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Abstract 20 

Research on schizophrenia typically focuses on one paradigm, for which clear-cut differences between 21 

patients and controls are established. Great care is taken to understand the underlying genetical, 22 

neurophysiological, and cognitive mechanism, which eventually may explain the clinical outcome. One 23 

tacit assumption of these deep rooting approaches is that paradigms tap into common and 24 

representative aspects of the disorder. Here, we analyzed the resting-state electroencephalogram 25 

(EEG) of 121 schizophrenia patients and 75 controls. Using multiple signal processing methods, we 26 

extracted 194 EEG features. Sixty-nine out of the 194 EEG features showed a significant difference 27 

between patients and controls indicating that these features detect an important aspect of 28 

schizophrenia. Surprisingly, the correlations between these features were very low, suggesting that 29 

each feature picks up a different aspect of the disorder. We propose that complementing deep with 30 

shallow rooting approaches, where many roughly independent features are extracted from one 31 

paradigm (or several paradigms), will strongly improve diagnosis and potential treatment of 32 

schizophrenia.  33 

1. Introduction  34 

Schizophrenia patients show strong abnormalities in many domains including personality, cognition, 35 

perception, and even immunology. In many experimental paradigms, the differences between patients 36 

and controls have large effect sizes, indicating that important aspects of the disease are detected. This 37 

provokes two questions: what do these abnormalities have in common and how representative are they 38 

for the disease? For example, patients exhibit strong deficits in cognition, such as in working memory 39 

tasks (Meyer-Lindenberg et al., 2001), which are attributed to abnormalities of cortico-cerebellar-40 

thalamic-cortical circuits (Andreasen et al., 1998). Patients show also diminished skin flushing with the 41 

niacin skin test (Rybakowski and Weterle, 1991), which is attributed to dysfunctional phospholipase A2 42 
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arachidonic acid signaling (Messamore, 2012). How do the working memory deficits correspond to 43 

deficits in skin functioning? Very few studies have correlated deficits with each other (Braff et al., 2007a, 44 

2007b; Dickinson et al., 2011; Price et al., 2006; Seidman et al., 2015; Toomey et al., 1998). The 45 

Consortium on the Genetics of Schizophrenia studied neurocognitive and neurophysiological 46 

abnormalities in schizophrenia patients with a battery of 15 paradigms (Seidman et al., 2015). They 47 

found that neurocognitive measures shared a significant amount of variance while neurophysiological 48 

measures were almost entirely independent. Price and colleagues (2006) studied four candidate 49 

electrophysiological endophenotypes of schizophrenia (mismatch negativity, P50, P300, and 50 

antisaccades). Even though patients and their family members showed deficits in each of these 51 

endophenotypes, the features were largely uncorrelated.  52 

Here, we took another road. Instead of comparing different paradigms, we analyzed the very same data 53 

of the very same patients with different electroencephalogram (EEG) analysis methods, including many 54 

that have shown strong atypical patterns in patients (Andreou et al., 2015; Boutros et al., 2008; da Cruz 55 

et al., 2020; Di Lorenzo et al., 2015; Kim et al., 2000, p. 200; Nikulin et al., 2012; Sun et al., 2014; 56 

Uhlhaas and Singer, 2010). Resting-state EEG features revealing significant differences between 57 

schizophrenia patients and controls are thought to reflect brain mechanisms linked to important aspects 58 

of the disorder. For example, schizophrenia patients exhibit reduced long-range temporal correlations 59 

(LRTC) in the alpha and beta frequency bands (Nikulin et al., 2012). These responses were suggested 60 

to reflect excessive switching of neuronal states in patients. Patients also have shown atypical patterns 61 

in the dynamics of EEG microstates classes C and D (da Cruz et al., 2020; Rieger et al., 2016). 62 

Microstates abnormalities have been proposed to correspond to imbalances in attentional and 63 

information processing in schizophrenia. Schizophrenia patients have shown increased power in the 64 

delta, theta, and beta frequency bands (Venables et al., 2009). Increased beta power was suggested 65 

to reflect cortical hyperexcitability, increased power in the delta and theta bands were proposed to 66 

relate to atypical dopaminergic function, to name a few examples. All these results, individually, suggest 67 
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that each EEG feature captures important aspects of schizophrenia. But how representative are these 68 

abnormalities of the disorder? Does a patient showing abnormal microstate dynamics also show deficits 69 

in LRTC, or in other EEG features?  Even though all these atypical patterns in patients are obtained 70 

from the same EEG data, no study has evaluated how these EEG features relate to each other. This is 71 

not only the case for resting-state EEG studies, but constitutes the conventional approach in 72 

schizophrenia research. This approach is centered on drawing general conclusions about 73 

schizophrenia based on one paradigm, assumed to unveil common and representative aspects of the 74 

disorder.  75 

Aiming to shed light on this EEG multiverse of schizophrenia, in this work, we analyzed the resting-76 

state EEG data of 121 schizophrenia patients and 75 healthy controls with multiple methods. This 77 

allowed us to extract 194 EEG features, such as time-domain features, frequency-domain and 78 

connectivity features both in electrode and source space, and nonlinear dynamical features. Then, we 79 

correlated the features revealing group differences to evaluate how these abnormalities/deficits relate 80 

to each other. We also examined whether EEG features show adequate predictive power to clinical 81 

scales measuring key symptoms of schizophrenia. We propose that future studies in schizophrenia 82 

research should consider multiple features extracted from the same and/or different paradigms in order 83 

to improve diagnosis and potential treatment.    84 

2. Material and Methods   85 

2.1. Participants 86 

Two groups of participants joined the experiment: schizophrenia patients (n = 121) and healthy controls 87 

