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ABSTRACT 

Purpose: To introduce a method to mitigate bias from residual confounding in non-randomized data 

and examine its performance under varying conditions using simulated data. 

Methods:  We developed a method called Bias Reduction through Analysis of Competing Events 

(BRACE) based on a proportional relative hazards model. We followed recommended guidelines 

(ADEMP) established for the conduct of simulation studies. The primary estimand of interest was the 

treatment effect on the composite hazard for a primary or competing event. We compared the BRACE 

method to a standard Cox proportional hazards regression model in the presence of an unmeasured 

confounder, using a parametric (Weibull) simulation model. We examined estimator distributions, bias, 

mean squared error (MSE), and coverage probability for both methods using ridge, box-and-whisker, 

forest, and zip plots, respectively. Comparisons with a hypothetical validation estimate treating the 

confounder as measurable were also performed. 

Results: We presented 16 simulation scenarios under varying parameters. In simulations where 

residual confounding was present, the BRACE method uniformly reduced both bias and MSE 

compared to standard Cox models. In the scenario of moderate bias with an effective but non-toxic 

treatment, MSE was 3.51x10-2 with the standard model vs. 0.259x10-2 with the BRACE method. In the 

absence of bias, the BRACE method introduced bias toward the null (2.90 x10-2) compared to the 

standard method (0.331x10-2), albeit with lower MSE (0.341 x10-2 vs. 0.484 x10-2, respectively). 

Relative to the standard approach, the BRACE method markedly improved coverage probability, but 

with a tendency toward overcorrection in the case of the effective but non-toxic treatment. Conclusions 

were similar under different parameter assumptions. 

Conclusion: The BRACE method can reduce bias and MSE in the setting of residual confounding.  
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Introduction 

Bias due to residual confounding (often called treatment selection bias) is an important 

consideration when drawing inferences from non-randomized comparative effectiveness studies.1,2 In 

the absence of randomization, multivariable regression models and propensity score models are 

commonly used approaches to obtain treatment effect estimates, by adjusting for effects of measured 

confounders.3 However, residual confounding from unknown and unmeasured confounders is still a 

pernicious problem that can undermine conclusions from such analyses and cannot be overcome by 

scoring and weighting methods.4-8 

Competing event analysis is an underutilized method that allows for the identification of residual 

confounding problems in non-randomized data sources, particularly when the effect of a treatment on 

competing events can be bounded a priori. 9 For example, while the simple addition of a novel cancer 

treatment to a standard regimen may have no effect on or even increase mortality from non-cancer 

health events, such as cardiac disease, it typically would not reduce the incidence of such events. 

Despite this, in non-randomized data, competing event analysis may reveal a lower incidence of 

competing health events in the group receiving more intensive treatment, due to unmeasured 

confounding by more favorable underlying health characteristics in this group.9 This paradox can be 

observed even after appropriately controlling for measurable confounders, and can be a critical driver of 

observed effects on combined endpoints like overall survival (OS) or progression-free survival (PFS). 

This phenomenon, when present, can be regarded as diagnostic of residual confounding (to the extent 

the underlying assumption is valid). 

While diagnosing the problem of residual confounding is useful, this still leaves investigators 

with the question of what to do about it. In this study, we propose a method to mitigate bias due to 

residual confounding, leading to improved identification of the treatment effect when the method 

assumptions are valid. 
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Methods 

Proportional Relative Hazards Model and Proposed Correction Model 

Let Θ be the effect of a binary on the time-dependent (t) baseline hazard for a combined endpoint 

(e.g., progression-free survival) (λ0(t)). We can express λ0(t) as a function of the cause-specific 

hazards for two mutually exclusive events: event 1 (λ01(t)) the primary event (or set of primary events) 

and event 2 (λ02(t)), the competing event (or set of competing events), i.e.: 

 

λ0(t) = λ01(t) + λ02(t)       [Eq. 1]    

 

Dropping the argument t for simplicity, we derive the following proportional relative hazards model, 

where Θ1 and Θ2 are the effects of treatment on event 1 and event 2, respectively, and λ1 and λ2 are 

the resulting hazards for event 1 and event 2 under treatment: 

 

λ = Θ λ0          

λ1 = Θ1 λ01           

λ2 = Θ2 λ02           

ω0 = λ01 
λ0 

          

ω0 P

+ = λ01 
λ02 

           

ω+ = λ1 
λ2  

= Θ1 
Θ2 

ω0
+ = Φ ω0

+        

 

