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Abstract

Research on schizophrenia typically focuses on one paradigm, for which clear-cut differences between
patients and controls are established. Great care is taken to understand the underlying genetical,
neurophysiological, and cognitive mechanism, which eventually may explain the clinical outcome. One
tacit assumption of these deep rooting approaches is that paradigms tap into common and
representative aspects of the disorder. Here, we analyzed the resting-state electroencephalogram
(EEG) of 121 schizophrenia patients and 75 controls. Using multiple signal processing methods, we
extracted 194 EEG features. Sixty-nine out of the 194 EEG features showed a significant difference
between patients and controls indicating that these features detect an important aspect of
schizophrenia. Surprisingly, the correlations between these features were very low, suggesting that
each feature picks up a different aspect of the disorder. We propose that complementing deep with
shallow rooting approaches, where many roughly independent features are extracted from one
paradigm (or several paradigms), will strongly improve diagnosis and potential treatment of

schizophrenia.

1. Introduction

Schizophrenia patients show strong abnormalities in many domains including personality, cognition,
perception, and even immunology. In many experimental paradigms, the differences between patients
and controls have large effect sizes, indicating that important aspects of the disease are detected. This
provokes two questions: what do these abnormalities have in common and how representative are they
for the disease? For example, patients exhibit strong deficits in cognition, such as in working memory
tasks (Meyer-Lindenberg et al., 2001), which are attributed to abnormalities of cortico-cerebellar-
thalamic-cortical circuits (Andreasen et al., 1998). Patients show also diminished skin flushing with the

niacin skin test (Rybakowski and Weterle, 1991), which is attributed to dysfunctional phospholipase A2
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arachidonic acid signaling (Messamore, 2012). How do the working memory deficits correspond to
deficits in skin functioning? Very few studies have correlated deficits with each other (Braff et al., 2007a,
2007b; Dickinson et al., 2011; Price et al., 2006; Seidman et al., 2015; Toomey et al., 1998). The
Consortium on the Genetics of Schizophrenia studied neurocognitive and neurophysiological
abnormalities in schizophrenia patients with a battery of 15 paradigms (Seidman et al., 2015). They
found that neurocognitive measures shared a significant amount of variance while neurophysiological
measures were almost entirely independent. Price and colleagues (2006) studied four candidate
electrophysiological endophenotypes of schizophrenia (mismatch negativity, P50, P300, and
antisaccades). Even though patients and their family members showed deficits in each of these

endophenotypes, the features were largely uncorrelated.

Here, we took another road. Instead of comparing different paradigms, we analyzed the very same data
of the very same patients with different electroencephalogram (EEG) analysis methods, including many
that have shown strong atypical patterns in patients (Andreou et al., 2015; Boutros et al., 2008; da Cruz
et al., 2020; Di Lorenzo et al., 2015; Kim et al., 2000, p. 200; Nikulin et al., 2012; Sun et al., 2014;
Uhlhaas and Singer, 2010). Resting-state EEG features revealing significant differences between
schizophrenia patients and controls are thought to reflect brain mechanisms linked to important aspects
of the disorder. For example, schizophrenia patients exhibit reduced long-range temporal correlations
(LRTC) in the alpha and beta frequency bands (Nikulin et al., 2012). These responses were suggested
to reflect excessive switching of neuronal states in patients. Patients also have shown atypical patterns
in the dynamics of EEG microstates classes C and D (da Cruz et al., 2020; Rieger et al., 2016).
Microstates abnormalities have been proposed to correspond to imbalances in attentional and
information processing in schizophrenia. Schizophrenia patients have shown increased power in the
delta, theta, and beta frequency bands (Venables et al., 2009). Increased beta power was suggested
to reflect cortical hyperexcitability, increased power in the delta and theta bands were proposed to

relate to atypical dopaminergic function, to name a few examples. All these results, individually, suggest
3
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that each EEG feature captures important aspects of schizophrenia. But how representative are these
abnormalities of the disorder? Does a patient showing abnormal microstate dynamics also show deficits
in LRTC, or in other EEG features? Even though all these atypical patterns in patients are obtained
from the same EEG data, no study has evaluated how these EEG features relate to each other. This is
not only the case for resting-state EEG studies, but constitutes the conventional approach in
schizophrenia research. This approach is centered on drawing general conclusions about
schizophrenia based on one paradigm, assumed to unveil common and representative aspects of the

disorder.