(n = 75). All participants took part in a battery of tests comprising perceptual and cognitive tasks as well 88 

as EEG recordings. Data of 101 patients and 75 controls have already been published in different 89 

contexts (da Cruz et al., 2020a, 2020b; Favrod et al., 2018; Garobbio et al., 2021). Patients were 90 
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recruited from the Tbilisi Mental Health Hospital or the psycho-social rehabilitation center. Patients were 91 

invited to participate in the study when they had recovered sufficiently from an acute psychotic episode. 92 

Thirty-five were inpatients and 86 were outpatients. Patients were diagnosed using the Diagnostic and 93 

Statistical Manual of Mental Disorders Fourth Edition (DSM-IV) by means of an interview based on the 94 

Structured Clinical Interview for DSM-IV, Clinical Version, information from staff, and study of patients’ 95 

records. Psychopathology of patients was assessed by an experienced psychiatrist using the Scale for 96 

the Assessment of Negative Symptoms (SANS) and the Scale for the Assessment of Positive 97 

Symptoms (SAPS). Out of the 121 patients, 106 were receiving neuroleptic medication. 98 

Chlorpromazine (CPZ) equivalents are indicated in Table 1. Controls were recruited from the general 99 

population in Tbilisi, aiming to match patients’ demographics as closely as possible. All controls were 100 

free from psychiatric axis I disorders and had no family history of psychosis. General exclusion criteria 101 

were alcohol or drug abuse, severe neurological incidents or diagnoses, developmental disorders 102 

(autism spectrum disorder or intellectual disability), or other somatic mind-altering illnesses, assessed 103 

through interview by certified psychiatrists. All participants were no older than 55 years. Group 104 

characteristics are presented in Table 1. All participants signed informed consent and were informed 105 

that they could quit the experiment at any time. All procedures complied with the Declaration of Helsinki 106 

(except for pre-registration) and were approved by the Ethical Committee of the Institute of 107 

Postgraduate Medical Education and Continuous Professional Development (Georgia). Protocol 108 

number: 09/07. Title: “Genetic polymorphisms and early information processing in schizophrenia”. 109 

Table 1 - Group average statistics (±SD) 110 

 Patients Controls Statistics 

Gender (F/M) 22/99 39/36 χ2(1) = 24.702, p = 6.690e-7b 

Age (years) 35.8 ± 9.2 35.1 ± 7.7 t(194) = 0.519, p = 0.604c 

Education (years) 13.3 ± 2.6 15.1 ± 2.9 t(194) = -4.418, p = 1.657e-5c 

Handedness (L/R) 6/115 4/71 χ2(1) = 0.013, p = 0.908b 

Illness duration (years) 10.8 ± 8.7   

SANS 10.1 ± 5.2   
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SAPS 8.6 ± 3.2   

CPZ equivalenta 561.1 ± 389.4   

SANS - Scale for the Assessment of Negative Symptoms, SAPS - Scale for Assessment of Positive, 

CPZ - chlorpromazine 
aAverage CPZ equivalents calculated over the 106 Patients receiving neuroleptic medication 
bPearson’s chi-squared test 
cTwo-sided independent samples t-test 

 111 

2.2. EEG recording and data processing 112 

Participants were sitting in a dim lit room. They were instructed to keep their eyes closed and to relax 113 

for 5 minutes. Resting-state EEG was recorded using a BioSemi Active Two Mk2 system (Biosemi B.V., 114 

The Netherlands) with 64 Ag-AgCl sintered active electrodes, referenced to the common mode sense 115 

electrode. The recording sampling rate was 2048 Hz. Offline data were downsampled to 256 Hz and 116 

preprocessed using an automatic pipeline (da Cruz et al., 2018). Preprocessed EEG data were 117 

analyzed using multiple signal processing methods in the electrode and source space. In total, 194 118 

EEG features were extracted (See Supplementary Table 1). Out of the 194 EEG features, 50 were 119 

obtained in the source space and 144 in the electrode space. For source space analysis, we defined 120 

80 brain regions (40 per hemisphere) according to the AAL atlas (See Supplementary Table 4). See 121 

Supplementary Methods for a detailed description of the analysis methods. 122 

2.3. Group comparisons 123 

We compared patients’ and controls’ scores for each of the 194 EEG features. For each of the 𝐽 124 

variables (i.e., 64 electrodes, 80 brain regions, or 12 microstate parameters, depending on the number 125 

of variables of each EEG feature) of a given feature, we performed a two-way ANCOVA, with Group 126 

(patients and controls) and Gender (male and female) as factors and Education as a covariate. P-127 

values for the effect of Group were corrected for 𝐽 comparisons using False Discovery Rate (FDR; with 128 

an error rate of 5%). Group effects’ 𝜂2 were converted to Cohen’s d.  129 
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2.4. Pearson and partial least squares correlations 130 

First, for each EEG feature that contained at least one variable showing a significant difference between 131 

patients and controls (after correcting for multiple comparisons), we selected the variable (i.e., 132 

electrode, brain region, or microstate parameter) with the biggest effect size to be the representative 133 

variable for that feature. Then, for patients and controls separately, we computed pairwise Pearson 134 

correlations between the representative variables of each significant EEG feature. Second, to quantify 135 

the overall relationship, i.e., the amount of shared information, between pairs of multivariate EEG 136 

features, we used Partial Least Squares Correlation (PLSC). PLSC  generalizes correlations between 137 

two variables to two matrices (McIntosh et al., 1996; Tucker, 1958). The shared information can be 138 

quantified as the inertia common to the two features (Krishnan et al., 2011). The statistical significance 139 

of the inertia was assessed using a permutation test (Abdi and Williams, 2013; McIntosh et al., 2004). The 140 

inertia values were normalized. Hence, the normalized inertias (ℑ𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) ranged from 0 (the two EEG 141 

features are completely unrelated) to 1 (the two EEG features contain the same information). PLSC 142 

analysis was done for patients and controls separately. See Supplementary Methods for details.  143 

