gen 827 in Univ0

2simulation.js:2006 16I i:famKey 27:-1 infected by red j:famKey 87:-1 at gen 843 in U0

5simulation.js:1990 17I j:famKey 85:-1 infected by blue i:famKey 33:-1 at gen 915 in Univ0

simulation.js:1990 18I j:famKey 81:-1 infected by blue i:famKey 33:-1 at gen 924 in Univ0

simulation.js:1990 19I j:famKey 45:-1 infected by red i:famKey 33:-1 at gen 964 in Univ0

simulation.js:1990 20I j:famKey 49:-1 infected by red i:famKey 33:-1 at gen 1004 in Univ0

simulation.js:1990 21I j:famKey 97:-1 infected by red i:famKey 33:-1 at gen 1079 in Univ0

2simulation.js:2006 22I i:famKey 3:-1 infected by red j:famKey 49:-1 at gen 1248 in U0

P=100 hr=4, mf =0.90, inf=22, r0 = 2.00 
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limited by the proximity of agents within a delimited space, the more parallel infective agents that are 
active, the more quickly a target population is infected.  

Table 1. Transmission Tree 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Thus, balanced trees with less depth (reflecting more infections arising from previous infections) and 
more breadth (more total leaves) represent efficient epidemic dynamics. For example, a hypothetical 
balanced tree with 5 descendants from each parent node will be more efficient than a highly 
unbalanced tree with one long pathway plus many short branches emanating from the same level 
(generation). At the extreme, a long pathway with no branches and a single terminal node would be the 
least efficient, as it is a Transmission Tree that happens also to be a single Transmission Chain. 

Transmission Tree generated by different combinations of HazardRadius and MingleFactor 
In attempt to clarify and quantify the relationships between the structure of Transmission Trees for 
parameterized synthetic epidemics, we run a limited number of trials, create potential metrics, and 
make observations: please see Table 2 for a summary of parameter values and outputs.30 The input 
variables appear in the first 3 columns, indicating the number of susceptibles (Pop) and HazardRadius 
(HzR) and MingleFactor (MingF) at the point of initialization, prior to any stochastic variation of 
HazardRadius and MingleFactor parameters.  The trials are set to terminate when 50 agents are 
infected, or when there are no more infectives (i.e., the outbreak self-terminates). EndInf indicates the 
number of infected agents at trial end. 

Tree Depth as measure of epidemic efficiency 
More efficient epidemics spread more quickly (over fewer generations), are embodied in more 
parallelism at the level of transmission and are reflected topologically in broader, shallower trees. The 
efficiency is indexed directly by the number of simulated generations (Gen) required to exceed the 
target threshold of 50%. Here, correlation of Gen with MaxDepth =.94 (P < .001) whereas the correlation 
is .97 (P < .001) if we consider only 10 out of 16 trials not self-extinguishing before 50% target reached.  
Along the same lines, the correlation of Gen with AvDepth = .67 (P <. 001), or .95 (P < .001) if we only 
consider 10 out of 16 trials not self-extinguishing. 

  

Parameters  
Population = 100  
HazardRadius = 4 MingleFactor=0.90 
At generation 1248, trial self-extinguished with 22 infections.  

Length Lengh0 Length1 Length2 Length3 Length4 Length5 Length6 Length7 Length8 Length9

8 10 48 22 76 47 94 87 33 85

8 10 48 22 76 47 94 87 33 81

8 10 48 22 76 47 94 87 33 45

9 10 48 22 76 47 94 87 33 49 3

8 10 48 22 76 47 94 87 33 97

7 10 48 22 76 47 94 87 27

6 10 48 22 76 36 26 96

5 10 48 22 76 36 23

3 10 48 79 32

1 10 69

1 10 31

Node0 
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Table 2. 16 Trials – HazardRadius = 4, Varying MingleFactors, Chain Leaves, Nodes and Depth 

 
 
Raw outputs: 

EndInf Number of transmissions at end of trial  

Gen Number of generations to end of trial (reach 50 or extinction) 

 
Derived measures from the Transmission Tree for each trial are: 

Maximum Depth 
(MaxD) 

Longest path from first node to leaf (no descendants) 

Average Depth 
(AvD) 

Sum of the paths / number of distinct paths (leaves) 

Leaves  Count of nodes without descendants 

Nodes  Total number of New Infections (initiator not included) 