Aiming to shed light on this EEG multiverse of schizophrenia, in this work, we analyzed the resting-
state EEG data of 121 schizophrenia patients and 75 healthy controls with multiple methods. This
allowed us to extract 194 EEG features, such as time-domain features, frequency-domain and
connectivity features both in electrode and source space, and nonlinear dynamical features. Then, we
correlated the features revealing group differences to evaluate how these abnormalities/deficits relate
to each other. We also examined whether EEG features show adequate predictive power to clinical
scales measuring key symptoms of schizophrenia. We propose that future studies in schizophrenia
research should consider multiple features extracted from the same and/or different paradigms in order

to improve diagnosis and potential treatment.

2. Material and Methods

2.1. Participants

Two groups of participants joined the experiment: schizophrenia patients (n = 121) and healthy controls
(n =75). All participants took part in a battery of tests comprising perceptual and cognitive tasks as well
as EEG recordings. Data of 101 patients and 75 controls have already been published in different

contexts (da Cruz et al., 2020a, 2020b; Favrod et al., 2018; Garobbio et al., 2021). Patients were

4
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recruited from the Tbilisi Mental Health Hospital or the psycho-social rehabilitation center. Patients were
invited to participate in the study when they had recovered sufficiently from an acute psychotic episode.
Thirty-five were inpatients and 86 were outpatients. Patients were diagnosed using the Diagnostic and
Statistical Manual of Mental Disorders Fourth Edition (DSM-1V) by means of an interview based on the
Structured Clinical Interview for DSM-1V, Clinical Version, information from staff, and study of patients’
records. Psychopathology of patients was assessed by an experienced psychiatrist using the Scale for
the Assessment of Negative Symptoms (SANS) and the Scale for the Assessment of Positive
Symptoms (SAPS). Out of the 121 patients, 106 were receiving neuroleptic medication.
Chlorpromazine (CPZ) equivalents are indicated in Table 1. Controls were recruited from the general
population in Thilisi, aiming to match patients’ demographics as closely as possible. All controls were
free from psychiatric axis | disorders and had no family history of psychosis. General exclusion criteria
were alcohol or drug abuse, severe neurological incidents or diagnoses, developmental disorders
(autism spectrum disorder or intellectual disability), or other somatic mind-altering illnesses, assessed
through interview by certified psychiatrists. All participants were no older than 55 years. Group
characteristics are presented in Table 1. All participants signed informed consent and were informed
that they could quit the experiment at any time. All procedures complied with the Declaration of Helsinki
(except for pre-registration) and were approved by the Ethical Committee of the Institute of
Postgraduate Medical Education and Continuous Professional Development (Georgia). Protocol

number: 09/07. Title: “Genetic polymorphisms and early information processing in schizophrenia”.

Table 1 - Group average statistics (xSD)

Patients Controls Statistics
Gender (F/M) 22/99 39/36 Xx?(1) = 24.702, p = 6.690e-7"
Age (years) 35.8+9.2 35.1+7.7 t(194) = 0.519, p = 0.604¢
Education (years) 13.3+2.6 151+29 t(194) = -4.418, p = 1.657e-5¢
Handedness (L/R) 6/115 4/71 ¥%(1) = 0.013, p = 0.908°
lliness duration (years) 10.8 £ 8.7
SANS 10.1+5.2
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SAPS 8.6 £3.2
CPZ equivalent? 561.1 + 389.4
SANS - Scale for the Assessment of Negative Symptoms, SAPS - Scale for Assessment of Positive,
CPZ - chlorpromazine

