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Development and external validation of a logistic regression derived formula 
based on repeated routine hematological measurements

predicting survival of hospitalized Covid-19 patients
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Abstract

Background: The Covid-19 pandemic has become a global public health crisis and providing optimal patient care while preventing a 
collapse of the health care system is a principal objective worldwide. Objective: To develop and validate a prognostic model based on routine 
hematological parameters to predict uncomplicated disease progression to support the decision for an earlier discharge. Design: Development 
and refinement of a multivariable logistic regression model with subsequent external validation. The time course of several hematological 
variables until four days after admission were used as predictors. Variables were first selected based on subject matter knowledge; their number 
was further reduced using likelihood ratio-based backward elimination in random bootstrap samples. Setting: Model development based on 
three Austrian hospitals, validation cohorts from two Austrian and one Swedish hospital. Participants: Model development based on 363 
survivors and 78 non-survivors of Covid-19 hospitalized in Austria. External validation based on 492 survivors and 61 non-survivors 
hospitalized in Austria and Sweden. Outcome: In-hospital death. Main Results: The final model includes age, fever upon admission, 
parameters derived from C-reactive protein (CRP) concentration, platelet count and creatinine concentration, approximating their baseline 
values (CRP, creatinine) and change over time (CRP, platelet count). In Austrian validation cohorts both discrimination and calibration of this 
model were good, with c indices of 0.93 (95% CI 0.90 - 0.96) in a cohort from Vienna and 0.93 (0.88 - 0.98) in one from Linz. The model 
performance seems independent of how long symptoms persisted before admission. In a small Swedish validation cohort, the model 
performance was poorer (p = 0.008) compared with Austrian cohorts with a c index of 0.77 (0.67 - 0.88), potentially due to substantial 
differences in patient demographics and clinical routine. Conclusions: Here we describe a formula, requiring only variables routinely acquired 
in hospitals, which allows to estimate death probabilities of hospitalized patients with Covid-19. The model could be used as a decision support 
for earlier discharge of low-risk patients to reduce the burden on the health care system. The model could further be used to monitor whether 
patients should be admitted to hospital in countries with health care systems with emphasis on outpatient care (e.g. Sweden).

Keywords: Covid-19; Prognostic model; In-hospital mortality; Development; Validation; C-reactive protein; Platelet count; Creatinine; Online calculator.

Introduction

Background

The Covid-19 pandemic evokes a complex global public 
health crisis with clinical, organizational and system-wide 
challenges. As we are currently experiencing the second or 
even third wave of the Covid-19 pandemic in Europe as well 

as other parts of the world, the health care system in many 
countries is at risk to collapse. To date no reliable biomarker 
exists to predict patient outcome and severity of disease 
progression. Therefore, care providers are often making 
decisions based on individual experience or non-validated 
biomarkers. Given the intensive workload of health care 
providers worldwide, a reliable, easily accessible prognostic 
tool would be beneficial.
Although a plethora of prognostic models for Covid-19 were 
quickly published at the beginning of the pandemic to support 
medical decision making at a time when they were urgently 
needed, a large consortium including clinical scientists, 
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epidemiologists, biologists, and statisticians, came to the 
conclusion that ‘the proposed models are poorly reported, at 
high risk of bias, and their reported performance is probably 
optimistic’ (Wynants et al., 2020). Based on that, the authors 
did ‘not recommend any of these reported prediction models 
for use in current practice’, while there remains an urgent need 
to develop more rigorous prediction models and validate 
promising ones. The authors recommended building on 
previous literature and expert opinion to select predictors, 
rather than selecting predictors in a purely data driven way. 
Promising candidates include age, body temperature, sex, 
blood pressure, creatinine, basophils, neutrophils, 
lymphocytes, alanine transaminase, albumin, platelets, 
eosinophils, calcium, bilirubin, creatinine, CRP and 
comorbidit ies,  including hypertension,  diabetes, 
cardiovascular disease, and respiratory disease.

Hence, the first objective of this study was to develop a 
prognostic model with predictors selected based on 
pathophysiological considerations and literature. 
Importantly, the predictors had to be easily accessible routine 
parameters to avoid obstacles to clinical application. The 
second objective was to validate the model in independent 
cohorts and to provide a publicly available online calculator 
and a formula to facilitate decision making during the current 
pandemic.

Source of the data

Methods

Besides the critically ill patients who need to be treated in 
intensive care units, the multitude of patients being treated in 
general wards bind substantial resources that would be needed 
for patients with other diseases. This negatively impacts the 
treatment options of patients who do not have Covid-19, 
causing collateral medical damage. Specifically, the measures 
to avoid infection of personnel and spreading of SARS-CoV-2 
throughout the hospital, as putting on and taking off protective 
clothing, are time consuming. Nevertheless, many of these 
Covid-19 cases cannot be discharged since the critical phase 
of Covid-19 frequently starts around 7-10 days after onset of 
the initial symptoms. Clearly, a tool reliably predicting the 
likelihood of a severe or fatal disease would be beneficial  and 
could support the decision for an earlier discharge.

Objectives

We conducted an observational cohort study to develop and 
validate a prognostic model to predict in-hospital mortality of 
patients with Covid-19. For this purpose, only data collected 
in clinical routine were used. There were no additional 
measurements for study purposes. Within all cohorts, data of 
all consecutive patients were accessed. For model 
development cohorts of three Austrian hospitals were used: 
the Clinic Favoriten (former Kaiser Franz Josef Hospital) in 
Vienna, the Johannes Kepler University Clinic in Linz and the 
Medical University of Innsbruck (cohorts 1-3). The model 
was validated in additional consecutive patients treated in the 
Clinic Favoriten and other patients treated in the Johannes 
Kepler University Clinic in Linz as well as in the Danderyd 
Hospital in Stockholm, Sweden (cohorts 4-6).
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Of note, the recovery of data at the Clinic Favoriten in Vienna 
is part of the ACOVACT study (ClinicalTrials.gov 
NCT04351724) approved by the local ethics committee 
(EK1315/2020), which aims to compare the effect of different 
antiviral and adjunctive treatments on outcome of 
hospitalized Covid-19 patients. This study was further 
approved by the ethics committee of the Innsbruck Medical 
University (ID of ethical vote: 1167/2020), the ethics 
committee of the Kepler University Clinics (1085/2020) and 
the Stockholm Ethical Review Board (COMMUNITY study 
dnr 2020-01653).

For model development 417 Covid-19 patients from three 
different large-scale medical centers were included, 
validation is based on 405 patients from two medical centers 
in Austria and one in Sweden (Fig. 1).  SARS-CoV-2 
positivity was determined from nasopharyngeal or 
oropharyngeal swabs via real-time polymerase chain reaction 
(qPCR) according to the Charité protocol (Corman et al., 
2020). Routine laboratory analyses were performed within 
clinical routine. Additional blood withdrawals were 
performed if clinically indicated.