 
Transmission Metrics considered for characterizing a trial: 

Leaves/MaxD 
(# chains/longest chain) 

ratio of the breadth vs depth of the Transmission Tree 

Leaves/AvgD 
(# chains/average chain length) 

breadth/average depth smooths out highly asymmetric trees 

Nodes/MaxD 
(# infected/longest chain) 

reflects total nodes plus density of shape of tree 

Nodes/AvgD 
(# infected/average chain length) 

reflects density of nodes over average shape of tree 

 

Relationship between agent movement (MingleFactor) and topology of a simulated outbreak 
The results in Table 3 suggest that in trials set out in Table 2 there is not a simple relationship between 
agent movement (MingleFactor) and breadth of tree (i.e., # of Leaves) or length of longest Transmission 
Chain (Maximum Depth).  However, the results are consistent with the assertion that a higher level of 
agent activity within a delimited space is associated with Transmission Trees that are broader but less 
deep. 

Higher levels of agent movement should produce more efficient spread. Because the trials in Table 2  
are stopped at 50% infected, we cannot use these data to verify that MingleFactor does indeed function 
in this manner in CovidSIMVL. However, the relationship between increasing MingleFactor and 
increasing R0, as reported in Moselle & Chang (2020)31 clearly demonstrate the expected relationship. 

Pop HzR MingF EndInf R0 Gen MaxDepth AvDepth Leafs Nodes Leafs/MaxD Leafs/AvD Nodes/MxD Nodes/AvD

100 4 0.90 22 2.00 1248 9 5.82 11 22 1.22 1.89 2.44 3.78

100 4 0.91 20 2.10 774 5 3.625 8 20 1.60 2.21 4.00 5.52

100 4 0.92 50 2.97 1481 9 6.38 24 50 2.67 3.76 5.56 7.84

100 4 0.93 47 1.88 1748 12 8.5 22 47 1.83 2.59 3.92 5.53

100 4 0.94 25 2.12 2588 13 5.6 10 25 0.77 1.79 1.92 4.46

100 4 0.95 50 2.28 1056 7 4.36 24 50 3.43 5.50 7.14 11.47

100 4 0.96 50 2.20 1672 11 7.3 23 50 2.09 3.15 4.55 6.85

100 4 0.97 50 2.70 815 6 4.5 22 50 3.67 4.89 8.33 11.11

100 4 0.98 50 2.40 1602 11 6.92 26 50 2.36 3.76 4.55 7.23

100 4 0.99 49 2.06 1531 9 6.55 20 49 2.22 3.05 5.44 7.48

100 4 1.00 50 3.68 924 7 5.12 26 50 3.71 5.08 7.14 9.77

100 4 1.01 47 1.96 1056 7 5.3 21 47 3.00 3.96 6.71 8.87

100 4 1.02 50 2.79 1238 9 6.88 25 50 2.78 3.63 5.56 7.27

100 4 1.03 50 2.25 1017 8 4.8 25 50 3.13 5.21 6.25 10.42

100 4 1.04 50 3.41 855 6 4.1 29 50 4.83 7.07 8.33 12.20

100 5 2.00 50 568 5 3.3 23 50 4.60 6.97 10.00 15.15
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Table 3. Correlation of MingleFactor with Transmission Tree topology attributes 

Measures Correlation Significance 

MingleFactor with Leaves .19 .48 

MingleFactor with Maximum Depth (MaxD) -.40 .12 

MingleFactor with Average Depth (AvgD) -.43 .09 

Mingle Factor with (Leaves / AvgD) .57 .02 

MingleFactor with (Leaves / MaxD) .53 .03 

Unifying Metrics 

For a Transmission Tree, breadth and depth may not cover all the important factors in a synthetic 
epidemic, which also may include: 

1. Number of steps/iterations needed to run the trial to termination – longer trial: less efficient. 
2. The number of transmissions before termination – fewer transmissions: less efficient. 

In Table 2, the row for MingleFactor 0.97, only 815 generations are needed, compared to >1600 on each 
side of it, which makes the depth of the tree only 6 instead of 11 for its neighbours. 

This epidemic stands out as being more efficient than those on either side. Not seeing any intrinsic 
reason for 0.97 to be markedly different, we would attribute this result to the stochastic nature of the 
simulation, which is why the next iteration of CovidSIMVL will enable automated trials and parameter 
evaluations. 