2.5. Regression analysis 144 

To evaluate whether EEG features predict psychopathology scores (SAPS and SANS) adequately, we 145 

used elastic net regression models (Zou and Hastie, 2005).  Elastic nets can handle regression problems 146 

where the number of predictors is relatively large compared to the number of samples as well as 147 

multicollinearity (i.e., the predictors are not linearly independent) by combining the L1 and L2 penalties 148 

to achieve regularization. For each of the 194 EEG features (with all its variables), we built two 149 

regression models, one to predict SAPS scores and one to predict SANS scores. We performed 20 150 

repetitions of a 3-fold nested cross-validation procedure. First, one third of the data (1 fold) was left out 151 

for validation (test set), while the remaining data (2 folds; train set) were used to find the optimal 152 
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parameters, namely the amount of penalization and the compromise between L1 and L2 penalties, 153 

using 3-fold cross-validation. The model with the parameters leading to best performance in the train 154 

set was tested on the left-out data (test set). The entire procedure was repeated 20 times, with different 155 

allocations of the patients in the train and test sets. Using the same cross-validation procedure, i.e., 20 156 

repetitions of a 3-fold cross-validation, we also evaluated predictive performance using a nonlinear 157 

random forest regression model, setting the maximum depth of the tree to 10 and the number of trees 158 

to 100. Random forests are meta estimators that average several decision trees trained on subsets of 159 

the dataset to improve accuracy and avoid overfitting. Prediction performance was calculated using the 160 

coefficient of determination (R2) and the root mean squared error (RMSE). The distribution of the 161 

prediction performance values was obtained from the 60 aggregated RMSE and R2, across repetitions 162 

of the procedure.   163 

3. Results  164 

3.1. Multiple EEG features reveal significant group effects 165 

For 121 patients (22 females, 35.8 ± 9.2 years old, 13.3 ± 2.6 years of education) and 75 age-matched 166 

healthy controls (39 females, 35.1 ± 7.7 years old, 15.1 ± 2.9 years of education; Table 1), we extracted 167 

in total 194 features from the resting-state EEG recordings, including time-domain, frequency-domain, 168 

connectivity, and nonlinear dynamical features (Supplementary Table 1). Among the 194 EEG features, 169 

69 (35.57%) showed significant differences between patients and controls with medium to large effect 170 

sizes (Cohen’s d varied from 0.463 to 1.037, Figure 1).  Patients showed significantly reduced values 171 

in 24 out of the 69 EEG features revealing significant group differences (illustrated as negative effect 172 

size in Figure 1). Patients exhibited significantly higher values than controls in 45 EEG features.   173 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2022. ; https://doi.org/10.1101/2020.12.21.20248665doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248665
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

 174 

Figure 1. Effect size (Cohen’s d) of the group differences between patients and controls 175 

for each of the 194 EEG features. We took the values of the electrode, brain region, or 176 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2022. ; https://doi.org/10.1101/2020.12.21.20248665doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248665
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

microstate parameter with the largest effect size according to Cohen’s d (𝜂2 values were 177 

converted to Cohen’s d) to be the representative variable for each feature. Significant 178 

group differences, after correction for multiple comparisons (using FDR), are depicted in 179 

red, with dotted red vertical lines serving as a guide to their labels. > and < were added 180 

to the feature labels to indicate if patients had significantly higher or lower values than 181 

controls, respectively. The non-significant effects are shown in blue. Error bars represent 182 

95% confidence intervals (C.I.). A list with the abbreviations and the corresponding name 183 

of each feature is presented in Supplementary Table 1. 184 

3.2. Correlations between EEG features  185 

To evaluate to what extent features that showed significant group differences are sensitive to the same 186 

aspects of the disorder we computed Pearson’s correlations between pairs of features (Figure 2). As 187 

the representative variable for each feature, we took the values of the electrode, brain region, or 188 

microstate parameter that showed the largest group difference according to Cohen’s d (Figure 1). 189 

Surprisingly, we found that in the patients group only 36.49% of the pairwise correlations were 190 

significant at a level of 0.05 (without correcting for multiple comparisons). For the control group, only 191 

26.73% of the correlations were significant. Since significance depends on the sample size, here, we 192 

focus on the magnitude of the correlation coefficients (𝑟-values). In general, the magnitudes of the 𝑟-193 

values were very low in both patients (0.055, 0.122, 0.251, for the 25th, 50th, and 75th percentiles, 194 

respectively) and controls (0.059, 0.129, 0.242, for the 25th, 50th, and 75th percentiles, respectively; 195 

Figure 2). Strong correlations were found mainly for pairs of very closely related features, such as 196 

between waiting-time statistics of gamma bursts (waiting time gamma) and life-time statistics of gamma 197 

bursts (life time gamma; 𝑟=0.836 and 𝑟=0.926, in patients and controls, respectively).  198 
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 199 