Participants

All patients had available outcome data at time of analysis. 

Outcome

The predicted outcome is death from any cause during the 
hospital stay. There was no loss to follow up as patients were 
either discharged or died.

Predictors

As the aim was to build a prognostic model that has 
widespread applicability, only routinely measured variables 
were considered, such as measurements of the blood count 
and other hematological parameters. Thus, the methods of 
measurement are the ones usually used in the respective 
hospital.
The first selection of predictors from all available variables 
was based on graphical inspection of data, providing 
information on the time course of variables and the proportion 
of missing data. Further selection of possibly useful 
predictors considered pathophysiological processes, the 
published literature, and had a special focus on the reported 
Covid-19-associated coagulopathy. The graphical 
exploration showed that although some potential predictors 
are not changed to a relevant extent at the time of admission, 
they develop considerably differently between survivors and 
non-survivors during hospital stay. Therefore, we included 
the variable’s time course in the prognostic model. Since 
blood samples were often taken only every two days from 
admission, and as data from two days seemed too short for a 
prognosis, the pragmatic decision was made to use the data 
from day 0 to 4 (i.e., 5 calendar days) after admission for 
prognosis. Data processing is described in detail in the 
statistical methods section.

Blinding

The individuals accessing the medical records to extract 
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There were no missing data regarding outcome. Regarding 
missing data of predictors, one has to discriminate two types 
in the context of our prognostic model. First, as the time 
course of variables over the first four days was processed by 
linear regression within each patient into the predictors used 
in the logistic regression model, the first type of missing data 
is missing data points within the four days after admission 
within a patient. As the frequency and exact time points of 
blood samplings within patients naturally differ between 
patients and clinics, we decided to fit a linear regression line if 
any data on this variable were available. This might, on the 
one hand, reduce the regression line’s correspondence of the 
underlying biological process, on the other hand allow 
application of the model even if very few blood samples are 
available within the first four days. The second type of 
missing data is missingness of the regression coefficients 
within a patient, if no blood samples were available, or if a 
certain analyte in blood samples was not determined. The 
proportion of patients with missing linear regression-based 
predictors used for logistic regression was considered low 
enough to exclude all patients from the analysis with such 
missing data. The number of patients with missing data on 
predictors is given in the results section with each result and in 
Fig. 1.

A formal sample size calculation was not performed. The 
cohort of hospitalized patients suffering from Covid-19 
continues to grow. For the development of the model, we 
roughly oriented ourselves on 10 events per variable, 
considering that this rule of thumb might be an 
oversimplification of the problem regarding an adequate 
sample size in logistic regression (Ogundimu et al., 2016; 
Vittinghoff and McCulloch, 2007). For validation, we also 
aimed for this number in each validation cohort. However, we 
had to consider that a model that can potentially reduce the 
burden on health systems should be available to the general 
public rather sooner than later. 

Statistical analysis methods

variables were not blinded to the outcome.

Sample size

Inspection of the raw data, as shown exemplary for platelet 
count and CRP (Fig. 2A, B), suggested that both values 
measured in blood samples taken upon admission and those 
taken at later time points contain information regarding 
survival. Whereas the platelet count appeared to increase 
throughout the hospital stay in survivors, this was not 
observed in patients who died. Conversely, CRP levels tended 
to return to baseline in survivors but increased in non-
survivors. To make use of these different time courses in a 
prognostic model, a linear regression approach was used in 
each patient and for each potential predictor separately. A 
linear regression line was fitted through the data acquired 

Missing data

Processing of measured values in blood samples to the 
predictors used in logistic regression models

To avoid a loss of information, all continuous potential 
predictors were used as such, i.e., were not categorized. 
Although it seems likely that body temperature in its 
continuous form would have contained some information 
regarding outcome, it was only available as dichotomous 
variable fever on admission, ‘Yes’ was coded as 1, ‘No’ as 0. 
The distributions of the continuous predictors platelet count 
intercept, platelet count slope, CRP intercept and CRP slope 
are visualized in Fig. 2D-G separately for survivors and 
deceased.

Type of model, variable selection, model building procedures

within days 0 to 4 of hospitalization. The resulting intercept 
and slope were considered as potential predictors in logistic 
regression models. The intercept roughly reflects the value at 
admission. We also considered using the baseline value on 
admission instead of the intercept as predictor in logistic 
regression. However, this would have rendered the prognostic 
model unusable for patients without blood sampling upon 
admission. In contrast, the intercept as an estimate of the 
baseline value can also be used when, e.g., only data of day 
two and four are available. The slope on the other hand 
approximates the change over time. An example of such a 
linear regression within a patient’s platelet count data is 
shown in Fig. 2C.

To estimate death probability, multivariable binary logistic 
regression models were used. A subject matter knowledge-
based pre-selection of potential predictors was determined 
before modeling and is listed in Fig. 2H. We aimed to further 
reduce the number of variables during modeling for two 
reasons. First, we wanted the final model to be as simple as 
possible for a high degree of clinical applicability. Second, we 
aimed to have a number of events per variable that at least 
approximates ten. A bootstrap approach was chosen for this 
purpose, whereby 100 random bootstrap samples were 
generated from data of cohort 1 at first. Following this, the 
pre-selection of predictors was entered and subsequently 
removed stepwise backward in logistic regression models 
built based on each bootstrap sample separately. Which 
variables remained in each model was based on the 
significance of the change in the log-likelihood upon removal 
of a variable. The percentage of bootstrap samples in which a 
candidate variable was not removed is plotted in Fig. 2H. 
Those variables that were retained most often in the model 
were chosen. Although fever on admission was retained only 
in approximately two thirds of bootstrap samples, it seemed 
likely that fever on admission contains information regarding 
the outcome, wherefore it was retained in the model. 
Univariable predictor outcome analyses were not performed. 
Due to the limited number of events at this stage, interactions 
were not tested to avoid overfitting.

Handling of predictors

After the final selection of the predictors was determined, we 
decided to further develop the model before external 
validation. To this end we added patient data to the already 
existing dataset. As most of the additional patient data were 
from different cities in Austria than the original one, we 
expected that generalizability of the model would be 
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Table 1. Patient demographics for Development Cohorts  

 
Missing 

Data 

Cohort 1 
(N=210) 

Missing 
Data 

Cohort 1*  
(N=33)  

Missing 
Data  

Cohort 2  
(N=143)  

Missing 
Data  

Cohort 3  
(N=64)  

Parameter
 

N
 

N (%)
 

Median
 

(IQR)
 

N
 

N (%)
 

Median
 

(IQR)
 

N
 

N (%)
 

Median
 

(IQR)
 

N
 

N (%)
 

Median
 

(IQR)
 

Sex
 

0
  

0
  

0
  

0
  

Female

  
127 (60.5%)

  
14 (42.4%)

  
53 (37.1%)

  
30 (46.9%)

 
Male

  

83 (39.5%)

  

19 (57.6%)

  