Where ω0
+ and ω+ as the relative hazards for event 1 vs. event 2 under baseline and treatment 

conditions, respectively, and Φ as the effect of treatment on the ω0
+ function.  Θ, Θ1, Θ2, ω0,  ω0 P

+ and 

ω+ are all non-negative hazard ratios. Here we assume ω0 is approximately invariant to time. Following 

Mell & Jeong,10 we get the following expression: 
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Θ = ω0Θ1 + (1-ω0) Θ2        [Eq. 2] 

 

Θ�1, Θ�2, and Θ�, are the estimated treatment effects on event 1, event 2, and the combined event, 

respectively, and ω�0 as the estimate of ω0. For the application of this method, we assume that Θ2  ≥ 1 

(i.e., the treatment does not reduce the hazard for the competing event), treatment effects are 

independent of the baseline event hazards, and that Θ�1 and ω�0 are unbiased (E(Θ�1) = Θ1 and E(ω�0) = 

ω0). We bound the bias (ε) for Θ using the following derivation from [Eq. 1]: 

 

ε = Θ - E(Θ�) = ω0Θ1 + (1-ω0) Θ2 – (ω0 E(Θ�1) + (1 - ω0) E(Θ�2) ) 

 

ε = ω0(Θ1 - E(Θ�1)) + (1-ω0) (Θ2 - E(Θ�2)) 

 

Therefore: 

 

ε = (1 - ω0) (Θ2 - E(Θ�2)) ≥ (1 - ω0)(1 - E(Θ�2)) 

 

Thus we derive a partially corrected estimate of Θ (Θ�𝑐𝑐) as follows: 

 

Θ�𝑐𝑐 = Θ�  + (1 - ω�0) (1 - Θ�2)         [Eq. 3] 

 

Simulation Methods 

 Our methodology followed recommended guidelines (ADEMP) for the conduct of simulation 

studies.11 The primary aim of this simulation study was to compare estimates of a treatment effect on a 

combined endpoint (Θ) in the presence of treatment selection bias (i.e., ε > 0).  We first employed a 
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standard unadjusted Cox proportional hazards model12 to estimate the treatment effect (Θ�𝑢𝑢), assuming 

the simulated confounding factor is unmeasurable. We then compared this estimate to the corrected 

estimate (Θ�𝑐𝑐) obtained using an alternative approach called Bias Reduction through Analysis of 

Competing Events (BRACE), based on the correction shown in [Eq. 3]. As a “validation” step, we also 

compared both methods to a hypothetical estimate obtained by re-weighting the Cox proportional 

hazard model with the inverse of a propensity score, treating the confounding factor as measurable. 

  For each method, we estimated and compared bias, mean squared error (MSE), and coverage 

probability using a parametric model under varying inputs for effect size, distribution parameter(s), 

sample size, and magnitude of bias. Effect sizes and bias were varied factorially, while the other model 

inputs were varied one-at-a-time. In varying effect size, we compared three conditions: no treatment 

effect (i.e., Θ1 = Θ2 = Θ = 1), effective but non-toxic treatment (i.e. Θ1 < 1, Θ2 = 1, Θ < 1), and effective 

but toxic treatment with negating effects on the composite endpoint (i.e. Θ1 < 1, Θ2 > 1, Θ = 1). The null 

hypothesis in all scenarios was Θ = 1 vs. the alternative hypothesis Θ ≠ 1. We applied the BRACE 

correction when Θ�2 < 1 and the upper limit of the 95% confidence interval for Θ�  < 1; otherwise, Θ�𝑐𝑐 

defaulted to Θ�𝑢𝑢. Note that the correction is applied to the estimate Θ� , not Θ�2.   

For the parametrization of event times, we assumed a Weibull distribution for each of the cause-

specific event times, with random censoring, under varying Weibull constants (γ < 1, γ = 1, γ > 1). We 

tested models using two sample sizes (large, N=1500 per trial; small, N=250 per trial). For the bias 

parameter, we tested three conditions: none, moderate, and severe). For moderate and severe bias 

conditions, the bias parameter was drawn from a Bernoulli distribution. The biasing factor increases the 

log odds of being assigned to the treatment group and decreases (by a constant multiple of 1/3) the 

baseline hazard for event 2 (λ02). Note that this factor does not directly influence the effects of 

treatment (because Θ1 and Θ2 do not vary with the factor), but does indirectly influence the composite 

treatment effect (Θ) due to its effect on λ02; for further discussion see Mell & Jeong.10  
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Simulated data were generated in SAS v9.4 (SAS Institute Inc, Cary, NC). For each scenario, 

we generated a sample of 500 trials. Random number seeds were set once per repetition and random 

number states were stored at the start of each repetition. For outcome regression modeling and bias 

corrections, we used R version 4.0.2, coxph function (survival package). For variance estimates of Θ�𝑐𝑐, 

we used a Monte Carlo routine with 1000 replicates for the parameters ω�0 and Θ�2. To estimate ω�0 we 

used the Nelson-Aalen method, as described elsewhere.13 For graphical analysis of results, we used 

ridge, boxplot, zip, and forest plots (rsimsum and ggplot2 package). All code is provided in the 

Supplement. 