Figure 2. Pairwise correlations between the 69 EEG features that showed significant 200 

group differences between patients and controls. Patients’ 𝑟-values are presented in the 201 

upper triangle and controls’ 𝑟-values are shown in the lower triangle. Strong negative and 202 

positive 𝑟-values are depicted in red and blue, respectively, and 𝑟-values around 0 in 203 

yellow. For each feature, we used the values of the electrode, brain region, or microstate 204 

parameter that showed the largest effect size as the representative variable for the 205 
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correlations. A list with the abbreviations and corresponding name of each feature is 206 

shown in Supplementary Table 1. 207 

To quantify the overall shared information between pairs of EEG features, which showed significant 208 

group differences, by taking not only variables with the largest effect size into account but all variables 209 

of the features we used partial least squares correlation (PLSC). For the patients, 55.92% of the 210 

pairwise inertias were significant (without correcting for multiple comparisons) and for controls, 40.28%. 211 

In general, relative inertias were not very high in both patients (0.254, 0.329, 0.409, for the 25th, 50th, 212 

and 75th percentiles, respectively) and controls (0.305, 0.387, 0.472, for the 25th, 50th, and 75th 213 

percentiles, respectively; Figure 3). As in the Pearson’s correlation results, features that showed strong 214 

associations were mainly similar features, such as the same network statistics for different connectivity 215 

measures in the theta band, for example, at the electrode level: clustering coefficient connectivity 216 

estimated with phase locking value (clust coeff e-plv theta) and with imaginary part of coherence (clust 217 

coeff e-icoh theta; ℑ𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒=0.804 and ℑ𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒=0.826, in patients and controls, respectively). 218 
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 219 

Figure 3. Shared information between the 69 EEG features that showed significant group 220 

differences, as measured by the relative inertia (ℑ𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) computed with partial least 221 

squares correlations (PLSC). The relative inertia ranges from 0 (two features are 222 

completely unrelated) to 1 (the two features’ values move together by the exact same 223 

percentage). Patients’ relative inertias are presented in the upper triangle and controls’ 224 
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relatives are shown in the lower triangle. A list with the abbreviations and corresponding 225 

name of each feature is shown in Supplementary Table 1. 226 

3.3. Prediction of psychopathology scores 227 

We evaluated whether EEG features were adequate predictors of psychopathology scores determined 228 

by the Scale for the Assessment of Positive Symptoms (SAPS) and the Scale for the Assessment of 229 

Negative Symptoms (SANS), which target positive (hallucinations, delusions, bizarre behavior, and 230 

positive formal thought disorder) and negative (affective flattening, alogia, apathy, anhedonia, and 231 

attention) symptoms, respectively. All 194 EEG features exhibited very weak out-of-sample predictive 232 

ability to both the SANS and SAPS scores. Results were very similar for both the linear (i.e., elastic 233 

net) and nonlinear (i.e., random forest) models. See Supplementary Table 2 and Supplementary Table 234 

3 for details.  235 

4. Discussion  236 

Traditionally, schizophrenia research focuses on a single experimental paradigm and analysis method 237 

showing significant differences between patients and controls, and then tries to derive the underlying 238 

genetic or neurophysiological causes of the disorder. This approach has been quite successful in the 239 

formulation of hypotheses, such as the dopamine hypothesis (Howes and Kapur, 2009), the social brain 240 

hypothesis (Burns, 2006), the glutamate hypothesis (Hu et al., 2015), or the dysconnection hypothesis 241 

(Friston et al., 2016), just to name a few. Here, we examined to what extent abnormalities quantified 242 

by different EEG features correlate with each other. Many of the investigated features were previously 243 

linked to different abnormalities of brain processes in schizophrenia, and, here, we reproduced many 244 

of these results, such as imbalance in microstates dynamics (da Cruz et al., 2020a; Rieger et al., 2016), 245 

decreased long-range temporal correlations in the alpha and beta bands (Nikulin et al., 2012), 246 

decreased life- and waiting-times in the beta band (Sun et al., 2014), increased spectral amplitude in 247 
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the theta band (Boutros et al., 2008), increased connectivity in the theta band at the source level 248 

(Andreou et al., 2015; Di Lorenzo et al., 2015), decreased Lyapunov exponent (Kim et al., 2000), among 249 

others. With our systematic analysis, we also found abnormalities in EEG features, which, to the best 250 

of our knowledge, have not been reported yet, namely, delta-phase gamma-amplitude coupling, range 251 

EEG coefficient of variation and asymmetry in the theta and alpha bands, etc. In some way, deeper 252 

analysis of each feature may have warranted an in-depth study and a potential publication. However, 253 

we did not want to elaborate on these methods individually because we wanted to understand how all 254 

EEG features relate to each other in their entirety. The surprising insight from our analysis is that, even 255 

though we are probing the same signals from the same participants, we found only weak correlations 256 

between the 69 significant features. The only strong correlations were between features that are similar 257 

from the outset, thereby resembling test-retests. This suggests that, even though EEG features reveal 258 

clear-cut and reproducible atypical patterns in patients, none of the features is truly representative for 259 

the disease, but rather that all these features pick up more or less independent aspects of 260 

schizophrenia. Hence, the traditional approach of focusing on a single experimental paradigm and 261 

analysis method has its limitations. These results remind us that schizophrenia is indeed a very 262 

heterogeneous disease, a well-known fact, which is however not always taken seriously enough 263 

because, as mentioned above, most research tries to find the one or a few causes of schizophrenia 264 

within one well described paradigm by digging as deep as possible into the underlying 265 

neurophysiological and genetic mechanisms. In analogy to botany, one may call these approaches 266 

“deep rooting” approaches. 267 

We propose that it may be useful to complement these deep rooting approaches with “shallow rooting” 268 

approaches, representing schizophrenia within a high-dimensional space, where many tests and 269 

analysis outcomes are the basis variables. The outcomes should ideally have large effect sizes, low 270 

mutual correlations, and a “flat” factor structure. Whether this is possible is an open question and 271 

depends very much on the underlying causes of schizophrenia. On the lowest complexity level, there 272 
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may be only a few independent causes (or even only one), which were not found yet. Given the 273 

heterogeneity of the disease, including abnormalities in the cognitive (Andreasen et al., 1998) but also 274 

the skin functioning domain (Messamore, 2012), the causes need to be on a rather general level, likely 275 

subcellular, present in all human functioning. Alternatively, schizophrenia may be an approximatively 276 

“additive” disease, where many small abnormalities add up to severe symptoms. In an even more 277 

complex scenario, only certain combinations of redundant functions, each coming with at least two 278 

variants, cause the disease. For instance, if one function is up-regulated and another one down-279 

regulated in an individual, there are no abnormalities. Deficits manifest only when all or most functions 280 

are either up- or down-regulated. In such a combinatorial scenario, it would be difficult to find the 281 

underlying causes since each variant itself does not lead to a deficit; only certain combinations do. Our 282 

correlation analysis provides evidence supporting the more complex/multifactorial scenario, where 283 

each feature makes up its own factor and manifests differently in different patients. Since our data 284 

shows that each EEG feature is sensitive to roughly independent aspects of schizophrenia, each brain 285 

process captured by the analysis methods might be neither necessary nor sufficient to explain important 286 

aspects of the disease. Indeed, we found that EEG features showed very weak predictive power to key 287 

symptoms of schizophrenia, suggesting that there is little information about individual differences in 288 

psychopathology. Our results are an invitation to rethink the current approach in schizophrenia research 289 

and suggest that new study designs conflating multiple features from the same and different paradigms 290 

might be more adequate. In the next steps, it will be important to find the right set of features, which 291 

may stem from EEG recordings but also potentially immunological markers, of which each may 292 

contribute with a variety of features. Previous research has shown that combining features improved 293 

classification and predictive performance in psychosis studies (Mothi et al., 2019; Yang et al., 2010).  294 

Our study has several limitations. There are demographic differences between patients and controls, 295 

which might affect our group comparisons. However, we attempted to minimize these demographic 296 

effects by using education as a covariate and gender as factor in the analyses. Similarly, we cannot 297 
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exclude effects of medication in our results. Nonetheless, we find similar patterns of correlations 298 

between EEG features, i.e., weak associations, in both patients and controls, suggesting that if there 299 

is an effect of medication, it is small. Further, our sample size is relatively small for achieving reliable 300 

estimates of predictive power (Poldrack et al., 2020; Schnack and Kahn, 2016; Varoquaux, 2018). 301 

Our results may explain a deep mystery in schizophrenia research. Schizophrenia has an estimated 302 

heritability of 70 to 85% (Burmeister et al., 2008). For example, the chance to also suffer from 303 

schizophrenia for monozygotic twins is about 33% when the partner twin has the disease (Hilker et al., 304 

2018). Furthermore, about 0.25 to 0.75% people of a population suffer from schizophrenia and related 305 

psychotic disorders (Kessler et al., 2005; Moreno-Küstner et al., 2018; Saha et al., 2005). These values 306 

are rather stable across cultures (Simeone et al., 2015). Given that schizophrenia patients have less 307 

offspring (Avila et al., 2001; Bassett et al., 1996; Keller and Miller, 2006; MacCabe et al., 2009), this 308 

provokes the question why schizophrenia has not been extinguished during the course of evolution 309 

(Keller and Miller, 2006; Liu et al., 2019). In the above-mentioned combinatorial scenario with many 310 

redundant functions this may simply happen because evolution operates on the individual single-311 

nucleotide polymorphism (SNP) level and not on the combinatorial one. As long as most of the 312 

population shows average functioning, there will be no change of the allele distributions. In the additive 313 

scenario, evolution may extinct harmful alleles, of which each constitutes only a little risk, very slowly 314 

and these may be replaced by harmful de novo mutations (Keller and Miller, 2006). To what extent 315 

such considerations hold true will be shown by shallow rooting approaches using a plethora of 316 

paradigms and a multiverse of analysis methods. In a nutshell, deep rooting will help to understand the 317 

different aspects of the disorder, while shallow rooting will help to better diagnose schizophrenia by 318 

finding subpopulations, leading to more personalized treatment.  319 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2022. ; https://doi.org/10.1101/2020.12.21.20248665doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248665
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

Acknowledgements  320 

We would like to thank Marc Repnow for his comments and Ben Lönnqvist for proofreading the 321 

manuscript. M.H.H., E.C., A.B., and M.R. designed the research; M.R. and E.C. performed the 322 

research; J.R.C., D.G., W.H.L., and O.F. analyzed data; J.R.C., D.G., O.F. A.B., P.F., and M.H.H. wrote 323 

the paper. The code that support the findings of this study are available upon request. This work was 324 

partially funded by the Fundação para a Ciência e a Tecnologia under grant FCT PD/BD/105785/2014 325 

and the National Centre of Competence in Research (NCCR) Synapsy financed by the Swiss National 326 

Science Foundation under grant 51NF40-185897. The authors declare no competing interests.  327 

Appendix A. Supplementary Information File 328 

References 329 

Abdi, H., Williams, L.J., 2013. Partial Least Squares Methods: Partial Least Squares Correlation and 330 

Partial Least Square Regression, in: Reisfeld, B., Mayeno, A.N. (Eds.), Computational 331 

Toxicology, Methods in Molecular Biology. Humana Press, Totowa, NJ, pp. 549–579. 332 

https://doi.org/10.1007/978-1-62703-059-5_23 333 

Andreasen, N.C., Paradiso, S., O’Leary, D.S., 1998. “Cognitive Dysmetria” as an Integrative Theory of 334 

Schizophrenia: A Dysfunction in Cortical-Subcortical-Cerebellar Circuitry? Schizophr. Bull. 24, 335 

203–218. https://doi.org/10.1093/oxfordjournals.schbul.a033321 336 

Andreou, C., Leicht, G., Nolte, G., Polomac, N., Moritz, S., Karow, A., Hanganu-Opatz, I.L., Engel, A.K., 337 

Mulert, C., 2015. Resting-state theta-band connectivity and verbal memory in schizophrenia and 338 

in the high-risk state. Schizophr. Res. 161, 299–307. 339 

https://doi.org/10.1016/j.schres.2014.12.018 340 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2022. ; https://doi.org/10.1101/2020.12.21.20248665doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248665
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Avila, M., Thaker, G., Adami, H., 2001. Genetic epidemiology and schizophrenia: a study of 341 

reproductive fitness. Schizophr. Res. 47, 233–241. https://doi.org/10.1016/S0920-342 

9964(00)00062-1 343 

Bassett, A.S., Bury, A., Hodgkinson, K.A., Honer, W.G., 1996. Reproductive fitness in familial 344 

schizophrenia. Schizophr. Res. 21, 151–160. https://doi.org/10.1016/0920-9964(96)00018-7 345 

Boutros, N.N., Arfken, C., Galderisi, S., Warrick, J., Pratt, G., Iacono, W., 2008. The status of spectral 346 

EEG abnormality as a diagnostic test for schizophrenia. Schizophr. Res. 99, 225–237. 347 

https://doi.org/10.1016/j.schres.2007.11.020 348 

Braff, D.L., Freedman, R., Schork, N.J., Gottesman, I.I., 2007a. Deconstructing Schizophrenia: An 349 

Overview of the Use of Endophenotypes in Order to Understand a Complex Disorder. Schizophr. 350 

Bull. 33, 21–32. https://doi.org/10.1093/schbul/sbl049 351 

Braff, D.L., Light, G.A., Swerdlow, N.R., 2007b. Prepulse Inhibition and P50 Suppression Are Both 352 

Deficient but not Correlated in Schizophrenia Patients. Biol. Psychiatry 61, 1204–1207. 353 

https://doi.org/10.1016/j.biopsych.2006.08.015 354 

Burmeister, M., McInnis, M.G., Zöllner, S., 2008. Psychiatric genetics: progress amid controversy. Nat. 355 

Rev. Genet. 9, 527–540. https://doi.org/10.1038/nrg2381 356 

Burns, J., 2006. The social brain hypothesis of schizophrenia. World Psychiatry Off. J. World Psychiatr. 357 

Assoc. WPA 5, 77–81. 358 

da Cruz, J.R., Chicherov, V., Herzog, M.H., Figueiredo, P., 2018. An automatic pre-processing pipeline 359 

for EEG analysis (APP) based on robust statistics. Clin. Neurophysiol. 129, 1427–1437. 360 

https://doi.org/10.1016/j.clinph.2018.04.600 361 

da Cruz, J.R., Favrod, O., Roinishvili, M., Chkonia, E., Brand, A., Mohr, C., Figueiredo, P., Herzog, 362 

M.H., 2020a. EEG microstates are a candidate endophenotype for schizophrenia. Nat. Commun. 363 

11, 3089. https://doi.org/10.1038/s41467-020-16914-1 364 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2022. ; https://doi.org/10.1101/2020.12.21.20248665doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248665
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

da Cruz, J.R., Shaqiri, A., Roinishvili, M., Favrod, O., Chkonia, E., Brand, A., Figueiredo, P., Herzog, 365 

M.H., 2020b. Neural Compensation Mechanisms of Siblings of Schizophrenia Patients as 366 

Revealed by High-Density EEG. Schizophr. Bull. 46, 1009–1018. 367 

https://doi.org/10.1093/schbul/sbz133 368 

Di Lorenzo, G., Daverio, A., Ferrentino, F., Santarnecchi, E., Ciabattini, F., Monaco, L., Lisi, G., Barone, 369 

Y., Di Lorenzo, C., Niolu, C., Seri, S., Siracusano, A., 2015. Altered resting-state EEG source 370 

functional connectivity in schizophrenia: the effect of illness duration. Front. Hum. Neurosci. 9. 371 

https://doi.org/10.3389/fnhum.2015.00234 372 

Dickinson, D., Goldberg, T.E., Gold, J.M., Elvevag, B., Weinberger, D.R., 2011. Cognitive Factor 373 

Structure and Invariance in People With Schizophrenia, Their Unaffected Siblings, and Controls. 374 

Schizophr. Bull. 37, 1157–1167. https://doi.org/10.1093/schbul/sbq018 375 

Favrod, O., Roinishvili, M., da Cruz, J.R., Brand, A., Okruashvili, M., Gamkrelidze, T., Figueiredo, P., 376 

Herzog, M.H., Chkonia, E., Shaqiri, A., 2018. Electrophysiological correlates of visual backward 377 

masking in patients with first episode psychosis. Psychiatry Res. Neuroimaging 282, 64–72. 378 

https://doi.org/10.1016/j.pscychresns.2018.10.008 379 

Friston, K., Brown, H.R., Siemerkus, J., Stephan, K.E., 2016. The dysconnection hypothesis (2016). 380 

Schizophr. Res. 176, 83–94. https://doi.org/10.1016/j.schres.2016.07.014 381 

Garobbio, S., Roinishvili, M., Favrod, O., da Cruz, J.R., Chkonia, E., Brand, A., Herzog, M.H., 2021. 382 

Electrophysiological correlates of visual backward masking in patients with bipolar disorder. 383 

Psychiatry Res. Neuroimaging 307, 111206. https://doi.org/10.1016/j.pscychresns.2020.111206 384 

Hilker, R., Helenius, D., Fagerlund, B., Skytthe, A., Christensen, K., Werge, T.M., Nordentoft, M., 385 

Glenthøj, B., 2018. Heritability of Schizophrenia and Schizophrenia Spectrum Based on the 386 

Nationwide Danish Twin Register. Biol. Psychiatry 83, 492–498. 387 

https://doi.org/10.1016/j.biopsych.2017.08.017 388 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2022. ; https://doi.org/10.1101/2020.12.21.20248665doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248665
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Howes, O.D., Kapur, S., 2009. The Dopamine Hypothesis of Schizophrenia: Version III--The Final 389 

Common Pathway. Schizophr. Bull. 35, 549–562. https://doi.org/10.1093/schbul/sbp006 390 

Hu, W., MacDonald, M.L., Elswick, D.E., Sweet, R.A., 2015. The glutamate hypothesis of 391 

schizophrenia: evidence from human brain tissue studies. Ann. N. Y. Acad. Sci. 1338, 38–57. 392 

https://doi.org/10.1111/nyas.12547 393 

Keller, M.C., Miller, G., 2006. Resolving the paradox of common, harmful, heritable mental disorders: 394 

Which evolutionary genetic models work best? Behav. Brain Sci. 29, 385–404. 395 

https://doi.org/10.1017/S0140525X06009095 396 

Kessler, R.C., Birnbaum, H., Demler, O., Falloon, I.R.H., Gagnon, E., Guyer, M., Howes, M.J., Kendler, 397 

K.S., Shi, L., Walters, E., Wu, E.Q., 2005. The prevalence and correlates of nonaffective 398 

psychosis in the National Comorbidity Survey Replication (NCS-R). Biol. Psychiatry 58, 668–399 

676. https://doi.org/10.1016/j.biopsych.2005.04.034 400 

Kim, D.-J., Jeong, J., Chae, J.-H., Park, S., Yong Kim, S., Jin Go, H., Paik, I.-H., Kim, K.-S., Choi, B., 401 

2000. An estimation of the first positive Lyapunov exponent of the EEG in patients with 402 

schizophrenia. Psychiatry Res. Neuroimaging 98, 177–189. https://doi.org/10.1016/S0925-403 

4927(00)00052-4 404 

Krishnan, A., Williams, L.J., McIntosh, A.R., Abdi, H., 2011. Partial Least Squares (PLS) methods for 405 

neuroimaging: A tutorial and review. NeuroImage 56, 455–475. 406 

https://doi.org/10.1016/j.neuroimage.2010.07.034 407 

Liu, C., Everall, I., Pantelis, C., Bousman, C., 2019. Interrogating the Evolutionary Paradox of 408 

Schizophrenia: A Novel Framework and Evidence Supporting Recent Negative Selection of 409 

Schizophrenia Risk Alleles. Front. Genet. 10. https://doi.org/10.3389/fgene.2019.00389 410 

MacCabe, J.H., Koupil, I., Leon, D.A., 2009. Lifetime reproductive output over two generations in 411 

patients with psychosis and their unaffected siblings: the Uppsala 1915–1929 Birth Cohort 412 

Multigenerational Study. Psychol. Med. 39, 1667. https://doi.org/10.1017/S0033291709005431 413 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2022. ; https://doi.org/10.1101/2020.12.21.20248665doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248665
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

McIntosh, A.R., Bookstein, F.L., Haxby, J.V., Grady, C.L., 1996. Spatial Pattern Analysis of Functional 414 

Brain Images Using Partial Least Squares. NeuroImage 3, 143–157. 415 

https://doi.org/10.1006/nimg.1996.0016 416 

McIntosh, A.R., Chau, W.K., Protzner, A.B., 2004. Spatiotemporal analysis of event-related fMRI data 417 

using partial least squares. NeuroImage 23, 764–775. 418 

https://doi.org/10.1016/j.neuroimage.2004.05.018 419 

Messamore, E., 2012. Niacin subsensitivity is associated with functional impairment in schizophrenia. 420 

Schizophr. Res. 137, 180–184. https://doi.org/10.1016/j.schres.2012.03.001 421 

Meyer-Lindenberg, A., Poline, J.-B., Kohn, P.D., Holt, J.L., Egan, M.F., Weinberger, D.R., Berman, 422 

K.F., 2001. Evidence for Abnormal Cortical Functional Connectivity During Working Memory in 423 

Schizophrenia. Am. J. Psychiatry 158, 1809–1817. https://doi.org/10.1176/appi.ajp.158.11.1809 424 

Moreno-Küstner, B., Martín, C., Pastor, L., 2018. Prevalence of psychotic disorders and its association 425 

with methodological issues. A systematic review and meta-analyses. PLOS ONE 13, e0195687. 426 

https://doi.org/10.1371/journal.pone.0195687 427 

Mothi, S.S., Sudarshan, M., Tandon, N., Tamminga, C., Pearlson, G., Sweeney, J., Clementz, B., 428 

Keshavan, M.S., 2019. Machine learning improved classification of psychoses using clinical and 429 

biological stratification: Update from the bipolar-schizophrenia network for intermediate 430 

phenotypes (B-SNIP). Schizophr. Res. 214, 60–69. https://doi.org/10.1016/j.schres.2018.04.037 431 

Nikulin, V.V., Jönsson, E.G., Brismar, T., 2012. Attenuation of long-range temporal correlations in the 432 

amplitude dynamics of alpha and beta neuronal oscillations in patients with schizophrenia. 433 

NeuroImage 61, 162–169. https://doi.org/10.1016/j.neuroimage.2012.03.008 434 

Poldrack, R.A., Huckins, G., Varoquaux, G., 2020. Establishment of Best Practices for Evidence for 435 

Prediction: A Review. JAMA Psychiatry 77, 534. 436 

https://doi.org/10.1001/jamapsychiatry.2019.3671 437 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2022. ; https://doi.org/10.1101/2020.12.21.20248665doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248665
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Price, G.W., Michie, P.T., Johnston, J., Innes-Brown, H., Kent, A., Clissa, P., Jablensky, A.V., 2006. A 438 

Multivariate Electrophysiological Endophenotype, from a Unitary Cohort, Shows Greater 439 

Research Utility than Any Single Feature in the Western Australian Family Study of 440 

Schizophrenia. Biol. Psychiatry 60, 1–10. https://doi.org/10.1016/j.biopsych.2005.09.010 441 

Rieger, K., Diaz Hernandez, L., Baenninger, A., Koenig, T., 2016. 15 Years of Microstate Research in 442 

Schizophrenia – Where Are We? A Meta-Analysis. Front. Psychiatry 7. 443 

https://doi.org/10.3389/fpsyt.2016.00022 444 

Rybakowski, J., Weterle, R., 1991. Niacin test in schizophrenia and affective illness. Biol. Psychiatry 445 

29, 834–836. https://doi.org/10.1016/0006-3223(91)90202-W 446 

Saha, S., Chant, D., Welham, J., McGrath, J., 2005. A systematic review of the prevalence of 447 

schizophrenia. PLoS Med. 2, e141. https://doi.org/10.1371/journal.pmed.0020141 448 

Schnack, H.G., Kahn, R.S., 2016. Detecting Neuroimaging Biomarkers for Psychiatric Disorders: 449 

Sample Size Matters. Front. Psychiatry 7. https://doi.org/10.3389/fpsyt.2016.00050 450 

Seidman, L.J., Hellemann, G., Nuechterlein, K.H., Greenwood, T.A., Braff, D.L., Cadenhead, K.S., 451 

Calkins, M.E., Freedman, R., Gur, R.E., Gur, R.C., Lazzeroni, L.C., Light, G.A., Olincy, A., 452 

Radant, A.D., Siever, L.J., Silverman, J.M., Sprock, J., Stone, W.S., Sugar, C., Swerdlow, N.R., 453 

Tsuang, D.W., Tsuang, M.T., Turetsky, B.I., Green, M.F., 2015. Factor structure and heritability 454 

of endophenotypes in schizophrenia: Findings from the Consortium on the Genetics of 455 

Schizophrenia (COGS-1). Schizophr. Res., Endophenotypes in Schizophrenia 163, 73–79. 456 

https://doi.org/10.1016/j.schres.2015.01.027 457 

Simeone, J.C., Ward, A.J., Rotella, P., Collins, J., Windisch, R., 2015. An evaluation of variation in 458 

published estimates of schizophrenia prevalence from 1990─2013: a systematic literature 459 

review. BMC Psychiatry 15. https://doi.org/10.1186/s12888-015-0578-7 460 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2022. ; https://doi.org/10.1101/2020.12.21.20248665doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248665
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Sun, J., Tang, Y., Lim, K.O., Wang, J., Tong, S., Li, H., He, B., 2014. Abnormal Dynamics of EEG 461 

Oscillations in Schizophrenia Patients on Multiple Time Scales. IEEE Trans. Biomed. Eng. 61, 462 

1756–1764. https://doi.org/10.1109/TBME.2014.2306424 463 

Toomey, R., Faraone, S.V., Seidman, L.J., Kremen, W.S., Pepple, J.R., Tsuang, M.T., 1998. 464 

Association of neuropsychological vulnerability markers in relatives of schizophrenic patients. 465 

Schizophr. Res. 31, 89–98. https://doi.org/10.1016/S0920-9964(98)00025-5 466 

Tucker, L.R., 1958. An inter-battery method of factor analysis. Psychometrika 23, 111–136. 467 

https://doi.org/10.1007/BF02289009 468 

Uhlhaas, P.J., Singer, W., 2010. Abnormal neural oscillations and synchrony in schizophrenia. Nat. 469 

Rev. Neurosci. 11, 100–113. https://doi.org/10.1038/nrn2774 470 

Varoquaux, G., 2018. Cross-validation failure: Small sample sizes lead to large error bars. NeuroImage 471 

180, 68–77. https://doi.org/10.1016/j.neuroimage.2017.06.061 472 

Venables, N.C., Bernat, E.M., Sponheim, S.R., 2009. Genetic and Disorder-Specific Aspects of Resting 473 

State EEG Abnormalities in Schizophrenia. Schizophr. Bull. 35, 826–839. 474 

https://doi.org/10.1093/schbul/sbn021 475 

Yang, H., Liu, J., Sui, J., Pearlson, G., Calhoun, V.D., 2010. A Hybrid Machine Learning Method for 476 

Fusing fMRI and Genetic Data: Combining both Improves Classification of Schizophrenia. Front. 477 

Hum. Neurosci. 4. https://doi.org/10.3389/fnhum.2010.00192 478 

Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. 479 

B Stat. Methodol. 67, 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x 480 

 481 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2022. ; https://doi.org/10.1101/2020.12.21.20248665doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.21.20248665
http://creativecommons.org/licenses/by-nc-nd/4.0/