Similarly, examine the trial for MingleFactor 0.94. This level of activity may be expected, based on the 
trial’s neighbours, to run to 50 new infections but in this trial self-extinguished at 25 infections, using 
2588 generations, the largest for all trials. 

To incorporate these factors, we add two candidate Unifying Metrics: 

1. Unifying Metric T/E, defined as: 

The 1,000 scales to values near 1 to 10. We put the Gen into the denominator so that smaller 
Generations yield larger T/E efficiencies 
 

2. Q, defined as 

 
From these definitions, it follows that: 

With T/E a measure of efficiency, an epidemic is more efficient if the number of generations required to 
reach a threshold is smaller, and if the average depth of the Transmission Tree is smaller. Note that 
“Nodes” corresponds to new infections arising during a trial. Thus, epidemics with more nodes (ceteris 
paribus) are more efficient. 

 T/E  =  ((Nodes / AvgD) / Gen) * 1000   

 Q = ((Leaves / AvgD) / Gen) * Nodes * 100
  

Q = (T / E * Leaves) / 10 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.21.20248673doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248673
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Q modifies the quantity T/E by the number of leaves (which are terminal nodes without descendants). 
These leaves come from parallel paths: the larger the number of leaves, the more parallelism, hence 
greater epidemic efficiency. 

The two Unifying Metrics’ results are seen in Table 4. In the Green Band, the epidemics are mostly self-
extinguishing (EndInf = 25,22,20,47,49) with relatively larger generations except for Gen=1248 and 
Gen=774 where EndInf are only 22 and 20 respectively. The Q values are between 1 and 10.  

In the next band, Q values range between 10 and 20. Even though MingleFactor=1.01 does not create 50 
new transmissions, extinction is in 1056 generations, with smaller Transmission Tree depth: together 
these contribute to the epidemic efficiency of Q. The stochastic nature produced a rapid epidemic which 
at 47 generations, ran out of susceptible agents. 

Table 4. Unifying Metrics 

 
This table is sorted by Q.  

The next band of Q values, ranging from 20 to 30, are characterized by fewer generations (Gen) and 
smaller AvgD than the previous two bands. However, Q is not statistically related to MingleFactor 
(correlations of MingleFactor with Q = -.26, P = .34) so Q is driven by actual epidemic progress, rather 
than the parameters, which set the framework but not the unfolding in a stochastic universe. 

The final band with Q values above 40, clearly have fewer generations, and shallower Transmission Tree 
depths, reflecting overall efficiency. 

These observations are for single trials at various parameter settings. The stochastic nature of 
CovidSIMVL implies that more observations at these settings would permit confidence level estimates. 

CONSIDERATIONS for R0 
The approach we have taken for R0 is to record the number of susceptibles each agent successfully 
infects. However, when we terminate at newInf = 50, there may be a significant number of agents that 
have not completed their life cycle.  We know that we have counts for those which are inert, and we can 
average over those to provide a value of R0. 

These are of course early infectives, as susceptibles are never inert. However, the random nature of the 
simulation does not guarantee that all populations to any point have the same number of infectives. 

By examining the Transmission Trees, we see many that do not have a balanced structure. If the 
distribution of infections are random, any particular R0 at newInf = 50 or at extinction is not necessarily 

Pop HzR MingF EndInf R0 Gen AvDepth Leafs Nodes Leafs/AvD Nodes/AvD T/E Q

100 4 0.94 25 2.12 2588 5.6 10 25 1.79 4.46 1.72 1.72

100 4 0.90 22 2.00 1248 5.82 11 22 1.89 3.78 3.03 3.33

100 4 0.91 20 2.10 774 3.625 8 20 2.21 5.52 7.13 5.70

100 4 0.93 47 1.88 1748 8.5 22 47 2.59 5.53 3.16 6.96

100 4 0.96 50 2.20 1672 7.3 23 50 3.15 6.85 4.10 9.42

100 4 0.99 49 2.06 1531 6.55 20 49 3.05 7.48 4.89 9.77

100 4 0.98 50 2.40 1602 6.92 26 50 3.76 7.23 4.51 11.73

100 4 0.92 50 2.97 1481 6.38 24 50 3.76 7.84 5.29 12.70

100 4 1.02 50 2.79 1238 6.88 25 50 3.63 7.27 5.87 14.68

100 4 1.01 47 1.96 1056 5.3 21 47 3.96 8.87 8.40 17.64

100 4 1.03 50 2.25 1017 4.8 25 50 5.21 10.42 10.24 25.61

100 4 0.95 50 2.28 1056 4.36 24 50 5.50 11.47 10.86 26.06

100 4 1.00 50 3.68 924 5.12 26 50 5.08 9.77 10.57 27.48

100 4 0.97 50 2.70 815 4.5 22 50 4.89 11.11 13.63 29.99

100 4 1.04 50 3.41 855 4.1 29 50 7.07 12.20 14.26 41.36

100 5 2.00 50 568 3.3 23 50 6.97 15.15 26.68 61.35
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reflective of the average over a large number of trials with a given parameter setting of Population, 
HazardRadius and MingleFactor. 

Rooted tree structure and shared paths 
Epidemics with more serial than parallel executions would share more paths that have common 
ancestors, until a branching point is reached. This characteristic may be of use in describing the 
epidemic dynamics, if we can capture the relationships. 

With lower degrees of parallelism, there would be more common paths, and longer ones, such as in the 
Transmission Tree for HazardRadius (HzR) = 4 and MingleFactor (mF) = 0.94, with a Q of 1.72 – see 
Figure 4, below. 

Figure 4. Transmission Tree, HazardRadius = 4, MingleFactor = 0.94, Q = 1.72 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
On the other hand for HzR = 5 and mF = 2.0 we have high Q = 61 (very efficient epidemic) with many 
shorter paths. Longer common paths are signs of a slower epidemic. See Figure 5.  

Degree of Infectivity of Agents 
There are two ways to look at the role individual agents (or persons) can have in an epidemic. One is ro 
count the persons infected as a consequence of the individual being infective. This corresponds to 
tallying the size of the sub-tree of descendants of the individual in the Transmission Tree.  We term this 
the Spread Count of an infective agent. 

Another is to count an agent’s direct descendants, rather than all descendants of a given agent. We refer 
to this as Case Count, which corresponds to the reproduction number (R0) for an individual agent at a 
given stage (generation) in an outbreak. 

To illustrate these two concepts, we compare two Transmission Trees, taken from the Supplement, for 
HzR = 4, MingleFactor = 0.90 and MingleFactor = 1.04. The first (mF = 0.90) is a trial self-extinguishing 
after 22 new infections and 1,248 generations, with R0 of 2.00. The second (mF = 1.04) completes 50 
new infections in 855 generations with a terminating average R0 of 3.41. 

The two Transmission Trees taken from the Supplement are depicted in Figure 6. Table 5 summarizes 
differences between the two Transmission Trees. 

The first case (the mF = 0.90 trial) has Q = 3.33, extreme inefficiency, where the outbreak self-
extinguishes after 1,248 Generations due to stochasticity (reflected in variation in case counts) plus less 
physical movement within a finite space occupied at the time of initiation by 100 agents. The second 

p=100 hr=4 mf=0.94 r0=2.12 inf=25

Length L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

4 10 23 13 42 54 1

3 10 23 62 60 2

2 10 23 3 3

2 10 23 8 4

6 10 23 14 72 53 22 74 5

13 10 23 14 72 53 22 46 16 37 35 51 56 48 61 6

13 10 23 14 72 53 22 46 16 37 35 51 56 48 95 7

5 10 23 14 72 53 52 8

5 10 23 14 72 53 49 9

3 10 23 14 78 10

56

5.6
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case (mF = 1.04) has Q factor 41.36, representing a very efficient outbreak. This second case hits the trial 
termination threshold of 50% after 852 Generations.  

Figure 5. Transmission Tree, HazardRadius = 5, MingleFactor = 2.0, Q = 61 

 
 
We compare Spread Counts and Case Counts for the two trees, as depicted in Figure 7.   

The mF = 1.04 trial has a larger leaf to AvgD ratio at 7.07, compared to 1.89, which shows a higher 
degree of parallel activity. The Transmission Tree for this trial is broad and shallow. The nodes higher up 
have larger sub-trees, so it will take fewer nodes to account for any given proportion of infected.  

Note that for uniform spread we might expect Spread Count for each node at a particular generation in 
the simulation (and hence, at the same tree level) to have the same number of offspring. However, 
given the stochasticity built into each transmission event for CovidSIMVL, at each generation we have 
agents who are infected at the same generation in a trial associated with different numbers of offspring. 

The Transmission Tree for the mF = 0.90 trial is tall and skinny, with only one node having more than 
three descendants.  

Plotting the Spread Counts for the mF = 0.90 trial (Figure 8) we see that the Spread Counts show a 
steady roughly linear decline, where larger Spread values are associated largely with the timing of an 
agent becoming infected.  

By contrast, see plotted Spread Counts for mF = 1.04 in Figure 9. We find a curve resembling expected 
negative binomial offspring distributions arising from branching processes in over-dispersed count data 
(i.e., low binomial dispersion parameter k32).  Plotted Spread Count values transformed with the natural 
logarithm in Figure 9 show expected linearity. 

p=100 HzR=5 mF=2 Gen=568

Length L0 L1 L2 L3 L4 L5 L6

5 10 52 58 51 40 1

4 10 52 66 45 2

3 10 30 1 3

5 10 30 92 3 67 4

3 10 30 75 5

6 10 30 55 41 59 0 6

5 10 30 55 56 48 7

5 10 30 74 7 97 8

4 10 30 82 12 9

5 10 30 82 84 43 10

4 10 30 82 29 11

4 10 30 37 26 12

4 10 30 37 53 13

2 10 71 14

5 10 6 60 88 80 15

5 10 6 60 88 39 16

5 10 6 60 86 95 17

4 10 6 60 69 18

4 10 6 21 17 19

5 10 57 54 42 65 20

5 10 57 54 93 61 21

4 10 57 54 13 22

3 10 36 47 23

99

4.304348
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Figure 6. Two Transmission Trees for HazardRadius = 4 and mF = 0.90 or mF = 1.04. 

    mF=0.90          mF=1.04 

 
 
Table 5. Summary statistics for Transmission Trees generated by mF = 0.90 and mF = 1.04 

 
 

Consistent with the “80-20” rule associated with these types of distributions33 we find a large proportion 
of infections associated with a small fraction of the total set of agents.  We interpret this to be a 
consequence of a higher degree of movement by agents (mF = 1.04 vs 0.90) resulting in more rapid 
spread relative to infective duration. This results in a critical threshold for sustained infection being 

HzR MingF EndInf R0 Gen MaxDepth AvDepth Leafs Nodes Leafs/AvD Q

4 0.90 22 2.00 1248 9 5.82 11 22 1.89 3.33

4 1.04 50 3.41 855 6 4.1 29 50 7.07 41.36
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crossed34 so the outbreak does not self-extinguish, resulting in a larger net total number of cases being 
infected-- 50 infections over 852 generations vs 22 infections over 1,248 generations for the mF = 0.90 
outbreak. 

Figure 7. Spread Counts and Case Counts for mF = 0.90 and mF = 1.04 trials 
 

 

 

Figure 8. Spread Counts, MingleFactor = 0.90 

 

For uniform spread we might expect equal Spread Counts for each person (each person spreads to the 
same number of descendant infected) but with the stochastic tree of primary and secondary and tertiary 
spread, inevitably some agents infect more descendants than others. When we sort the agents by 
descendant count we get some agents with many descendants and some with fewer. 

0
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Spread Counts, MingleFactor = 0.90
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Regarding Case Count the mF=1.04 trial, stopped at 50% infection of original susceptibles has 13 agents 
primarily infecting 2 or more agents.  For mF = 0.90 trial, self-extinguishing with 22 agents infected, 
there are 6 agents infecting 2 or more agents.  

Both trials use the same HazardRadius value, embodying stochastic variation in viral load and duration 
of infectivity. Variation in Case Count in-trial reflects stochastic variation in the HazardRadius factor.  

Mean Case Count differences reflect differences in the R0 values, which are 2.00 for the mF = 0.90 trial 
vs 3.14 for the mF = 1.04 trial (see Table 5, above). Note that despite R0 of 2.00, the mF = 0.90 trial self-
extinguishes after 22 of 100 original susceptibles are infected. For mF = 1.04 trial, transmissions 
continue, with the trial halted when threshold of 50% infected is reached.  

Figure 9. Spread Counts, Natural Logarithm of Spread Counts, MingleFactor = 1.04 

 
 
 
 
 
 
 
 
 
 
 
 
These differences in R0 values and Case Counts for mF = 0.90 trial vs the mF = 1.04 trial illustrates  
impact of the mF (MingleFactor parameter) both on the efficiency and sustainment of transmission, and 
on number of primary infections associated with any given infective agent. This points to contribution of 
physical movement of agents in space to the Case Count differences.  

Comment on Superspreaders 
If by “superspreader” we mean agent with high degree of primary or direct infection, relative to the 
average or typical infective, the mF = 0.90 trial and the mF = 1.04 trial do produce some variation in 
number of direct infections, with statistical outliers as shown in Figure 10. For direct infections depicted 
in the figure, the shape of the curves is similar, reflecting the fact that the HazardRadius is held constant 
across the two trials, though it is subject to stochastic variation. 

Figure 10. Case Counts, mF = 0.90 and mf = 1.04 trials. 
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HazardRadius may be understood as a property “owned” by agents, producing a main effect  
independent of movement of agents within a space, though there are also interactions between 
HazardRadius and the effect generated by movement. To accentuate the superspreader dynamic in a 
simulation, the MingleFactor would also need to be set at a level ensuring a requisite portion of space(s) 
covered by infectives and shared with susceptibles is large enough, and the space is covered sufficiently 
rapidly that the infection does not self-extinguish before any given infective has transmitted to a large 
number of susceptibles occupying that space. 

On the other hand, if “superspreading” counts all descendants infected by primary and secondary (and 
so on) infections along all subsequent infection chains, then the stochastic nature of the agent based 
model guarantees significant asymmetry, if for no other reason than that spread unfolds over the course 
of generations with values of parameters stochastically varying. 

These may not physiologically be “superspreader” events but statistical artifacts of stochastic and 
probabilistic transmissions based on moving contacts, and on spread unfolding over the course of 
generations. We can have “superspreader” events without superspreading individuals. 

Comment on Superspreader Events 
There are three ways that the term “superspreader” finds common use. They are: 

1. A highly infective person creating many primary infections 
2. An infection source for (eventually) large numbers cases who may be “held responsible” 
3. An event in which “unexpectedly many” new cases arise. 

With regard to the first use , the current literature sometimes references viral load as a possible 
mechanism, which may also relate to duration of infectivity.35,36,37 This parameter in CovidSIMVL 
reflecting viral load is subject to stochastic variation over generations within trials. This is reflected in 
variability in the Case Counts metric in this paper.  

Regarding the second use, the Spread Count metric provides a direct measure. 

For the third use, where the number of cases associated with an event or a context is statistically 
elevated relative to some modal value, CovidSIMVL can be configured to produce such simulations by 
setting values on HazardRadius and MingleFactor such that the virus does not self-extinguish early, and 
by increasing the number of infective agents used to prime the simulation. Note that in the case of the 
material above, the simulations are primed with just one infected agent.  

In the Figure 11, we have results from the first iteration (Gen) of a CovidSIMVL trial starting with 100 
susceptible plus 5 infective persons, a Hazard Radius of 20 and MingleFactor = 10.  

This figure shows 31 persons infected by five active cases in the first hour, distributed among agents 10 
to 14 with Case Counts = 5, 4, 8, 8, 6 for these five agents. This is a simple demonstration of the power 
of density and mingling in the contagion spread of SARS-CoV-2 when agents are infective and moving in 
such a way that the mechanisms of transmission cover the distance between infective and susceptible. 

For this same trial, Figure 12 depicts transmission after 2 generations. In this graphic depiction of 
infection spread generated by CovidSIMVL BLUE = initial infective,  YELLOW=infected and GREEN = 
susceptible. 

CONCLUSION – Potential Applications of the Tree Characterization of Viral Transmission 

It is intuitively clear that an epidemic spreading rapidly through a population has many infective agents, 
that chains of transmission are short (if we can trace them) and that leaves (terminal points of 
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Transmission Chains) at any one time are plentiful compared to the relative length of the chains in 
slower-growing epidemics. 

Figure 11. First Iteration (Gen) transmissions, HazardRadius = 20, MingleFactor = 10, 5 Infectives. 

 
Figure 12. Second Iteration (Gen) transmissions, HazardRadius = 20, MingleFactor = 10, 5 Infectives. 

 

0I j:famKey 78:-1 infected by green i:famKey 10:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 89:-1 infected by green i:famKey 10:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 43:-1 infected by green i:famKey 11:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 62:-1 infected by green i:famKey 12:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 71:-1 infected by green i:famKey 13:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 34:-1 infected by green i:famKey 14:-1 at gen 0 in Univ0 
simulation.js:2006 0I i:famKey 0:-1 infected by green j:famKey 13:-1 at gen 0 in U0 
simulation.js:1990 0I j:famKey 59:-1 infected by green i:famKey 10:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 66:-1 infected by green i:famKey 13:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 77:-1 infected by green i:famKey 13:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 88:-1 infected by green i:famKey 14:-1 at gen 0 in Univ0 
simulation.js:2006 0I i:famKey 7:-1 infected by green j:famKey 13:-1 at gen 0 in U0 
simulation.js:1990 0I j:famKey 60:-1 infected by green i:famKey 10:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 96:-1 infected by green i:famKey 10:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 18:-1 infected by green i:famKey 11:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 22:-1 infected by green i:famKey 11:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 83:-1 infected by green i:famKey 11:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 56:-1 infected by green i:famKey 12:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 24:-1 infected by green i:famKey 13:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 23:-1 infected by green i:famKey 14:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 53:-1 infected by green i:famKey 14:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 65:-1 infected by green i:famKey 14:-1 at gen 0 in Univ0 
simulation.js:2006 0I i:famKey 1:-1 infected by green j:famKey 12:-1 at gen 0 in U0 
simulation.js:2006 0I i:famKey 4:-1 infected by green j:famKey 12:-1 at gen 0 in U0 
simulation.js:1990 0I j:famKey 17:-1 infected by green i:famKey 12:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 26:-1 infected by green i:famKey 12:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 38:-1 infected by green i:famKey 12:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 61:-1 infected by green i:famKey 12:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 16:-1 infected by green i:famKey 13:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 20:-1 infected by green i:famKey 13:-1 at gen 0 in Univ0 
simulation.js:1990 0I j:famKey 27:-1 infected by green i:famKey 14:-1 at gen 0 in Univ0 
simulation.js:1990 36I j:famKey 40:-1 infected by blue i:famKey 12:-1 at gen 1 in Univ0 
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Looking at contact tracing as sample survey of chains of transmission, if these chains are examined in 
aggregate form reconstructing the Transmission Tree  or Trees, we could estimate Generation, Depth 
(path length), Leaves and New Infections, and thus calculate measure of efficiency (Q) as we defined. 

Often it is somewhat difficult to know with the variations in daily counts and positivity whether the 
dynamic at work at a particular time will increase likelihood of transmission rate rising, falling or 
remaining similar. By looking at the topology of Transmission Trees and the distribution of trees of 
different spreads, it may be possible to infer characteristics of the dynamic in a way that is not based 
purely on infection counts or positivity rates. This may be a preferred option in early stages of an 
outbreak when rates are low and proportionately quite variable from one day to another, and when 
confidence intervals around equations fit to those data points may be quite large. 

Contact tracing may be seen as forward or future-facing activity. Given a person who tests positive, we 
want to know who they have contacted during a period of presumed infectivity, prior to receipt of test 
positive results, so we can know who needs testing, monitoring or possibly treatment. The objective is 
to identify all persons that the Index Case might infect. 

Facing backwards the concern is how a test-positive case is positioned in transmission chain. A “side-
effect” of such retrospective investigation is identification of persons contacted by the Index Case during 
an infective period prior to identification (and presumably isolation).  

However, an important objective of this backward-facing approach to contact tracing would be to build 
out a picture of distributions of chains of transmission. This investigation would need to go as far back as 
the length of typical and atypical chains dictated. It would need to go as far afield as necessary to 
generate a stable depiction of typical and atypical spread of Transmission Trees.  

This information could then be employed to generate measures related to transmission dynamics – 
velocity or efficiency, and topology of transmission or distribution of cases within some meaningfully 
demarcated geographical entity or some other factor (e.g., a workplace or co-location in a permanent or 
transient congregate living situation) networking people together. Technology may in principle be 
employed to link co-location and movement of people to test results, providing an alerting mechanism 
for infections in early stages of escalation, when equation-based models may be less well-suited to 
describing and predicting.38,39 
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