90 (62.9%)

  

34 (53.1%)

 Age (years) 0 71 (56 – 81) 58 (40 – 65) 0 64 (51 – 77) 0 71 (55 – 80)

             Comorbidities

         Current smoker

 

52

 

52 (24.8%)

 

5

 

1 (3.0%)

 

32

 

8 (5.6%)

 

0

 

1 (1.6%)

 Obesity (BMI > 25)

 

67

 

91

 

(43.3%)

 

1

 

11 (33.3%)

 

0

 

69 (48.3%)

 

0

 

36 (56.3%)

 Diabetes type II

 

0

 

48 (22.9%)

 

0

 

4 (12.1%)

 

0

 

26 (18.2%)

 

0

 

15 (23.4%)

 Hypertension

 

1

 

109 (51.9%)

 

0

 

12 (36.4%)

 

15

 

65 (45.5%)

 

0

 

32 (50.0%)

 
Coronary heart disease

 

0

 

34 (16.2%)

 

0

 

3 (9.1%)

 

24

 

20 (14.0%)

 

0

 

7 (10.9%)

 
Chronic heart failure

 

0

 

25 (11.9%)

 

0

 

0 (0.0%)

 

1

 

4 (2.8%)

 

0

 

3 (4.7%)

 
Atrial fibrillation

 

0

 

44 (21.0%)

 

0

 

1 (3.0%)

 

0

 

12 (8.4%)

 

0

 

11 (17.2%)

 
Peripheral arterial disease

 

0

 

16 (7.6%)

 

0

 

0 (0.0%)

 

0

 

6 (4.2%)

 

0

 

2 (3.1%)

 
Chronic obstructive

 

pulmonary disease

 

0

 

27

 

(12.9%)

 

0

 

1 (3.0%)

 

22

 

9 (6.3%)

 

0

 

4 (6.3%)

 
Asthma

 

0

 

9

 

(4.3%)

 

0

 

3 (9.1%)

 

0

 

10 (7.0%)

 

0

 

0 (0.0%)

 

Hypo-

 

/ Hyperthyroidism

 

0

 

18 (8.6%)

 

0

 

2 (6.1%)

 

0

 

23 (16.1%)

 

0

 

2 (3.1%)

 

Chronic renal

 

insufficiency

 

0

 

40 (19.0%)

 

0

 

0 (0.0%)

 

0

 

7 (4.9%)

 

0

 

10 (15.6%)

 

Chronic liver disease 1 7 (3.3%) 0 3 (9.1%) 0 13 (9.1%) 0 2 (3.1%)

Malignancy 0 25 (11.9%) 0 1 (3.0%) 0 20 (14.0%) 0 7 (10.9%)

         

          

Symptoms at admission

         

Asymptomatic

 

1

 

23

 

(11.0%)

 

0

 

2 (6.1%)

 

0

 

5 (3.5%)

 

0

 

0 (0.0%)

 

Fatigue

 

1

 

135 (64.3%)

 

0

 

7 (21.2%)

 

2

 

68 (47.6%)

 

0

 

22 (34.4%)

 

Cough

 

1

 

121 (57.6%)

 

0

 

21 (63.6%)

 

4

 

107 (74.8%)

 

0

 

42 (65.6%)

 

Fever

 

1

 

112 (53.3%)

 

0

 

21 (63.6%)

 

2

 

84 (58.7%)

 

0

 

45 (70.3%)

 

Requirement of oxygen

 

1

 

90 (42.9%)

 

0

 

10 (30.3%)

 

11

 

46 (32.2%)

 

0

 

37 (57.8%)

 

Dyspnea

 

1

 

72 (34.3%)

 

0

 

15 (45.5%)

 

8

 

63 (44.1%)

 

0

 

19 (29.7%)

 

Diarrhea 1 29 (13.8%) 0 6 (18.2%) 3 21 (14.7%) 0 15 (23.4%)

Sore throat 1 25 (11.9%) 0 2 (6.1%) 3 15 (10.5%) 0 1 (1.6%)

Nausea or vomiting 1 6 (2.9%) 0 9 (27.3%) 3 24 (16.8%) 0 13 (20.3%)

         

          

         

COVID-19 classification

 

at admission†

 

0

  

0

  

0

  

0

  

Mild 38 (18.1%) 11 (33.3%) 34 (23.8%) 2 (3.1%)

Moderate 106 (50.5%) 15 (45.5%) 55 (38.5%) 19 (29.7%)

Severe 63 (30.0%) 5 (15.2%) 38 (26.6%) 28 (43.8%)

Critical 3 (1.4%) 2 (6.1%) 16 (11.2%) 15 (23.4%)

         

         

         

          

          

          

         

Clinical characteristics

         

Total hospitalization (days)

 

0

 

10 (6 –

 

16)

 

0

 

8 (6 –

 

12)

 

0

 

10 (6 –

 

19)

 

0

 

13 (5 –

 

29)

 

Admission to ICU 0 24 (11.4%) 0 2 (6.1%) 0 41 (28.7%) 0 13 (20.3%)

Invasive ventilation 0 10 (4.8%) 0 2 (6.1%) 0 31 (21.7%) 0 8 (12.5%)

Non-survivors 0 47 (22.4%) 0 3 (9.1%) 0 17 (11.9%) 0 13 (20.3%)

Continued on following page.
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Timeline

 

of events*

         

First patient admitted

  

March 3rd

  

August 27th

  

February 25th

  

February 14th

 

Last patient discharged

  

June 29th

  

October 1st

  

June 4th

  

June 4th

 

First mortality

  

March 12th

  

September 11th

  

March 22nd

  

March 18th

 

Last mortality

  

June 3rd

  

September 18th

  

May 20th

  

May 14th

 

Predictors at admission

         

C-reactive protein (mg/L)

 

91

 

58.5

 

(28.6 –

 

95.4)

 

5

 

41.9

 

(13.0 –

 

89.6)

 

35

 

44.0

 

(9.6 –

 

136.6)

 

0

 

59.5

 

(23.0 –

 

96.8)

 

Creatinine (mg/dL)

 

93

 

0.96

 

(0.79 –

 

1.35)

 

6

 

0.83

 

(0.77 –

 

1.00)

 

35

 

0.93

 

(0.79 –

 

1.17)

 

0

 

1.02

 

(0.79 –

 

1.17)

 

Platelet count (x109/L)

 

90

 

192

 

(150 -

 

244)

 

5

 

202

 

(157 –

 

247)

 

34

 

204

 

(161 –

 

268)

 

0

 

174

 

(140 –

 

242)

 

IQR = interquartile range, BMI = body mass index, ICU = intensive care unit

 

†

 

COVID-19 classification was performed according to the guidelines issued by the World Health Organization in mild (fever <38°C, no dyspnea, no 
pneumonia), moderate (fever, respiratory symptoms, pneumonia), severe (respiratory distress with respiratory rate ≥30 breaths per minute, SpO2 < 93% at 
rest) and critical (respiratory failure with requirement of mechanical ventilation, requirement of ICU)

 

*

 

year 2020

 

Table 1, continued

External validation was performed by calculating the death 
probabilities of additional patients using the established 
formula and calculating performance measures. Thereby, 
patients that were treated at the Favoriten Clinics  in Vienna 
(Cohort 4) and at the Kepler University Hospital, Linz 
(Cohort 5) served for validation purposes in the sense of 
temporal validation. We also validated the model in a cohort 
from the Danderyd hospital in Stockholm, Sweden (Cohort 
6).
In addition to plotting the predicted death probabilities of each 
patient against the outcome, we used the area under the 
receiver operating characteristic (ROC) curve (equivalent to 
the c statistic) as measure for discrimination. For assessment 

improved. Based on the combination of the original data and 
the new data all regression coefficients were re-estimated. The 
resulting model was adjusted for optimism using a linear 
shrinkage factor (Steyerberg et al., 2001). In short, 100 
random bootstrap samples with the same sample size as the 
original dataset were generated from the available data (i.e., 
cohorts 1-3). Within each bootstrap sample, a logistic 
regression model was fitted using the previously determined 
predictors. This resulted in different beta coefficients for each 
predictor in each bootstrap sample. Using the coefficients of 
these 100 logistic regression models, the prognostic indices 
were calculated for each patient in the original sample. The 
prognostic index is the linear combination of the regression 
coefficients as estimated in the bootstrap sample with the 
values of the covariables (e.g., age) in the original sample. 
Next, the prognostic index derived from each bootstrap 
sample was used as a single covariable in logistic regression 
analyses in the original dataset. The beta coefficient of the 
single covariable ‘prognostic index’ reflects the slope of the 
prognostic index. For each bootstrap sample, a slightly 
different slope occurred. The mean of these slopes, usually 
below 1, reflects that the regression coefficients are too 
extreme for prognostic purposes and was used as linear 
shrinkage factor, i.e., the coefficients were multiplied by this 
factor. The result was the final prognostic formula 
subsequently validated externally.

of calibration, we plotted the observed risks on the y-axis 
versus the predicted risk on the x-axis. Specifically, we first 
generated five groups of patients. The groups were defined by 
predicted death probabilities:  i) 0 to ≤ 0.2, ii) > 0.2 to  ≤ 0.4, 
iii) > 0.4 to ≤ 0.6, iv) > 0.6 ≤ 0.8, v) > 0.8. Within each group, 
the mean of all probabilities was calculated, which served as 
an x-axis coordinate for the plotted symbol. The y-axis value 
was determined by the proportion of deaths in the respective 
group. To visualize the uncertainty regarding these 
probabilities, 95% confidence intervals were calculated as 
described (Brown et al., 2001). Due to the relatively low 
number of patients, especially those with higher predicted 
death probabilities, five groups were chosen instead of the 
usual ten groups. The performance of the model in the two 
Austrian validation cohorts was compared with the 
performance of the same model in the Swedish cohort by the 
probability P of the z-value corresponding to the AUC 
difference calculated as follows:
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Differences between development and validation

Risk groups were not generated, as this generally might not be 
in the best interest of patients (Steyerberg, 2009). 
Additionally, groups do not seem meaningful in the context of 
how our model could be used clinically: To assign insufficient 
resources, the patients with the lowest death probability could 
be discharged.

Risk groups

As this study encompasses both development and validation, 
differences in definitions and variables including their coding 
are not of concern. However, in the Swedish cohort, outcome 
of in-hospital mortality could in principle be affected by 
differences in admission and discharge practices. This might 
affect the proportion of Covid-19 caused deaths occurring in 
hospital and thus counting as an event.

5
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Participants

An overview of the cohorts including the number of survivors 
and non-survivors is shown in Fig. 1. Patient characteristics 
are listed in Tables 1 and 2.

Results

Model development

Predictor selection during modeling

After the subject matter-based pre-selection of predictors, 
their selection was further narrowed down using a bootstrap 
approach with data of cohort 1. Of 210 patients in this cohort, 
6 were not included in the analysis since at least one predictor 
had missing data. One of these 6 patients died, leaving 46 
deaths to be included in the analysis. The extent of the loss of 
information due to these 6 patients seemed negligible. 
Therefore, multiple imputation was abstained from and only 
complete cases were analyzed. Results (Fig. 2H) suggested 
that the following predictors should be retained in the model: 
1) patient age in years, 2) fever on admission (binary, with 
fever being defined as a body temperature > 38°C), 3) the 
intercept of the linear regression line through CRP levels over 
time, approximating the level upon admission, 4) the slope of 
this regression line, reflecting the change per day, 5) the 
intercept of the regression line through creatinine levels and 
6) the slope of the regression line through the platelet count. 
The model including the selected predictors fitted on the 
original (non-bootstrapped) data led to the predicted death 
probabilities shown in Fig. 2I. The corresponding regression 
coefficients and ROC curve can be found in Fig. 2J and K. The 
apparent performance measured by the c statistic was 0.97 
(95% CI 0.95 - 0.99), Nagelkerke’s pseudo R² measure of 
0.776 indicated a large effect size.

The probabilities calculated in this way are presented in 
Fig.4B separated by outcome, but pooled for the two Austrian 
validation cohorts, with the corresponding ROC curve in Fig. 
4C. The c statistic of 0.93 (95% CI 0.90 - 0.96) indicates that 

Further development and refinement of the model

The initial model based on cohort 1 was updated by adding 33 
more patients of the same hospital (referred to as additional 
patients of cohort 1), cohort 2 comprising 143 patients and 
cohort 3 consisting of 64 patients. Of the total of 450 patients, 
9 had missing data, leaving 363 survivors and 78 non-
survivors. Reestimation of all regression coefficients led to a 
slightly reduced effect size indicated by a Nagelkerke’s R² of 
0.597 (Fig. 3A). The predicted probabilities of all cohorts are 
plotted in Fig. 3B, to allow inspection of predicted 
probabilities in each cohort they are also plotted separately by 
cohort (Fig. 3C-E). The ROC curve corresponding to the 
predicted death probabilities in Fig. 3B is plotted in Fig. 3F. 
The adjustment of the regression coefficients for optimism 
using a linear shrinkage factor (Fig. 3G) resulted in the 
shrunken coefficients (Fig. 3H).

Model specification and performance

The explicit formula of the model is given in Fig. 4A. To 
calculate a patient's risk one first needs to fit linear regression 
lines as described in the methods section to obtain intercepts 
and slopes for CRP, creatinine, and platelet count. Following 
this, the patient’s age in years, the information whether fever 
was present upon admission (1 for ‘Yes’ and 0 for ‘No’), 
intercepts (abbreviated with ic) and slopes (sl) need to be 
entered in the formula. The result is the predicted death 
probability. Alternatively, the values in their original form 
(e.g. the day after admission with the platelet count in 
thousands / µl measured at that day) can be entered into the 
online calculator.
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Table 2. Patient characteristics of Validation Cohorts

 

 

Missing 
Data

 

Cohort 1-3

 

(N=450)

 

Missing 
Data

 

Cohort 4

 

(N=266)

 

Missing 
Data

 

Cohort 5

 

(N=124)

 

Missing 
Data

 

Cohort 6

 

(N=115)

 

Parameter

 

N

 

N (%)

 

Median

 

(IQR)

 

N

 

N (%)

 

Median

 

(IQR)

 

N

 

N (%)

 

Median

 

(IQR)

 

N

 

N (%)

 

Median

 

(IQR)

 

Age (years)

 

0

 

67

 

(52 -

 

79)

 

0

 

56

 

(44 –

 

70)***

 

0

 

71

 

(53 –

 

83)

 

0

 

61

 

(50 –

 

69)***

 

Fever at admission

 

3

 

262

 

(58.2%)

 

3

 

148 (55.6%)***

 

0

 

70

 

(56.5%)

 

0

 

89

 

(77.4%)***

 

Non-survivors

 

0

 
80

 

(17.8%)

 
0

 
28

 

(10.5%)**

 
0

 
21

 

(16.9%)

 
0

 
16

 

(13.9%)

 

Predictors at admission

         

C-reactive protein (mg/L)

 
131

 
53.0

 

(22.0 –

 
98.0)

 
48

 
31.1

 

(10.0 –

 
78.2)***

 
13

 
33.0

 

(8.0 –

 
77.0)*

 
2

 
95.0

 

(45.0 –

 
166.5)***

 

Creatinine (mg/dL)
 

134
 0.95

 

(0.79 –
 

1.20)
 47

 0.86
 

(0.72 –
 

1.03)***
 12

 1.07
 

(0.90 –
 

1.31)**
 6

 0.94
 

(0.71 –
 

1.12)
 

Platelet count (x109/L)
 

129
 192

 

(152 –
 

254)
 46

 195
 

(155 -
 

243)
 9

 204
 

(158 –
 

246)
 3

 204
 

(157 –
 

288)
 

IQR = interquartile range  

* p<0.05, ** p<0.01, *** p<0.001 vs Cohort 1-3  
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Cohort 2

Location:  Innsbruck, Austria
Hospital:  Medical University of Innsbruck

Patients:  17 deaths / 143 total
Analyzed: 16 deaths / 140 total

Cohort 3

Hospital:  Kepler University Hospital
Location:  Linz, Austria
Patients:  13 deaths / 64 total
Analyzed: 13 deaths / 64 total

Analyzed: 46 deaths / 204 total

Location:  Vienna, Austria
 (Kaiser-Franz-Josef   Hospital)

Patients:  47 deaths / 210 total

Cohort 1

Hospital:  Favoriten Clinics  

*Additional patients:  3 deaths / 33 total
Analyzed:  3 deaths / 33 total

Predictor selection before modeling

Criteria

Ÿ Pathophysiological considerations
Ÿ Literature

Ÿ Widespread usage of a variable / laboratory parameter

Ÿ Number of chosen variables limited by events per variable

Ÿ Proportion of missing data

C
o

h
o

rt
 1

Ÿ Adjustment of reestimated coefficients for optimism using linear shrinkage factor 
based on newly generated 100 bootstrap samples

Ÿ Reestimation of coefficients of previously selected predictors

Further development and refinement of the model

C
o

h
o

rt
 1

* 

C
o

h
o

rt
 2

C
o

h
o

rt
 3

C
o

h
o

rt
 1

Ÿ Logistic regression (Backward stepwise, Likelihood ratio) in 100 bootstrap samples

Predictor selection during modeling

Ÿ Decision regarding selection of variables based on the number of bootstrap 
samples in which the backward selection retained a variable. C

o
h

o
rt

 1

V
�

�
��

�
�
��

�

Analyzed: 21 deaths / 123 total
Patients:  21 deaths / 124 total

Cohort 5

Location:  Linz Austria
Hospital:  Kepler University Hospital

Cohort 6

Location:  Stockholm, Sweden
Hospital:  Danderyd Hospital

Patients:  15 deaths / 115 total
Analyzed: 15 deaths / 115 total

Location:  Vienna, Austria

Analyzed: 25 deaths / 254 total

Cohort 4

Hospital:  Favoriten Clinics  

Patients:  28 deaths / 266 total

Calculation of the death probability for each patient
according to previously defined predictors and coefficients

Assessment of performance

Ÿ Receiver operating characteristic curves

Calibration

Ÿ Dot plots of predicted death probability vs. outcome

Discrimination

Ÿ C statistics with 95% confidence intervals

Ÿ Calibration plots showing predicted probabilities vs. observed proportions

C
o

h
o

rt
 6

C
o

h
o

rt
 5

C
o

h
o

rt
 4

Ÿ Grouping of patients accordingly

Ÿ Discrimination and calibration measures in each group

Exploration whether the performance of the model depends on the period 
between the onset of symptoms and hospital admission.

C
o

h
o

rt
 5

C
o

h
o

rt
 4

Figure 1: Overview of cohorts used for model development and validation.
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Discussion

However, the model performed significantly worse in the 
Swedish validation cohort (Fig. 4K-L). Although still 
significant, as indicated by a 95% confidence interval of the c 
index not including 0.5, both discrimination and especially 
calibration seem clinically less useful. Of note, patients from 
Sweden showed a longer duration between symptom onset 
and admission to the hospital compared to both Austrian 
validation cohorts (Fig. 5).

Model performance in relation to the lag time between 
symptom onset and hospital admission

It is particularly challenging to assess the future disease 
course of Covid-19 patients who have had a more recent onset 
of symptoms. Therefore, it is clinically important that the 
model also performs well in such a patient collective. To 
explore this issue, we grouped all Austrian validation patients 
(cohorts 4 and 5) according to their self-reported symptom 
onset. Regarding the Swedish cohort, the event count is 
currently insufficient to perform an analogous meaningful 
subset analysis. As measured by the c indices, the model’s 
performance seems to be roughly stable over the range of 
periods between symptom onset and admission in Austrian 
cohorts (Fig. 6). However, due to the low number of events, 
especially in those patients with a long symptom duration 
before admission, these exploratory results need to be 
interpreted with great caution. Still, even in those patients 
where the symptom onset could not be verified, the model 
seems to discriminate between patients who die and those 
who survive.

Model updating

The model was not updated after validation. 

The main result of this study is a simple formula that predicts 
the risk of death of hospitalized patients with Covid-19 within 
the period of their stay. This information could be used as 
additional decision support regarding discharge of clinically 

the formula will assign a higher predicted death probability to 
a random subject that died compared to a random subject that 
survived in 93% of cases. The calibration plot (Fig. 4D) serves 
to compare the predicted probabilities over the whole range of 
probabilities with the actual outcome. Ideally, the symbols are 
exactly positioned on the diagonal dotted line of identity, 
which indicates identity of the predicted death probability 
with the observed proportion of deaths. The 95% confidence 
intervals, being a measure of uncertainty of the observed 
proportions, are wider towards higher death probabilities as 
there were less patients with a high probability to die than 
there were patients with a lower probability. Overall, the 
calibration plot shows a clinically useful calibration, with 
relatively precise prediction of death in patients with a low 
death probability, which is relevant for the model’s intended 
use, and a slight overestimation of death probabilities in 
patients with a high proportion of deaths. Respective separate 
plots for cohorts 4 and 5 (Fig. 4 E-J) show discrimination and 
calibration measures for cohort 4 and 5 separately, suggesting 
similar performance in both cohorts.

Limitations

The model in its original form might also be repurposed for 
the decision whether hospitalization should take place. For 
example, regular blood samplings could be done in Covid-19 
positive patients in nursing homes or outpatient clinics. As 
soon as the model indicates a death probability substantially 
above zero, a patient could be admitted to hospital to provide 
optimal care. Importantly, validation of the model for this 
repurposing is warranted.
Another limitation is inextricably linked to the way this 
prognostic model is built. The fact that data are used from the 
first five calendar days (including the day of admission) of the 
hospital stay means that a prognosis can only be made after 
this period. However, based on 920 German hospitals with 
over 10,000 patients (Karagiannidis et al., 2020), even the less 
critical non-ventilated patients had a median stay of 9 days 
(interquartile range 5-15 days), while critical (ventilated) 
patients stayed much longer. Therefore, despite this 
limitation, we believe that earlier discharge of non-critical 
patients based on our model could save resources that might 

The most important limitation is the uncertainty whether the 
model performs adequately in other geographical regions 
than Austria. Validation in a relatively small Swedish cohort 
showed a significantly worse model performance than in two 
Austrian cohorts.  However, we have to state that there are 
substantial differences between the Austrian and the Swedish 
cohorts, which could explain the discrepancy in the 
performance. First, admission criteria differed between 
Austria and Sweden when the patients included in this 
analysis were hospitalized. While Swedish patients were only 
admitted if they needed additional oxygen, the indication for 
hospitalization was far more permissive in Austria. 
Consequently, patients in Sweden were hospitalized at a later 
stage of the disease, as evidenced by the significantly higher 
number of days with symptoms before admission in the 
Swedish cohort compared to the Austrian ones. Further, the 
peak of the first wave of the pandemic hit Sweden far stronger 
than Austria, which also affected clinical care differently. For 
instance, few patients from nursing homes were admitted to 
Swedish hospitals at that time, explaining why the Austrian 
cohorts show a wider age distribution compared to the 
Swedish cohort. Of note, while in general mortality rates 
during spring were much higher in Sweden compared to 
Austria, the percentage of in hospital mortalities was much 
lower in this cohort compared to Austria (12.5% in Stockholm 
versus 22.4% in Vienna at the same period). This indicates 
that the hospitalized Swedish cohort represents only a fraction 
of severe Covid-19 cases, while in Austria a larger fraction of 
patients with severe symptoms were treated in hospital. We 
can therefore not completely rule out that if outpatient data 
would have been included the performance would have been 
similar in both countries. Hence, it is necessary to validate and 
possibly adapt the model for other regions. 

stable Covid-19 patients in case adequate therapy is also 
available at home. The formula is based on predictors 
routinely measured in hospitals, which allows immediate and 
widespread use. This is also facilitated by a publicly available 
online calculator.
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Constant and Predictors β Coefficient (S.E.) P-value Odds ratio

Creatinine, intercept*

C-reactive protein, slope*

C-reactive protein, intercept*

Fever on admission

Patient age upon admission

Platelet count, slope*

Constant -18.149 (3.727)

1.465 (0.532)

0.109 (0.025)

0.020 (0.007)

1.460 (0.634)

0.165 (0.039)

-0.045 (0.015)

< 0.0001

0.006

<0.0001

0.003

0.021

< 0.0001

0.003

4.327

1.115

1.020

4.307

1.179

0.956

95% CI 

1.526 − 12.27

1.062 − 1.171

1.007 − 1.034

1.244 − 14.91

1.092 − 1.273 

0.928 − 0.985

Nagelkerke R² = 0.776 

< 0.0001

Figure 2: Model development in cohort 1 from Vienna. A) Changes of platelet count throughout the hospital stay in patients who survived and subsequently 
were discharged and those who died within the hospital. B) Analogous changes of CRP levels. C) Exemplary calculation of intercept and slope using linear 
regression. A linear regression line was fitted to all data points available from admission to day 4 and is visualized for the platelet count. The intercept approximates 
the value upon admission, even in case this specific value is not available in a patient. The slope reflects the change of the respective variable per day. Such a linear 
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benefit patients in a more critical condition.
There is another caveat regarding the interpretation of the 
calculated death probabilities. As can be seen in the 
calibration plots of the validation in Austrian cohorts (Fig. 4D, 
G, J) in the lower left corners, the lower predicted 
probabilities agree well with the observed proportion of 
deaths. Confidence in this regard is quite high, as indicated by 
the relatively small error bars reflecting the 95% confidence 
intervals. These narrow intervals result from a large sample 
size of patients at low risk. Conversely, the upper right corner 
shows that the probabilities of death appear to be 
overestimated, and that the corresponding uncertainty 
indicated by the wide 95% confidence intervals is high. Thus, 
while the model might be quite accurate in case the true 
underlying proportion of deaths is in the range of the upper 
end of the confidence interval plotted, i.e., near the line of 
identity, it might also be that the model markedly 
overestimates the probabilities of death if the actual 
proportion of non-survivors is more likely to be at the lower 
end of the confidence interval. Notably, this limitation does 
not affect the clinical usability of the model because only the 
lowest probabilities would result in consequences, i.e., 
discharge, whereas high estimated probabilities would not 
have practical implications. From our point of view, it is 
therefore essential to convey to patients that a high predicted 
probability of death is associated with considerable 
uncertainty and must therefore under no circumstances be 
interpreted as a certain death verdict. On the other hand, much 
greater confidence can be placed in a very low estimated 
probability of death.

Model performance in validation datasets compared to 
development data
As this study contains both development and validation of the 
model, differences in predictor definitions do not apply. Also, 
the validated model is identical to the final version of 
development. As could already be expected by the shrinkage 
factor relatively close to 1, the model performance was good 
in the Austrian validation cohorts originating from the same 
hospitals as the patient data used for development. However, 
the model performed not as good in a small Swedish cohort, 
potentially due to discrepancies outlined in the limitation 
section.

Interpretation

Overall interpretation
Our prognostic model is far from being the first. However, as 
many of the previously published ones must be assumed to be 
at high risk for bias (Wynants et al., 2020), we believe that our 
model can make a valuable contribution to relieving the 
burden on health systems. Compared to other well developed 
and validated models, e.g., the 4C mortality Score (Knight et 
al., 2020), ours distinguishes patients who die from those who 
survive better than many others, indicated by a c index well 
above 0.9. However, this good performance may be 
geographically limited. As a result, we can only recommend 
the use of the model in Austria before the model has been 
validated in other regions and, if necessary, adapted to them. 
In addition, we strictly adhered to the TRIPOD reporting 
guideline (Moons et al., 2015) and provide the whole datasets 
to allow our work to be scrutinized.
Another aspect that discriminates our model from others is the 
use of the time course of variables. Many others merely 
included the values at admission, which is reasonable, as 
information regarding prognosis should be available as early 
as possible. However, as our data show, many differences 
between survivors and non-survivors only develop over the 
course of a few days. While the use of this information is a 
major strength of our model, it could also be one of its possible 
drawbacks as decision making takes until day 4 of 
hospitalization. Clinical variables considered and finally 
included in our model have been included in other prognostic 
models for Covid-19, and are biologically plausible. The 
underlying pathogenesis of Covid-19 seems complex, yet 
four main intertwined loops (the viral, the hyperinflammatory, 
the non-canonical renin-angiotensin system (RAS) axis and 
the hypercoagulatory loop) responsible for patient 
deterioration have been identified. Three out of the four loops 
are represented in our model. The pathology starts with the 
viral loop and is rapidly followed by the second loop, the 
hyperinflammatory loop, which is represented by CRP in our 
model. CRP levels positively correlate with lung lesions and 
disease severity in Covid-19 (Manson et al., 2020; Wang, 
2020). Therefore, daily monitoring CRP values in 
hospitalized Covid-19 patients has been suggested to 
facilitate risk stratification and prognostication (Sharifpour et 
al., 2020). This suggestion is implemented by the CRP 
intercept and slope and is in agreement with a recent paper 
demonstrating that diversion of inflammatory marker trends 
over time predict a fatal or good outcome of severe Covid-19 
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regression was fitted to every considered variable of every patient separately. D) Distribution of platelet count intercepts. Horizontal lines indicate medians, 25th 
and 75th percentiles. E-G) Distribution of platelet count slopes (E), CRP intercepts (F) and CRP slopes (G). Note that the 75th percentile of CRP slopes in 
survivors is so close to the median that it is hidden within the horizontal black bar indicating the median H) List of potential variables selected based on literature 
and pathophysiological considerations. For each analyte from blood samplings, intercepts and slopes were calculated. The most important predictors in 100 
random bootstrap samples of the original dataset were selected separately within each bootstrap sample using logistic regression with backward stepwise 
selection, whereby removal testing was based on the probability of the likelihood-ratio statistic. The horizontal bars indicate the percentage of bootstrap samples 
in which the respective variable was retained in the final model after the stepwise procedure. Based on that, it was decided to use the variables in bold face with 
filled corresponding bars in the final model. I) A logistic regression model with regression coefficients listed in J was estimated using the original dataset and the 
previously selected predictors. The resulting estimated probabilities for death are plotted against the observed outcome. J) Regression coefficients of the model in 
the original dataset of Cohort 1. Nagelkerke’s R² is given as a measure of effect size and represents a version of the coefficient of determination (R²) for logistic 
regression. The odds ratios result from the constant e raised to the power of the respective coefficient. The odds ratio of age, for instance, can be interpreted that 
each additional year of age raises the odds of death by a factor of 1.179. K) Corresponding ROC curve. The c statistic indicates the probability that when two 
random individuals are selected with different outcomes, the model assigns a higher predicted death probability to the subject who died. This probability equals the 
area under the ROC-curve. To illustrate which cut-off values of predicted probabilities for the discrimination between survival and death result in which 
combination of true and false positive rates, some exemplary cutoff values are plotted on the curve. Assuming a fatal outcome for every patient above a predicted 
death probability of 0.32, for example, results in a sensitivity of 91% and a false positive rate of 7%, i.e., a specificity of 93%.
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(Manson et al., 2020).
Lymphocyte counts have been suggested previously as 
prognostic markers as well. Although changes in leukocyte 
counts are clinical indicators of disease progression in Covid-

19, investigating the changes in lymphocytes might be 
important for prediction (Fouladseresht et al., 2020). 
However, based on the variable selection method employing 
random bootstrap samples inclusion of this parameter as 
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A

Updated logistic regression model based Development cohorts 1, 2 and 3.

Constant and Predictors β Coefficient (S.E.) P-value Odds ratio

Creatinine, intercept

C-reactive protein, slope

C-reactive protein, intercept

Fever on admission

Patient age upon admission

Platelet count, slope

Constant − 12.891 (1.663)

0.111 (0.018)

< 0.0001
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95% CI 
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Figure 3: Further development of the model into its final version. The data of additional patients were combined with the data used to select predictors and the 
resulting total dataset was used to reestimate all regression coefficients. A) Regression coefficients, odds ratios, and effect size of the updated model. B) Predicted 
death probabilities plotted against observed outcome. C-E) Data shown in B plotted separately for cohorts to enable assessment of the model’s performance in 
different cohorts. C) Predicted death probabilities of patients used for predictor selection in grey, and some additional patients from the same hospital (Clinic 
Favoriten in Vienna) in sky blue. D) Predicted death probabilities of patients treated at the Department of Internal Medicine II, Medical University of Innsbruck, 
Innsbruck, Austria. E) Corresponding death probabilities for patients treated at Department of Pulmonology, Kepler University Hospital and Johannes Kepler 
University, Linz, Austria. F) ROC curve corresponding to death probabilities plotted in B. G) To adjust the regression coefficients for optimism, a shrinkage 
approach with a linear shrinkage factor was applied (Steyerberg et al., 2001). In short, the regression coefficients were estimated in each bootstrap sample. Next, 
the prognostic index, i.e., the result of the linear combination of the regression coefficients, was determined in the original dataset for each patient based on the 
coefficients of each bootstrap sample. This resulted in 100 prognostic indices for each patient in the original data, corresponding to the 100 bootstrap samples. 
Subsequently, the prognostic indices for each patient were used as a single covariable in a logistic regression using the original dataset. The coefficient of the 
covariable, i.e., the slope, naturally differs between prognostic indices derived from different bootstrap samples. The violin plot shows the distribution of the 
slopes based on the 100 bootstrap samples, the circle with the error bar represents the mean. The mean slope less than 1 indicates that the original coefficients are 
too extreme for predictive purposes, but with a mean slope of 0.969 there was only a slight overestimation. H) Shrinkage of the original coefficients according to 
the mean slopes, i.e., the linear shrinkage factor.
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Figure 4: Legend on next page
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Further, LDH is related to inflammation and cell damage and 
has been suggested as a risk factor for severe Covid-19 (Chen 
et al., 2020; Poggiali et al., 2020). However, both intercept 
and slope remained in less than 20% of the bootstrap samples, 
which indicated that this variable was less important and was 
therefore dropped from the model.
In addition, the third loop, the non-canonical renin-
angiotensin system (RAS) axis loop was described, which is 
in a broader sense represented by creatinine in our model. 
Kidney involvement in Covid-19 is common and associated 
with high mortality and was described to serve as an 
independent risk factor for all-cause in-hospital mortality in 
patients with Covid-19 (Ali et al., 2020). Renal viral tropism 
has been reported, which is also associated with age and 
comorbidities as well as decreased survival (Braun et al., 
2020). Data for more than 17 million people in the UK suggest 
that patients with chronic kidney disease are at higher risk for 
adverse events in Covid-19 than those with other known risk 
factors, including chronic heart and lung disease. (Gansevoort 
and Hilbrands, 2020). The fact that the slope of creatinine 
seemed to have less prognostic value than the intercept might 
reflect the importance of chronic kidney disease.

intercept and slope would not have led to a relevant 
improvement of the model.

The fourth loop is the hypercoagulatory loop, which is 
represented by platelet count in this model. A meta-analysis of 
7,613 Covid-19 patients revealed that patients with severe 
disease had a lower platelet count than those with non-severe 
disease (Jiang et al., 2020), which is in line with our data. 
However, not all studies have found platelet counts to be a 
predictor of Covid-19 mortality (Amgalan and Othman, 
2020). This would also have been the case in our cohort if only 
the platelet count upon admission would have been 
considered. Accordingly, changes in platelet count were 
retained in the model in the form of the slope.
Undoubtedly the most important predictor of severe Covid-19 
is age. A meta-analysis of 88 articles (69,762 patients) shows 
that age along with CRP were strong risk-factors for ICU 
admission and/or mortality (Katzenschlager et al., 2020). 
Since the incidence and severity of many diseases are 
positively correlated with age, this variable could implicitly 
include many other diseases in the model. Moreover, aging 
itself leads to inflammatory and immunological changes 
which could directly affect the response to viral infection and 
accelerate disease progression in Covid-19. A recent meta-
analysis of twelve studies that investigated the role of age in 
Covid-19 indicates that the risk increased in some but not all 
studies when adjusting for important age-dependent risk 
factors as diabetes, hypertension, coronary heart disease, 
cerebrovascular disease, compromised immunity, previous 
respiratory disease, and renal disease (Romero Starke et al., 
2020).
Concerning fever, a recent meta-analysis reported that fever is 

a predictor of adverse outcome in Covid-19 (Li et al., 2020). 
In line with studies on other viral infectious diseases, a study 
found that prolonged fever for 7 days from onset of illness is 
associated with adverse outcomes from Covid-19, while 
saddleback fever is not indicative of adverse outcome (Ng et 
al., 2020). In our model fever at admission was incorporated 
in the prediction model. The time course of body temperature 
would have been interesting to include, however, available 
records only allowed inclusion as a binary variable.

Implications

The model was developed for and its use should be restricted 
to a specific clinical application, if not validated for other 
purposes. In case the number of patients with Covid-19 in the 
general ward exceeds numbers that can easily be handled and 
thus binds resources that would be urgently needed elsewhere, 
the attending physicians could decide to discharge those 
patients with the lowest model-predicted death probabilities. 
It is vital that the estimated probability is not the sole criterion 
for decision-making and that the physician should always 
include a further assessment of the situation. Furthermore, it 
should be ascertained that discharge has no relevant impact on 
treatments, i.e., only those patients should be discharged 
where an adequate treatment can be implemented on an 
outpatient basis or in quarantine. It is necessary to emphasize 
that high estimated death probabilities should not be 
overinterpreted, as their reliability is not as well determined as 

For the time being, the model is primarily applicable to 
patients hospitalized with verified Covid-19 and should 
support decision making on earlier discharge. Since the model 
performed best within the Austrian health care system, 
validation of the model in different regions is required to 
assess where it can be used in its original form and where it 
needs to be adapted.

Heber et al., 2020. This pre-print was not subjected to a peer-review process. 

Figure 4: External validation of the prognostic model in cohorts from Austria and Sweden. A) Final prognostic model subsequently validated in independent 
patient cohorts with link to the online calculator. B) Predicted death probabilities of survivors and non-survivors. Blue symbols indicate patients from the Clinic 
Favoriten in Vienna, Austria, orange patients from the Kepler University Hospital in Linz, Austria. C) Corresponding ROC curve with exemplary cut-off values 
and c statistic. D) Calibration plot corresponding to data shown in A and B. Ideally, all symbols should lie on the dotted diagonal line of identity, indicating that the 
predicted death probabilities correspond exactly to the observed ones. E-G) Corresponding plots for the patients from Kaiser Franz Josef hospital. H-J) 
Corresponding plots from the Kepler University Hospital in Linz, Austria. K-M) Data from Danderyd Hospital, Stockholm, Sweden. Corresponding plots show 
that the model performed significantly and relevantly worse compared to the Austrian cohorts.
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Figure 5: The period between symptom onset and admission to the 
hospital in the Austrian (Vienna, Linz) cohort is shorter than in the 
Swedish validation cohort. P-values are the result of Mann-Whitney tests 
adjusted for three pairwise tests according to Bonferroni’s method. Vienna 
vs. Linz P = 0.123.
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Figure 6: Effect of the period between the self-reported symptom onset and the admission to the hospital on the model’s performance in Austrian 
validation cohorts. A) Histogram depicting the number of patients according to the delay between the onset of symptoms and admission to the hospital. Blue 
indicates patients from the Clinic Favoriten in Vienna, Austria, orange patients from the Kepler University Hospital in Linz, Austria. B) Predicted death 
probabilities plotted against the observed outcome for patients whose symptoms began within three days before admission to hospital with (C) the corresponding 
ROC curve. D-F) Corresponding plots showing patients whose symptoms began between the fourth and seventh day before admission to hospital. G-I) 
Corresponding plots showing patients whose symptoms began more than one week before admission to hospital. J-L) Corresponding plots for patients whose 
symptom onset could not be determined, e.g., due to language barriers. I and L) The ROC curves are depicted for completeness; however, data need to be 
interpreted with great caution due to the low sample size and event rate in these patients.
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low death probabilities.

In countries which rely on outpatient care, the model could be 
repurposed to decide whether patient hospitalisation is 
indicated to provide optimal treatment for patients requiring 
intensive care. Future research should include validation of 
the model in different geographical regions, repurposing for 
outpatient care and updating, as standard of care and the 
pandemic evolve.

There is no general recommendation for a cutoff value, below 
which an earlier discharge would be justified. This cutoff 
depends on current strain on the health care system. In case 
patients need to be discharged, one could start with the ones 
with the lowest death probabilities. In this case, the ROC-
curves provide  the proportion of true and false positives for a 
specific cutoff.
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