aAverage CPZ equivalents calculated over the 106 Patients receiving neuroleptic medication
bPearson’s chi-squared test

cTwo-sided independent samples t-test

2.2. EEG recording and data processing

Participants were sitting in a dim lit room. They were instructed to keep their eyes closed and to relax
for 5 minutes. Resting-state EEG was recorded using a BioSemi Active Two Mk2 system (Biosemi B.V.,
The Netherlands) with 64 Ag-AgCl sintered active electrodes, referenced to the common mode sense
electrode. The recording sampling rate was 2048 Hz. Offline data were downsampled to 256 Hz and
preprocessed using an automatic pipeline (da Cruz et al., 2018). Preprocessed EEG data were
analyzed using multiple signal processing methods in the electrode and source space. In total, 194
EEG features were extracted (See ). Out of the 194 EEG features, 50 were
obtained in the source space and 144 in the electrode space. For source space analysis, we defined
80 brain regions (40 per hemisphere) according to the AAL atlas (See ). See

for a detailed description of the analysis methods.

2.3. Group comparisons

We compared patients’ and controls’ scores for each of the 194 EEG features. For each of the
variables (i.e., 64 electrodes, 80 brain regions, or 12 microstate parameters, depending on the number
of variables of each EEG feature) of a given feature, we performed a two-way ANCOVA, with Group
(patients and controls) and Gender (male and female) as factors and Education as a covariate. P-
values for the effect of Group were corrected for ] comparisons using False Discovery Rate (FDR; with

an error rate of 5%). Group effects’ n? were converted to Cohen’s d.
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2.4. Pearson and partial least squares correlations

First, for each EEG feature that contained at least one variable showing a significant difference between
patients and controls (after correcting for multiple comparisons), we selected the variable (i.e.,
electrode, brain region, or microstate parameter) with the biggest effect size to be the representative
variable for that feature. Then, for patients and controls separately, we computed pairwise Pearson
correlations between the representative variables of each significant EEG feature. Second, to quantify
the overall relationship, i.e., the amount of shared information, between pairs of multivariate EEG
features, we used Partial Least Squares Correlation (PLSC). PLSC generalizes correlations between
two variables to two matrices (Mcintosh et al., 1996; Tucker, 1958). The shared information can be
guantified as the inertia common to the two features (Krishnan et al., 2011). The statistical significance
of the inertia was assessed using a permutation test (Abdi and Williams, 2013; MclIntosh et al., 2004). The
inertia values were normalized. Hence, the normalized inertias (3,¢iqtive) fanged from 0O (the two EEG
features are completely unrelated) to 1 (the two EEG features contain the same information). PLSC

analysis was done for patients and controls separately. See for details.

2.5. Regression analysis

To evaluate whether EEG features predict psychopathology scores (SAPS and SANS) adequately, we
used elastic net regression models (Zou and Hastie, 2005). Elastic nets can handle regression problems
where the number of predictors is relatively large compared to the number of samples as well as
multicollinearity (i.e., the predictors are not linearly independent) by combining the L1 and L2 penalties
to achieve regularization. For each of the 194 EEG features (with all its variables), we built two
regression models, one to predict SAPS scores and one to predict SANS scores. We performed 20
repetitions of a 3-fold nested cross-validation procedure. First, one third of the data (1 fold) was left out

for validation (test set), while the remaining data (2 folds; train set) were used to find the optimal

7
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parameters, namely the amount of penalization and the compromise between L1 and L2 penalties,
using 3-fold cross-validation. The model with the parameters leading to best performance in the train
set was tested on the left-out data (test set). The entire procedure was repeated 20 times, with different
allocations of the patients in the train and test sets. Using the same cross-validation procedure, i.e., 20
repetitions of a 3-fold cross-validation, we also evaluated predictive performance using a nonlinear
random forest regression model, setting the maximum depth of the tree to 10 and the number of trees
to 100. Random forests are meta estimators that average several decision trees trained on subsets of
the dataset to improve accuracy and avoid overfitting. Prediction performance was calculated using the
coefficient of determination (R2) and the root mean squared error (RMSE). The distribution of the
prediction performance values was obtained from the 60 aggregated RMSE and R2, across repetitions

of the procedure.

3. Results

3.1. Multiple EEG features reveal significant group effects

For 121 patients (22 females, 35.8 £ 9.2 years old, 13.3 + 2.6 years of education) and 75 age-matched
healthy controls (39 females, 35.1 + 7.7 years old, 15.1 £ 2.9 years of education; Table 1), we extracted
in total 194 features from the resting-state EEG recordings, including time-domain, frequency-domain,
connectivity, and nonlinear dynamical features ( ). Among the 194 EEG features,
69 (35.57%) showed significant differences between patients and controls with medium to large effect
sizes (Cohen’s d varied from 0.463 to 1.037, Figure 1). Patients showed significantly reduced values
in 24 out of the 69 EEG features revealing significant group differences (illustrated as negative effect

size in Figure 1). Patients exhibited significantly higher values than controls in 45 EEG features.
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176 for each of the 194 EEG features. We took the values of the electrode, brain region, or
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microstate parameter with the largest effect size according to Cohen’s d (n? values were
converted to Cohen’s d) to be the representative variable for each feature. Significant
group differences, after correction for multiple comparisons (using FDR), are depicted in
red, with dotted red vertical lines serving as a guide to their labels. > and < were added
to the feature labels to indicate if patients had significantly higher or lower values than
controls, respectively. The non-significant effects are shown in blue. Error bars represent
95% confidence intervals (C.1.). A list with the abbreviations and the corresponding name

of each feature is presented in

3.2. Correlations between EEG features

To evaluate to what extent features that showed significant group differences are sensitive to the same
aspects of the disorder we computed Pearson’s correlations between pairs of features (Figure 2). As
the representative variable for each feature, we took the values of the electrode, brain region, or
microstate parameter that showed the largest group difference according to Cohen’s d (Figure 1).
Surprisingly, we found that in the patients group only 36.49% of the pairwise correlations were
significant at a level of 0.05 (without correcting for multiple comparisons). For the control group, only
26.73% of the correlations were significant. Since significance depends on the sample size, here, we
focus on the magnitude of the correlation coefficients (r-values). In general, the magnitudes of the r-
values were very low in both patients (0.055, 0.122, 0.251, for the 25", 50t and 75" percentiles,
respectively) and controls (0.059, 0.129, 0.242, for the 25", 50™, and 75™ percentiles, respectively;
Figure 2). Strong correlations were found mainly for pairs of very closely related features, such as
between waiting-time statistics of gamma bursts (waiting time gamma) and life-time statistics of gamma

bursts (life time gamma; r=0.836 and r=0.926, in patients and controls, respectively).

10
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Figure 2. Pairwise correlations between the 69 EEG features that showed significant
group differences between patients and controls. Patients’ r-values are presented in the
upper triangle and controls’ r-values are shown in the lower triangle. Strong negative and
positive r-values are depicted in red and blue, respectively, and r-values around O in
yellow. For each feature, we used the values of the electrode, brain region, or microstate

parameter that showed the largest effect size as the representative variable for the
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correlations. A list with the abbreviations and corresponding name of each feature is

shown in

To quantify the overall shared information between pairs of EEG features, which showed significant
group differences, by taking not only variables with the largest effect size into account but all variables
of the features we used partial least squares correlation (PLSC). For the patients, 55.92% of the
pairwise inertias were significant (without correcting for multiple comparisons) and for controls, 40.28%.
In general, relative inertias were not very high in both patients (0.254, 0.329, 0.409, for the 25", 50",
and 75" percentiles, respectively) and controls (0.305, 0.387, 0.472, for the 25™, 50%, and 75%
percentiles, respectively; Figure 3). As in the Pearson’s correlation results, features that showed strong
associations were mainly similar features, such as the same network statistics for different connectivity
measures in the theta band, for example, at the electrode level: clustering coefficient connectivity
estimated with phase locking value (clust coeff e-plv theta) and with imaginary part of coherence (clust

coeff e-icoh theta; 3,¢iqtive=0.804 and J,.;4:ive=0.826, in patients and controls, respectively).
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Figure 3. Shared information between the 69 EEG features that showed significant group
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completely unrelated) to 1 (the two features’ values move together by the exact same
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relatives are shown in the lower triangle. A list with the abbreviations and corresponding

name of each feature is shown in

3.3. Prediction of psychopathology scores

We evaluated whether EEG features were adequate predictors of psychopathology scores determined
by the Scale for the Assessment of Positive Symptoms (SAPS) and the Scale for the Assessment of
Negative Symptoms (SANS), which target positive (hallucinations, delusions, bizarre behavior, and
positive formal thought disorder) and negative (affective flattening, alogia, apathy, anhedonia, and
attention) symptoms, respectively. All 194 EEG features exhibited very weak out-of-sample predictive
ability to both the SANS and SAPS scores. Results were very similar for both the linear (i.e., elastic
net) and nonlinear (i.e., random forest) models. See and

for details.

4. Discussion

Traditionally, schizophrenia research focuses on a single experimental paradigm and analysis method
showing significant differences between patients and controls, and then tries to derive the underlying
genetic or neurophysiological causes of the disorder. This approach has been quite successful in the
formulation of hypotheses, such as the dopamine hypothesis (Howes and Kapur, 2009), the social brain
hypothesis (Burns, 2006), the glutamate hypothesis (Hu et al., 2015), or the dysconnection hypothesis
(Friston et al., 2016), just to name a few. Here, we examined to what extent abnormalities quantified
by different EEG features correlate with each other. Many of the investigated features were previously
linked to different abnormalities of brain processes in schizophrenia, and, here, we reproduced many
of these results, such as imbalance in microstates dynamics (da Cruz et al., 2020a; Rieger et al., 2016),
decreased long-range temporal correlations in the alpha and beta bands (Nikulin et al., 2012),
decreased life- and waiting-times in the beta band (Sun et al., 2014), increased spectral amplitude in

14


https://doi.org/10.1101/2020.12.21.20248665
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248665; this version posted January 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

the theta band (Boutros et al., 2008), increased connectivity in the theta band at the source level
(Andreou et al., 2015; Di Lorenzo et al., 2015), decreased Lyapunov exponent (Kim et al., 2000), among
others. With our systematic analysis, we also found abnormalities in EEG features, which, to the best
of our knowledge, have not been reported yet, namely, delta-phase gamma-amplitude coupling, range
EEG coefficient of variation and asymmetry in the theta and alpha bands, etc. In some way, deeper
analysis of each feature may have warranted an in-depth study and a potential publication. However,
we did not want to elaborate on these methods individually because we wanted to understand how all
EEG features relate to each other in their entirety. The surprising insight from our analysis is that, even
though we are probing the same signals from the same participants, we found only weak correlations
between the 69 significant features. The only strong correlations were between features that are similar
from the outset, thereby resembling test-retests. This suggests that, even though EEG features reveal
clear-cut and reproducible atypical patterns in patients, none of the features is truly representative for
the disease, but rather that all these features pick up more or less independent aspects of
schizophrenia. Hence, the traditional approach of focusing on a single experimental paradigm and
analysis method has its limitations. These results remind us that schizophrenia is indeed a very
heterogeneous disease, a well-known fact, which is however not always taken seriously enough
because, as mentioned above, most research tries to find the one or a few causes of schizophrenia
within one well described paradigm by digging as deep as possible into the underlying
neurophysiological and genetic mechanisms. In analogy to botany, one may call these approaches

“deep rooting” approaches.

We propose that it may be useful to complement these deep rooting approaches with “shallow rooting”
approaches, representing schizophrenia within a high-dimensional space, where many tests and
analysis outcomes are the basis variables. The outcomes should ideally have large effect sizes, low
mutual correlations, and a “flat” factor structure. Whether this is possible is an open question and

depends very much on the underlying causes of schizophrenia. On the lowest complexity level, there
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may be only a few independent causes (or even only one), which were not found yet. Given the
heterogeneity of the disease, including abnormalities in the cognitive (Andreasen et al., 1998) but also
the skin functioning domain (Messamore, 2012), the causes need to be on a rather general level, likely
subcellular, present in all human functioning. Alternatively, schizophrenia may be an approximatively
“additive” disease, where many small abnormalities add up to severe symptoms. In an even more
complex scenario, only certain combinations of redundant functions, each coming with at least two
variants, cause the disease. For instance, if one function is up-regulated and another one down-
regulated in an individual, there are no abnormalities. Deficits manifest only when all or most functions
are either up- or down-regulated. In such a combinatorial scenario, it would be difficult to find the
underlying causes since each variant itself does not lead to a deficit; only certain combinations do. Our
correlation analysis provides evidence supporting the more complex/multifactorial scenario, where
each feature makes up its own factor and manifests differently in different patients. Since our data
shows that each EEG feature is sensitive to roughly independent aspects of schizophrenia, each brain
process captured by the analysis methods might be neither necessary nor sufficient to explain important
aspects of the disease. Indeed, we found that EEG features showed very weak predictive power to key
symptoms of schizophrenia, suggesting that there is little information about individual differences in
psychopathology. Our results are an invitation to rethink the current approach in schizophrenia research
and suggest that new study designs conflating multiple features from the same and different paradigms
might be more adequate. In the next steps, it will be important to find the right set of features, which
may stem from EEG recordings but also potentially immunological markers, of which each may
contribute with a variety of features. Previous research has shown that combining features improved

classification and predictive performance in psychosis studies (Mothi et al., 2019; Yang et al., 2010).

Our study has several limitations. There are demographic differences between patients and controls,
which might affect our group comparisons. However, we attempted to minimize these demographic

effects by using education as a covariate and gender as factor in the analyses. Similarly, we cannot
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exclude effects of medication in our results. Nonetheless, we find similar patterns of correlations
between EEG features, i.e., weak associations, in both patients and controls, suggesting that if there
is an effect of medication, it is small. Further, our sample size is relatively small for achieving reliable

estimates of predictive power (Poldrack et al., 2020; Schnack and Kahn, 2016; Varoquaux, 2018).

Our results may explain a deep mystery in schizophrenia research. Schizophrenia has an estimated
heritability of 70 to 85% (Burmeister et al., 2008). For example, the chance to also suffer from
schizophrenia for monozygotic twins is about 33% when the partner twin has the disease (Hilker et al.,
2018). Furthermore, about 0.25 to 0.75% people of a population suffer from schizophrenia and related
psychotic disorders (Kessler et al., 2005; Moreno-Kistner et al., 2018; Saha et al., 2005). These values
are rather stable across cultures (Simeone et al., 2015). Given that schizophrenia patients have less
offspring (Avila et al., 2001; Bassett et al., 1996; Keller and Miller, 2006; MacCabe et al., 2009), this
provokes the question why schizophrenia has not been extinguished during the course of evolution
(Keller and Miller, 2006; Liu et al., 2019). In the above-mentioned combinatorial scenario with many
redundant functions this may simply happen because evolution operates on the individual single-
nucleotide polymorphism (SNP) level and not on the combinatorial one. As long as most of the
population shows average functioning, there will be no change of the allele distributions. In the additive
scenario, evolution may extinct harmful alleles, of which each constitutes only a little risk, very slowly
and these may be replaced by harmful de novo mutations (Keller and Miller, 2006). To what extent
such considerations hold true will be shown by shallow rooting approaches using a plethora of
paradigms and a multiverse of analysis methods. In a nutshell, deep rooting will help to understand the
different aspects of the disorder, while shallow rooting will help to better diagnose schizophrenia by

finding subpopulations, leading to more personalized treatment.
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