 

Results 

Table 1 shows summary statistics (key comparisons highlighted) comparing treatment effect 

estimates with the standard Cox model vs. the BRACE method in the presence of unmeasured 

confounding. In the scenarios presented, the bias parameter (κ) increases the log odds of treatment in 

the presence of the confounder, while decreasing λ02 by a factor of 1/3. Thus, the confounder 

introduces heterogeneous risk for the baseline hazards for the competing and composite events (i.e., 

differing values of λ01 and λ02), without influencing the cause-specific treatment effects (Θ1 and Θ2). 

In general, the BRACE method uniformly reduced both bias and MSE compared to the standard 

approach. For example, in the case of moderate bias (κ = 4), with an effective but non-toxic treatment 

(Table 1, row 5), the MSE was 3.51x10-2 with the standard model vs. 0.259x10-2 with the BRACE 

method. In some cases, the BRACE method even reduced bias and MSE relative to the hypothetical, 

likely due its incorporation of prior knowledge about Θ2. For example, with an effective but non-toxic 

treatment (Table 1, row 5), the bias (-4.97x10-2) and MSE (0.742x10-2) were both greater with 

hypothetical case compared to the BRACE method.  

Conclusions were similar under different assumptions about the Weibull parameter (γ), 

magnitude of bias, relative baseline event hazards (ω0), and sample size (except for standard errors 
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(SEs) as expected in the small sample simulation) (Supplementary Table). In the scenario with no 

treatment selection bias and homogeneous risk for the baseline event hazards for each sample 

(Supplementary Table, rows 1-3), each method returns (as expected) unbiased estimates with low 

error. In the case of an effective but non-toxic treatment (Supplementary Table, row 2), the BRACE 

method introduced bias toward the null (2.90 x10-2) compared to the standard method (0.331x10-2), 

albeit with lower MSE (0.341 x10-2 vs. 0.484 x10-2, respectively).  

 Figure 1 compares ridge plots corresponding to simulations presented in rows 4-6 from Table 

1. When the effect of treatment on the composite event was null (Figure 1A & 1C), the distribution of 

the BRACE-adjusted estimator was intermediate between the standard estimator and the hypothetical. 

In the scenario with an effective but non-toxic treatment (Figure 1B), the BRACE method overcorrected 

slightly relative to the hypothetical, but with lower bias and MSE, as seen in Figure 2 and Figure 3. In 

all cases, both bias and MSE were lower with the BRACE method compared to the standard estimator 

when residual confounding was present. 

 Figure 4 compares coverage probability for the standard, BRACE, and hypothetical approaches 

for the same set of simulations. Relative to the standard approach, the BRACE method markedly 

improved coverage probability (i.e., proportion of intervals containing the true value of Θ), but with a 

tendency toward overcorrection in the case of the effective but non-toxic treatment. For all scenarios, 

the BRACE method attenuated the tendency of the standard method toward extreme downward bias 

and improved inference regarding the likely true effect given the observed data. 

 In general, changing the input parameters had little effect on the ability of the BRACE method to 

improve estimation relative to the standard approach, as shown (to the extent practical) in 

Supplementary Table. In the primary analysis, we only applied the partial correction to trials for which 

Θ�2 < 1 and the upper limit of the 95% confidence interval for Θ�  < 1. Another approach would be to apply 

the method to trials for which Θ�2 < 1 and Θ�  < 1, regardless of whether the null hypothesis is rejected. 

When we applied this less conservative approach using the same parameter inputs as in rows 4-6 from 
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Table 1, we found that when all the treatment effects were null, expected values for bias (0.664x10-2) 

and MSE (0.219x10-2) were still low, with Θ�𝑐𝑐  = 1.01. For the situations with an effective and non-toxic 

treatment and an effective but toxic treatment, the corresponding values were, respectively: bias: 1.92 

x10-2 and -9.43x10-2; MSE: 0.26x10-2 and 1.12x10-2; Θ�𝑐𝑐: 0.714 and 0.911. All these expected values 

compared favorably to the standard approach. However, it should be noted that in the absence of 

treatment selection bias or effect heterogeneity, in the scenario with all null treatment effects, this 

strategy led to slight upward bias: 2.16 x10-2; MSE: 0.318x10-2; Θ�𝑐𝑐 = 1.022.  

  

Discussion 

Bias due to residual confounding (treatment selection bias) is a common problem affecting 

inferences from non-randomized observational studies in comparative effectiveness research. While 

multivariable regression and propensity score modeling are often used to mitigate bias, they cannot 

overcome the issue residual confounding, especially due to unobserved confounders. This problem 

frequently undermines the strength of conclusions from observational studies and can result in 

erroneous inferences.1-9 When effects of treatments on competing events can be bounded a priori, 

however, residual confounding can often be diagnosed using competing risks analysis.9  

Building on a proportional relative hazards model, we derived a method to mitigate bias due to 

residual confounding when it is identified, resulting in lower model error compared to standard 

approaches. In some cases, due to the impact of effect heterogeneity, the BRACE method even 

reduced bias and MSE compared to a hypothetical model that could adjust fully for the confounding 

factor, likely due to the advantage of using prior information about treatment effects on the competing 

event. Nonetheless, it should be stressed that the relevant comparisons for clinical application are 

between the BRACE vs. standard method, since the hypothesized confounder is not directly 

measurable in real-world scenarios.  
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The gains using the BRACE approach depend on leveraging a critical, but plausible, 

assumption applicable to many comparative effectiveness studies in oncology: namely, that treatment 

does not reduce the hazard for competing health events. A typical example would be the addition of a 

new treatment to standard of a care (e.g. A vs. A+B design), where B denotes a potentially effective but 

potentially toxic treatment. With such designs, competing events may increase with the addition of B, 

either due to direct toxic effects, or suppression of the primary event that unmasks a latent hazard for 

competing events. In either case, however, intensifying treatment by adding B should not be correlated 

with a reduced incidence of competing events, and the counterintuitive presence of such a 

phenomenon is an important indicator of residual bias (given the assumption). This phenomenon has 

been observed even in randomized trials,14 owing to random imbalance of a favorable health 

characteristics that advantage the A+B arm (particularly smaller trials that are not stratified on such 

characteristics). More commonly, in non-randomized data, this finding, when it persists after controlling 

for measurable confounders, is strong evidence of residual confounding, and should be taken into 

account when making inferences from such data sources. 

There are several limitations of this study. Given the above discussion, it is important to note 

that the approach we describe would not be appropriate when a directional effect on competing events 

cannot be assumed, such as for many A vs. B study designs. However, the BRACE method can also 

be applicable to A vs. B designs when the presumption that A does not reduce competing events 

relative to B is valid (such as when A represents a more invasive treatment approach compared to B). 

Notably, the proportional relative hazards model treats several key quantities as independent, which is 

a strong condition that is not always verifiable. Nonetheless, the practical options are limited for 

investigators who have exhausted standard modeling approaches and still identify a residual 

confounding problem. While we did not observe critical differences in the performance of the correction 

method under varying parameters, due to practical limitations we could not examine all permutations or 

a host of other variables that could theoretically impact our findings. We did note that when the 

assumption of residual confounding was not valid, the BRACE method resulted in increased potential 
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for type II error resulting from bias toward the null, emphasizing the importance of this assumption with 

respect to resulting inferences. We also did not take on complex model specifications, such as multiple 

measured confounders, multi-arm comparisons, dependence between events, or Bayesian 

approaches. Future work could examine these questions.  Many data sources unfortunately lack 

sufficient information on competing health events, which would preclude applying the BRACE method. 

However, given the potential for residual confounding in observational data sources, this should be 

viewed as a limitation of data sources that lack this level of specificity, rather than the method we 

propose. 

 

Conclusion  

Here we present a novel method (BRACE) to mitigate bias due to residual confounding, based 

on a proportional relative hazards model. As applied to simulated data, this approach compares 

favorably to standard methods in terms of lowering bias and model error. Appropriate application of the 

BRACE method in observational studies on non-randomized data would likely improve effect estimation 

and inferences. 
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FIGURES 

 

Figure 1. Ridge plots comparing standard vs. BRACE methods in the presence of residual 

confounding. The hypothetical case where the confounder is measurable is also shown for comparison. 

Figures A, B, and C correspond to rows 4, 5, and 6 from Table 1, respectively. (A) Null effects (B) 

Effective but non-toxic treatment (C) Effective and toxic treatment, with negating effects on the 

composite event.  
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Figure 2. