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Abstract

The clinical course of coronavirus disease 2019 (COVID-19) infection is highly
variable with the vast majority recovering uneventfully but a small fraction
progressing to severe disease and death. Appropriate and timely supportive care
can reduce mortality and it is critical to evolve better patient risk stratification
based on simple clinical data, so as to perform effective triage during strains on
the healthcare infrastructure. This study presents risk stratification and mortality
prediction models based on usual clinical data from 544 COVID-19 patients
from New Delhi, India using machine learning methods. An XGboost classifier
yielded the best performance on risk stratification (F1 score of 0.81). A logistic
regression model yielded the best performance on mortality prediction (F1 score
of 0.71). Significant biomarkers for predicting risk and mortality were identified.
Examination of the data in comparison to a similar dataset with a Wuhan cohort
of 375 patients was undertaken to understand the much lower mortality rates in
India and the possible reasons thereof. The comparison indicated higher survival
rate in the Delhi cohort even when patients had similar parameters as the Wuhan
patients who died. Steroid administration was very frequent in Delhi patients,
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especially in surviving patients whose biomarkers indicated severe disease. This
study helps in identifying the high-risk patient population and suggests treatment
protocols that may be useful in countries with high mortality rates.

Introduction 1

The World Health Organization (WHO) declared the outbreak of coronavirus 2

disease 2019 (COVID-19) as a global health emergency of international concern. 3

Originating in Wuhan, China, the disease has spread to the rest of the world. 4

As of December 17, 2020, WHO states that about 10 million confirmed cases of 5

COVID-19 have been detected in India alone, making the number of cases in the 6

country 15% of the total cases worldwide and the second largest affected nation 7

after the United States. Due to the sudden spike in the number of cases, healthcare 8

systems across the world including India’s are under tremendous pressure for 9

making tough decisions in resource allocation among affected patients. Early 10

risk stratification through identification of key biomarkers is essential because it 11

helps in the understanding of the relative severity among infected patients and 12

hence guides decisions in the scare medical resource setting. 13

COVID-19 is a highly contagious respiratory infection with symptoms that 14

include fever, dry cough, nasal congestion and breathing difficulties [1, 2]. In 15

more severe cases, it can cause pneumonia, severe acute respiratory syndrome, 16

cardiac arrest, sepsis, kidney failure and death [3, 4]. WHO classifies the risk 17

into the following categories: critical, severe, and moderate/mild. By definition, 18

critical patients require ventilation, severe patients require supplemental oxygen, 19

moderate patients have pneumonia but do not require oxygen, and mild patients 20

only have upper respiratory tract disease. The cause of death is generally 21

respiratory failure, but few deaths have been caused by multiple organ failure 22

(MOF) or chronic comorbidities [2, 5]. Those at a higher risk are the elderly and 23

people with comorbidities, such as cardiovascular diseases and diabetes [6, 7]. 24

However, symptoms at onset are relatively mild and a significant proportion of 25

patients do not show apparent symptoms prior to the development of respiratory 26

failure [2, 5]. Clinically, this makes it difficult to predict the progression of 27

severity in patients until respiratory failure develops. Early risk prediction and 28

effective treatment can reduce mortality and morbidity as well as relieve resource 29

shortages [8]. Artificial intelligence based solutions may help in clinical decision- 30

making by providing predictions that are accurate, fast, and interpretable. Recent 31

studies have used various machine learning algorithms for analysing COVID-19 32

patients’ clinical data and providing disease prognosis [9, 10]. Hao et al. [11] 33

examined COVID-19 patients admitted in Massachusetts to predict level-of-care 34

requirements based on clinical and laboratory data. They compared machine 35

learning algorithms (such as XGBoost, Random Forests, SVM, and Logistic 36

Regression) and predicted the need for hospitalization, ICU care, and mechanical 37

ventilation. The most effective features for hospitalization were vital signs, age, 38

BMI, dyspnea, and comorbidities. Opacities on chest imaging, age, admission 39

vital signs and symptoms, male gender, admission laboratory results, and diabetes 40

were the most effective risk factors for ICU admission and mechanical ventilation. 41
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Xie et al. [12] used multivariable logistic regression for the classification task 42

through identifying SpO2, Lymphocyte Count, Age and Lactate dehydrogenase 43

(LDH) as the set of important features. A nomogram was created based on these 44

features to deliver the probability of mortality. Ji et al. [13] built a scoring model, 45

named as CALL, for prediction of progression risk in COVID-19 patients from 46

Chinese hospitals. They used Multivariate Cox regression to identify risk factors 47

associated with progression, which were then incorporated into a nomogram for 48

establishing a prediction scoring model. Comorbidity, older age, lower lymphocyte 49

count, and higher lactate dehydrogenase were found to be independent high-risk 50

factors for COVID-19 progression. Yan et al. proposed an interpretable mortality 51

prediction model for COVID-19 patients [14]. They analysed blood samples of 52

485 patients from Wuhan, China, and created a clinically operable single tree 53

through XGBoost. The model used three crucial features Lactate Dehydrogenase 54

(LDH), lymphocyte (%) and C-Reactive Protein (CRP). The decision rules with 55

the three features and their thresholds were devised recursively. This provided an 56

interpretable machine learning solution with at least 90% accuracy. Karthikeyan 57

et al. [15] analysed the same dataset through comparing various machine learning 58

algorithms. XGBoost feature selection and neural network classification yielded 59

the best performance with the important biomarkers selected as neutrophil (%), 60

lymphocyte (%), LDH, CRP and age. However, no detailed studies on risk 61

stratification have not been done on Indian cohorts. 62

Most machine learning based risk stratification and mortality prediction al- 63

gorithms analysed patients from China or the United States of America. Studies 64

have suggested that the virus has different strains around the globe due to muta- 65

tions [16–20]. Moreover, the physiologic response to the virus and the eventual 66

course of disease depends on regional factors such as population characteristics 67

and hospital practices. Hence, the studies are not universally applicable and it 68

is critical to examine cohorts from India to aid the Indian healthcare systems. 69

In this study, patients with confirmed COVID-19 infection from MAX group 70

of hospitals in New Delhi, India were examined to identify the key features 71

affecting severity and mortality. The machine learning models built using these 72

key features aid in risk stratification and mortality prediction. The mortality 73

rate in the Indian population is low compared to China and other countries. 74

Hence a comprehensive comparison between the cohorts from New Delhi and 75

Wuhan has been done, and analysis with respect to treatment protocols were 76

explored to identify possible factors for such a difference [14]. 77

Methodology 78

Data acquisition and Participants 79

The data in this study was collected from patients with confirmed diagnosis of 80

COVID-19 at MAX group of Hospitals in New Delhi, India between June 3rd 81

and October 23rd, 2020. The patient records were collected and anonymized 82

at the data warehouse of CSIR-IGIB. A total of 544 patients with a clear final 83

outcome were considered in our study. Among these, diagnostic lab reports were 84
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available as a time series of test results. The data collected contains 357 distinct 85

parameters (or biomarkers) that include vitals, symptoms, co morbid conditions 86

and lab reports from 161 different tests along with the medicines administered 87

for treatment. Multiple tests were recorded for each patient during their stay at 88

the hospital, varying from 1 to 134 records per patient. 89

Risk Stratification and Statistical Analysis 90

Patients were categorized into risk levels-based on the severity of their condition 91

during their stay at the hospital. Although a description of the severity of each 92

patient is not available, since COVID-19 is a respiratory disorder that effects 93

the lungs, the amount of care provided to a patient with respect to respiratory 94

support was considered as an indicator of severity. Considering the size of 95

the dataset and the levels of respiratory support provided all the patient were 96

categorized into two levels mild and severe where all patients who died or who 97

were under some form of respiratory support or whose condition was specifically 98

mentioned to be severe were categorized into severe/high risk group and all the 99

remaining patients were put under mild/low risk group. The resulting dataset 100

follows the data distribution as shown in Table 1. 101

The 15 most frequent tests corresponding to 38 biomarkers were selected for 102

analysis based on the availability of data. Five biomarkers WBC count, neu- 103

trophil lymphocyte ratio (NLR), lymphocyte monocyte ration (LMR), neutrophil 104

monocyte ratio (NMR), platelet to lymphocyte ratio (PLR) were manually cal- 105

culated from various blood cell counts available owing their reported importance 106

in predicting mortality due to COVID [21,22]. 209 unique co-morbid conditions 107

were observed in patients in our study. To analyse them without exploding the 108

number of features and to avoid an increase in chances of over fitting due to 109

increase in dimensionality, we grouped all the encountered co-morbid conditions 110

into 7 groups based on the area or organ that the condition effects as shown 111

in Table S1. Four more groups: diabetes, hypertension, hyperlipidaemia, and 112

cancer were considered due to their reported importance in mortality risk due 113

to COVID-19 [7]. This information was encoded into 11 binary features, each 114

representing one group where a sample assumes a value one if the patient has 115

one or more co-morbid conditions that fall into that group. To incorporate and 116

analyse the effects of medical prescriptions the information regarding prescription 117

of steroids and antiviral drugs was encoded into two binary features. 118

This leads to 70 unique parameters measured which include 11 grouped 119

co-morbid conditions, 14 clinical parameters, 2 RT-PCR genomic parameters 120

and 43 lab test results. An exhaustive list of categorical parameters can be 121

found in Table S1 and continuous parameters can be found in Table S2. To 122

evaluate the significance of each parameter considered for risk stratification and 123

mortality prediction, we calculated the p value using the Chi-Squared test [23] 124

for the categorical features and using the ANOVA f-value test for the continuous 125

features. 126
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Table 1. Distribution of the number of patients across various classes

Data Distribution

Risk Category Quaternary Stratification Mortality Binary Stratification

Home Quarantined 8 (1.47%)
483 (88.79%)

244 (44.85%)
Hospitalised 236 (43.38%)
On Respiratory Support 239 (43.93%)

300 (55.15%)
Died 61 (11.21%) 61 (11.21%)

Comparison with Wuhan cohort 127

In our study, we evaluated how machine learning models trained on non-Indian 128

cohorts perform in predicting mortality on the Indian cohort. We used the best 129

performing model reported by Karthikeyan et.al [15] for predicting mortality 130

using data from Wuhan, China [14] to examine its applicability on the Indian 131

cohort. The Wuhan cohort comprises of data collected from 375 patients who were 132

admitted to Tongji Hospital, Wuhan. The model evaluated is a neural network 133

trained to predict mortality from CRP, LDH, neutrophil (%) lymphocyte(%) 134

and age. For predicting mortality in Indian Cohort using the same model, we 135

selected 3092 datapoints where at least 3 of the required 5 features were present. 136

KNN imputation was done to take care of the missing features. 137

We also explored the differences between Wuhan and New Delhi cohorts in 138

key biomarkers across survivors and the dead [14,15,24]. We choose mortality as 139

the indicator for comparison as it does not depend on subjective labelling. The 140

feature density histograms were analyzed to examine the variations in biological 141

parameters across survivors and the dead between cohorts of Wuhan and Delhi. 142

The Kolmogorov–Smirnov test (K-S test) [25] was used to analyze variations 143

in the density distributions of the important biomarkers between both classes 144

across cohorts. The K-S test is a non-parametric test that quantifies the distance 145

between the empirical distributions of samples sampled from two distributions. 146

Machine Learning Pipeline 147

Figure 1 depicts the overall pipeline used in this study for performing the risk 148

stratification and mortality prediction tasks. We compared several machine 149

learning algorithms namely XGBoost, random forests, Support Vector Machine 150

(SVM) and logistic regression for evaluating their predictive performance. A 151

detailed account of the step-by-step procedure is presented in the following 152

sections. 153

Data Pre-processing 154

For each patient in the dataset, there were multiple lab test results recorded on 155

different days before the outcome. We have considered each individual recorded 156

test result as a unique data point for training and testing as has been done 157

before [14, 15]. Each sample has a dimensionality equal to the number of unique 158

parameters measured across all lab tests considered for the analysis. The values 159
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Figure 1. Machine learning pipeline for the development of the risk stratification and mortality prediction
tasks.
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Figure 2. Distribution of the data with respect to mortality, binary risk profiles
and quarternary risk profiles.

in a sample are filled in with the test results that a particular sample represents 160

and the rest of the values are left empty. These parameter values that are left 161

empty are imputed with the nearest value of the parameter from the patient’s 162

past test results. Some samples may still have missing parameters if a patient 163

does not undergo a particular test. Such missing values are imputed with the 164

median of the respective parameter across the train set. Patient demographics 165

and vitals data were recorded once per patient and were added to each sample 166

where they are kept the same for all the samples of a particular patient. This 167

leads to 15648 samples from 544 patients where each sample contains 70 unique 168

parameters. The resulting dataset follows the data distribution as shown in 169

Figure 2. 170

To build and validate machine learning models we split patients with respect 171

to the day of outcome. 429 patients with clear outcome by 11 September 2020 172

were considered for model development, and the remaining 115 patients were 173

considered as a part of a holdout test set. This method of splitting is adopted as 174

models developed will be used to aid future patients where it is known that the 175

COVID-19 and responses of its infected patients may change with time [16–19]. 176

The day wise distribution of samples in both the train and test sets for risk 177

stratification and mortality prediction is shown in Figures S1 and S2, respectively. 178

Feature Selection 179

Among the 70 features chosen for analysis, selecting the most influential biomark- 180

ers for risk stratification and mortality prediction by eliminating redundant or 181

unimportant parameters is crucial to avoid over-fitting when the size of the 182

dataset is small. Moreover, a lower number of features would mean cheaper and 183

faster tests for efficient risk profiling given the high influx of patients on a daily 184

basis and subsequently increased efficiency of the decision-making process of the 185
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healthcare systems. 186

The relative importances provided by an XGBoost classifier fit on the training 187

data for a particular task is used as the measure of importance for selecting 188

features. XGBoost is a powerful decision-tree-based ensemble algorithm that 189

uses a gradient boosting framework and estimates features that are the most 190

discriminative of model outcomes [26]. The relative importance of each feature 191

is determined by its accumulated use in each decision step in each tree of the 192

ensemble. 193

The number of features to utilize for model training was obtained by iteratively 194

training an XGboost model on a collection of the top K most important features 195

while increasing K by 1 in each iteration. The collection of features that achieved 196

the best performance for 5-fold cross validation on the training set was considered 197

as the set of key features to train the final models. The feature importances were 198

obtained separately for the binary risk stratification and mortality prediction 199

models. The classification performance for selecting the optimal set of features is 200

evaluated using AUC score for risk stratification and average precision score for 201

mortality prediction. Average precision score is used for mortality prediction due 202

to the heavy imbalance of samples representing fatal cases in mortality prediction. 203

Training 204

After obtaining the collection of important features, duplicates that arose due 205

to the elimination of less important features were removed from the train set. 206

The set was then normalized to a range of 0-1 using min-max scaler to avoid 207

any biases due to differences in scales across parameters. The train set was then 208

resampled using the SMOTE algorithm to reduce bias that may arise due to 209

the class imbalance observed. The SMOTE algorithm was chosen to generate 210

synthetic samples of the minority class due to its good performance. Various 211

algorithms were trained and compared on the resampled dataset to classify the 212

samples depending on the task, either risk stratification or mortality prediction, 213

with their respective feature set. We also built another set of models trained on 214

only patient vitals to gauge the prediction performance that can be achieved 215

with data acquired before blood test results. 216

Testing 217

The hold out test data of 115 patients was normalized with min-max scaler to a 218

range of 0-1 using the min-max statistics obtained from the training set. Then 219

the models built were evaluated on the test set. We report the F1-scores of the 220

algorithms as the mean and standard deviation of performance of trained models 221

from 5-fold cross validation on the test set. F1-score is preferred over AUC and 222

accuracy as it is better in measuring performance when data imbalance exists. 223

The model achieving the best performance was then tested and analysed on the 224

set of samples corresponding to each individual day for a period of 14 days before 225

the final outcome to observe relevant trends. 226
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Evaluation Metrics 227

The following metrics were recorded to assess the predictive performance of the 228

supervised models. Formulae for the calculation of all metrics are given below. 229

Here, TP, TN, FP, and FN stand for true positive, true negative, false positive 230

and false negative rates, respectively. 231

AUC (Area under ROC curve):AUC measures the area under the receiving op- 232

erator characteristic (ROC) curve, which plots true positive rate against false 233

positive rate. AUC is also commonly used in situations where the data has 234

imbalanced classes, as the ROC measures performance over many different 235

thresholds. 236

• True Positive Rate (TPR):This measures how often the model predicts that
a patient will survive when the person survives.

TPR =
TP

TP + FN

• False Positive Rate (FPR): This measures how often the model predicts
that a patient survives when the person actually does not survive:

FPR =
FP

FP + TN

F1 Score: The F1 score measures the harmonic mean of precision of recall and is
often preferred to accuracy when the data has imbalanced classes:

F1score =
2 × Precision×Recall

Precision + Recall

where,

Precision =
TP

TP + FP

and,

Recall =
TP

TP + FN

Results 237

Patient Characteristics 238

A comparison of different clinical features between low and high-risk patients 239

was carried out. Tables S1-S4 show the differences in categorical and continuous 240

features between high and low risk groups, and between survivors and the dead. 241

The KS test showed that none of the continuous features followed a normal 242

distribution and hence the medians and interquartile ranges are reported. The 243

patients’ age ranged between the age of 9 and 98 years with the median age 58 244

(48-66) years. The median age for the high-risk patients was 61 (53-68) years 245

while for the low-risk patients it was 53 (41-64) years. Out of the 544 patients, 246

164 (30.15%) were females while 380 (69.85%) were males. The blood clotting 247
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Figure 3. Confusion matrix of neural net net trained on Wuhan data and tested
on Indian data

(D-Dimer, Ferritin), inflammation (CRP, LDH) and immune features (NLR, 248

LMR, NMR, PLR and IL6) were significantly different for the low and high-risk 249

groups. However, a significant overlap was observed in most of the parameters 250

both when comparing the high-risk vs. low-risk and survived vs. dead categories 251

precluding the possibility of the development of simple classification models. 252

Indian vs. Wuhan cohort 253

Machine learning models for predicting mortality based on patients’ blood 254

parameters have been reported, however, it is necessary to ascertain whether 255

these models are generalizable. Karthikeyan et.al. [15] built a neural network that 256

predicted mortality in Wuhan cohort with an accuracy of 96.5%±0.6% using only 257

five parameters, age, lymphocyte (%), neutrophil (%), LDH and CRP. The same 258

model when tested on the Indian cohort (current dataset) predicted mortality 259

with an accuracy of only 58%. The drop in performance of the model when tested 260

on the Indian group shows that there is a significant difference between the two 261

cohorts. Figure 3 demonstrates that the Neural Net was performing much better 262

in identifying the patients who died (precision 84.85%) over those who survived 263

(precision 49.54%). This suggests that the patients who were expected to die 264

based on the findings from Wuhan data were actually surviving in the Indian 265

Cohort. 266

To understand the difference between cohorts, we compared the feature 267

density histograms of Indian and Wuhan cohorts (Figure 4). It was observed 268

that survival of patients with LDH in the range 500-1000 is much higher in Delhi 269

compared to Wuhan. It can also be observed that there are almost no survivors 270

with an LDH value greater than 800 in the Wuhan cohort while patients with 271
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LDH values of even about 1000 have survived in Delhi Cohort. The survivability 272

of patients with CRP greater than 50 is higher in the Indian cohort compared to 273

Wuhan. Similar conclusions can be drawn with Indian patients having relatively 274

lower lymphocyte (%) and higher neutrophil (%). This is interesting as the 275

likelihood of survival with higher neutrophil (%) or lower lymphocyte (%) is 276

much lower [27]. 277

Figure 5 shows various matrices with two sample K-S statistics that measure 278

pairwise distances between distributions of important biomarkers of survivors 279

and the dead across Indian and Wuhan cohorts. It is observed that the distance 280

between distributions of the Indian Recovered (IR) and Indian Dead (ID) is 281

significantly lower compared to the distance between the distributions of the 282

Wuhan Recovered (WR) and Wuhan Dead (WD) for all the five biomarkers. 283

This is mainly due to the differences between distributions of recovered across 284

Delhi and Wuhan as the distance between the cohorts of the dead is low and the 285

distance between cohorts of the recovered is high. From this, it is evident that 286

many Indian patients who were at high risk of death according to the insights 287

from other cohorts have survived. 288

It is observed that the distance between WD and ID distributions is low, 289

especially in neutrophils (%), LDH and lymphocytes (%). The high survivability 290

of patients with extreme neutrophil and lymphocyte percentages is consistent 291

with the lower mortality rates observed in the Indian population compared to 292

several other countries. Identification of possible reasons for such a phenomenon 293

would enable minimization of mortality in other countries as well. 294

Risk Stratification 295

XGboost was used to rank features based on the contribution of each features 296

to the performance in risk stratification. Figure S3 shows the list of the top 25 297

features sorted in descending order with respect to their relative importance in 298

risk stratification. The 11 features that were selected to train the models in the 299

order of their importance are absolute neutrophil count, LDH, lymphocyte (%), 300

neutrophil(%), record of diabetes comorbidity, ferritin, INR, interleukin-6(IL-6), 301

oxygen saturation level, absolute eosinophil count and packed cell volume. Figure 302

S4 shows the density distributions for the top 4 features identified. 303

Comparison of the performance of various algorithms showed XGboost algo- 304

rithm to perform the best with an F1-score of 0.810±0.01 as seen in Figure 6. The 305

model also yielded better AUC (0.833±0.01) and average precision (0.891±0.01) 306

(Table S5). The confusion matrix of predictions from an XGboost model trained 307

on the entire train set is shown in Figure S5. We also evaluated how the per- 308

formance of model changes with days to outcome, where the day of outcome is 309

either the day of discharge from the hospital or the day of death. Figure 7 shows 310

that the performance of the risk stratification model decreases as the samples 311

approach the day of outcome. This suggests that the feature difference between 312

low risk and some high-risk patients who are recovering is decreasing towards 313

the day of outcome. However the performance of the mortality prediction model 314

increases towards the day of outcome. Hence, selective use of these two models 315

depending on the number of days from infection may be effective. 316
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Figure 4. Comparison of the the normalized histogram plots of important
features useful for predicting mortality from Wuhan and Indian Cohorts.
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Figure 5. Pairwise distances between distributions of important features across the Indian vs. Wuhan survived
and dead classes. Distance values were calculated through Kolmogorov–Smirnov test.

Figure 6. Comparison of F1 scores for various machine learning models that
use patient vitals and lab test results.

Figure 7. Performance of the ML models with respect to number of days to
outcome.
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Further, we trained and evaluated models with only patient vitals, comor- 317

bidities, and medication information to evaluate the predictive performance 318

that can be achieved without lab test results. Figure S6 shows the F1 scores 319

of various models that were built to use only these patient information. The 320

random forests algorithm performed the best with an F1 score of 0.76±0.02. The 321

important features selected were administration of steroids, oxygen saturation 322

levels, record of diabetes, thyroid problems, presence of any other comorbidities, 323

weight, temperature, respiration rate, hypertension, and BMI. 324

Mortality Prediction 325

Figure S7 shows the top 25 features sorted in descending order with respect 326

to their relative importance in mortality prediction. The 9 features that were 327

selected to obtain the results in the order of their importance are D-Dimer, 328

Ferritin, Lymphocyte (%), Neutrophil to Lymphocyte ratio (NLR), WBC, Trop 329

I, INR, IL-6 and LDH. Figure S8 shows the density distributions for the top 4 330

features identified. 331

Logistic regression model performed the best with an F1-score of 0.710±0.02 332

as seen in Figure 6. The model also yielded better AUC (0.927±0.01) and average 333

precision (0.801±0.02) (Table S6). The performance of the model increases as 334

the samples approach the day of outcome as seen in Figure 7. We trained 335

and evaluated models with only patient vitals, comorbidities, and medication 336

information to evaluate the predictive performance that can be achieved with 337

data excluding lab test results. Figure S6 shows the F1-scores of various models 338

that were built using the selected patient information. SVM performed the 339

best with an F1 score of only 0.34±0.03. The important features selected were 340

hypertension, record of any comorbidities related to liver, record of cancer, oxygen 341

saturation, administration of antivirals and respiration rate. 342

Role of Steroids 343

As a part of the study, we also compared the differences in neutrophil and 344

lymphocyte percentages across patients who were administered steroids and 345

patients who were not to understand if the treatment protocols followed in India 346

medical systems has an effect on the lower mortality rates. Of the 544 patients 347

involved in the study 338 (62.13%) patients were administered steroids. It was 348

observed that Methylprednisolone was the most widely administered steroid 349

that was given to 262 different patients, followed by Dexamethasone given to 89 350

patients. Prednisolone was administered to 11 patients while Hydrocortisone and 351

Triamcinolone were given to only one patient. It is to be noted that there were 352

instances where a single patient was administered with more than one of these. 353

Figure 8 shows the density histograms of neutrophil and lymphocyte percentages 354

for survivors and mild patients. It is observed that a higher proportion of 355

the survivors and mild patients who were administered steroids had extreme 356

neutrophil and lymphocyte percentages indicating that administration of steroids 357

may have had an impact in patient outcome. 358
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Figure 8. Distribution plots for lymphocytes (%) and neutrophil (%) for the
patients who survived and were administered steroids vs those who survived
and were not administered steroids and patients who had mild severity and
were administered steroids vs patients who had mild severity and were not
administered steroids.
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Discussion 359

COVID-19 has spread around the globe and the need for fast and effective resource 360

allocation is urgent, but very few studies have examined Indian cohorts. Studies 361

show the effect of regional factors such as patient characteristics and method of 362

treatment on their response to the infection. Hence, it is critical to analyse Indian 363

patients to aid the healthcare systems of the second highest COVID-19 hit nation 364

in the world. In this study, we analysed 15648 samples of 544 patients, with 365

confirmed diagnosis of COVID-19, at MAX group of hospitals in New Delhi, India. 366

Each sample contains 70 unique parameters including the grouped comorbid 367

conditions, patient vitals, patient demographic information, and lab test results. 368

We found that existing mortality prediction models trained on Wuhan cohort 369

cannot be directly used for mortality prediction on the Indian cohort due to 370

cohort specific differences in response to COVID-19. We observed greater overlap 371

between dead and survivors’ parameter/biomarker distributions in the Indian 372

cohort than in Wuhan. It was observed that KS distance between distributions 373

of WR and IR for neutrophil and lymphocyte percentages is comparatively high 374

while the distance between the distributions of the dead (WD, ID) across the 375

cohorts was low. This shows that the increased overlap in the distributions in 376

the Indian cohort is primarily due to survivors. Patients in India recovered even 377

when their neutrophil and lymphocyte percentages reached levels similar to the 378

levels of patients who died in Wuhan. While the observed differences could be 379

due to better healthcare or a less severe immune response, a probable reason 380

for the low mortality in the Delhi cohort may be the inclusion of steroids and 381

immunosuppressant drugs in the treatment protocols by the Government of India 382

early on in the timeline of the pandemic. Studies have shown that use of steroids 383

like Dexamethasone lowered COVID-19 fatalities significantly when administered 384

to patients who require supplemental oxygen [28–31]. We observed a relation 385

between the usage of these drugs and the survival of patients with extreme 386

lymphocytes and neutrophils counts, which are associated with mortality(Figure 387

8) [14,15,24,32,33]. 388

Machine learning models for risk stratification and mortality prediction were 389

developed based on features extracted from Indian cohort. The important 390

features for risk stratification included blood parameters, diabetes comorbid 391

condition and oxygen saturation level. On the other hand, mortality prediction 392

is dependent only on blood parameters. Blood coagulation parameters (ferritin, 393

D-Dimer and INR), immune and inflammation parameters (IL6, LDH and 394

Neutrophil(%)) are common features for both risk and mortality prediction. 395

Features for mortality prediction also included NLR, WBC and Trop I. Some 396

of these features have been identified as predictors of the progression of the 397

COVID-19 disease [12,14,15,24,33–39]. 398

The best performing model for risk stratification on the Indian dataset was 399

the XGboost classifier, which acheived an F1-score of 0.81±0.01 while Logistic 400

regression yielded the best performance for mortality prediction with an F1-score 401

of 0.71±0.02. We also examined the performance of these algorithms when 402

trained on a dataset comprising of only vitals and clinical attributes, as these are 403
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features that can be acquired quickly and may aid in the initial decision-making 404

process. The best performing models gave an F1 score of 0.76±0.02 for risk 405

stratification and 0.34±0.3 for mortality prediction. The low performance of these 406

models shows the importance of blood parameters in describing the progression 407

of COVID-19. 408

We observed that the progression of COVID-19 infection is accompanied 409

by hemocytometric changes with respect to the numbers of days to outcome 410

(Figures 9,10). The final day of outcome was considered as it is a more stable 411

reference point compared to the day of admission as a patient may be identified 412

and admitted late in the progression of the disease. The patients who died 413

showed elevated levels of D-Dimer, Ferritin and NLR, while lymphocyte (%) 414

levels dropped. The separation of the biomarkers’ values between the two classes 415

is observed to be consistent through the course of the disease. This shows their 416

significance in making predictions. Interestingly, the mortality prediction model 417

performed better when nearing the day of outcome whereas the performance 418

of the risk stratification model decreased as we move towards the day of the 419

outcome. The differences between the survivors and the dead increase as the 420

time progresses as survivors recover from the conditions whereas patients who 421

die do not, making it easier for any predictive model to classify. The performance 422

of risk stratification decreases as we move towards the day outcome because 423

as patients recover the differences between low risk and high-risk candidates 424

converge, making it more difficult for the model to classify. The proposed models 425

are based on the data collected from the Delhi region in India. This may introduce 426

regional biases and therefore, needed to be tested across multi-center. Our study 427

provides a preliminary assessment of the clinical course and outcome of Delhi 428

patients. We intend to test these models in the future on larger data collected 429

from multi-hospitals located in different geographic locations in India. As more 430

data becomes available, the whole procedure can easily be repeated to obtain 431

better models and more insights. Although we had a pool of about 70 clinical 432

measurements, here our modelling principle is a trade-off between the minimal 433

number of features and the capacity for good prediction, therefore avoiding 434

overfitting. Nevertheless, studies done on other cohorts have also identified these 435

features as key predictors [33]. 436

The major strength of our study is the inclusion of a relatively large group 437

of confirmed COVID-19 cases from India. The findings from this study will 438

not only help in clinical decision-making in Indian healthcare setting but will 439

also help healthcare systems worldwide with understanding of progression of 440

severity and the role of steroids in patient survival. This study enables to move 441

in the direction of building accurate risk and mortality prediction models and in 442

identifying significant trends in clinical course and in exploring the impact of 443

individual steroids on COVID-19 patients. 444

Conclusion 445

Accurate risk stratification and mortality prediction models based on vitals, co- 446

morbidities and blood parameters will help in rapid screening of infected patients 447
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Figure 9. Progression of biomarkers by risk
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Figure 10. Progression of biomarkers by mortality

19/24

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.19.20248524doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.19.20248524


and hence in optimal use of the healthcare infrastructure. It is likely that cohort- 448

specific difference may emerge due to the difference in demographic conditions 449

and healthcare setting. This necessitates the development of population specific 450

solutions. There is also a need to study the effectiveness of certain treatment 451

protocols affecting mortality. Our study presents the first data collection effort 452

to develop predictive models and to study feature differences and the effect of 453

steroids in the Indian population. Risk stratification and mortality prediction 454

models yielded good performance and F1-scores of 0.81 and 0.71 respectively. 455

Haematological parameters are important features for risk stratification and 456

mortality prediction models. The analysis showed that steroids might have 457

played a role in patient survival with extreme neutrophils or lymphocytes. This 458

may indicate the effectiveness of the use of steroids in managing COVID19, and 459

possibly explain the effectiveness of the treatment protocols being followed by the 460

Indian medical systems. This study would help accelerate the decision-making 461

process in healthcare systems for focused and efficient medical treatments. 462

Acknowledgement 463

This COVID project was funded by Intel Corp as part of its Pandemic Response 464

Technology Initiative (PRTI) [40]. The Project from IGIB side was funded by 465

CSIR (MLP-2005) and Fondation Botnar (CLP-0031). Authors also acknowledge 466

Dr. Mitali Mukerji for facilitating collaboration with the clinical partner. PKV 467

and UDP also thank DST-SERB for support (CVD/2020/000343). 468

Conflict of Interest 469

Authors wish to declare no conflict of interest and funders did not have role in 470

planning and execution of the study. 471

References

1. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, et al. Coronavirus
disease 2019 (COVID-19): a perspective from China. Radiology. 2020
:200490, doi: https://doi.org/10.1148/radiol.2020200490.

2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features
of patients infected with 2019 novel coronavirus in Wuhan, China. The
lancet. 2020;395(10223):497–506.

3. Steven Sanche CXERSNH Yen Ting Lin, Ke R. High Contagious-
ness and Rapid Spread of Severe Acute Respiratory Syndrome Coro-
navirus 2. Emerging Infectious Diseases. 2020; 26(7):1470–1477,
doi: https://dx.doi.org/10.3201/eid2607.200282.

4. Ponsford MJ, Gkatzionis A, Walker VM, Grant AJ, Wootton RE, Moore LS,
et al. Cardiometabolic Traits, Sepsis and Severe COVID-19: A Mendelian
Randomization Investigation. Circulation. 2020.

20/24

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.19.20248524doi: medRxiv preprint 

http://dx.doi.org/https://doi.org/10.1148/radiol.2020200490
http://dx.doi.org/https://dx.doi.org/10.3201/eid2607.200282
https://doi.org/10.1101/2020.12.19.20248524


5. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical
Characteristics of 138 Hospitalized Patients With 2019 Novel Coron-
avirus–Infected Pneumonia in Wuhan, China. JAMA. 2020 03;323(11):1061–
1069. Available from: https://doi.org/10.1001/jama.2020.1585,
doi: 10.1001/jama.2020.1585.

6. Liu Y, Mao B, Liang S, Yang JW, Lu HW, Chai YH, et al. Association
between age and clinical characteristics and outcomes of COVID-19. Euro-
pean Respiratory Journal. 2020; 55(5), doi: 10.1183/13993003.01112-2020.

7. Bajgain KT, Badal S, Bajgain BB, Santana MJ. Prevalence of Co-
morbidities Among Individuals With COVID-19: A Rapid Review of
current Literature. American Journal of Infection Control. 2020,
doi: https://doi.org/10.1016/j.ajic.2020.06.213.

8. Ji Y, Ma Z, Peppelenbosch MP, Pan Q. Potential association between
COVID-19 mortality and health-care resource availability. The Lancet
Global Health. 2020;8(4):e480.

9. Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. Development and
validation of a clinical risk score to predict the occurrence of critical illness
in hospitalized patients with COVID-19. JAMA Internal Medicine. 2020,
doi: https://doi.org/10.1001/jamainternmed.2020.2033.

10. Bhargava A, Fukushima EA, Levine M, Zhao W, Tanveer F, Szpunar
SM, et al. Predictors for Severe COVID-19 Infection. Clinical Infectious
Diseases. 2020.

11. Hao B, Sotudian S, Wang T, Xu T, Hu Y, Gaitanidis A, et al. Early
prediction of level-of-care requirements in patients with COVID-19. Elife.
2020;9:e60519.

12. Xie J, Hungerford D, Chen H, Abrams ST, Li S, Wang G, et al. Devel-
opment and external validation of a prognostic multivariable model on
admission for hospitalized patients with COVID-19. Available at SSRN.
2020, doi: http://dx.doi.org/10.2139/ssrn.3562456.

13. Ji D, Zhang D, Xu J, Chen Z, Yang T, Zhao P, et al. Prediction for progres-
sion risk in patients with COVID-19 pneumonia: the CALL Score. Clinical
Infectious Diseases. 2020, doi: https://doi.org/10.1093/cid/ciaa414.

14. Yan L, Zhang HT, Goncalves J, Xiao Y, Wang M, Guo Y, et al. An
interpretable mortality prediction model for COVID-19 patients. Nature
Machine Intelligence. 2020; 2:283–288, doi: https://doi.org/10.1038/s42256-
020-0180-7.

15. Karthikeyan A, Garg A, Vinod PK, Priyakumar UD. Ma-
chine learning based clinical decision support system for early
COVID-19 mortality prediction. medRxiv. 2020. Available
from: https://www.medrxiv.org/content/early/2020/08/22/2020.

08.19.20177477, doi: 10.1101/2020.08.19.20177477.

21/24

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.19.20248524doi: medRxiv preprint 

https://doi.org/10.1001/jama.2020.1585
http://dx.doi.org/10.1001/jama.2020.1585
http://dx.doi.org/10.1183/13993003.01112-2020
http://dx.doi.org/https://doi.org/10.1016/j.ajic.2020.06.213
http://dx.doi.org/https://doi.org/10.1001/jamainternmed.2020.2033
http://dx.doi.org/http://dx.doi.org/10.2139/ssrn.3562456
http://dx.doi.org/https://doi.org/10.1093/cid/ciaa414
http://dx.doi.org/https://doi.org/10.1038/s42256-020-0180-7
http://dx.doi.org/https://doi.org/10.1038/s42256-020-0180-7
https://www.medrxiv.org/content/early/2020/08/22/2020.08.19.20177477
https://www.medrxiv.org/content/early/2020/08/22/2020.08.19.20177477
http://dx.doi.org/10.1101/2020.08.19.20177477
https://doi.org/10.1101/2020.12.19.20248524


16. Becerra-Flores M, Cardozo T. SARS-CoV-2 viral spike G614 mutation
exhibits higher case fatality rate. International Journal of Clinical Practice.
2020, doi: https://doi.org/10.1111/ijcp.13525.

17. Saha P, Banerjee AK, Tripathi PP, Srivastava AK, Ray U. A virus that
has gone viral: amino acid mutation in S protein of Indian isolate of Coron-
avirus COVID-19 might impact receptor binding, and thus, infectivity. Bio-
science Reports. 2020; 40(5), doi: https://doi.org/10.1042/BSR20201312.

18. Wang R, Hozumi Y, Yin C, Wei GW. Mutations on COVID-19 diagnostic
targets. arXiv preprint arXiv:200502188. 2020.

19. Korber B, Fischer W, Gnanakaran SG, Yoon H, Theiler J, Ab-
falterer W, et al. Spike mutation pipeline reveals the emergence
of a more transmissible form of SARS-CoV-2. bioRxiv. 2020,
doi: https://doi.org/10.1101/2020.04.29.069054.

20. Lee HY, Perelson AS, Park SC, Leitner T. Dynamic cor-
relation between intrahost HIV-1 quasispecies evolution and dis-
ease progression. PLoS Comput Biol. 2008; 4(12):e1000240,
doi: https://doi.org/10.1371/journal.pcbi.1000240.

21. Yang AP, Liu J, Tao W, Li Hm. The diagnostic and predictive role of
NLR, d-NLR and PLR in COVID-19 patients. International immunophar-
macology. 2020:106504.
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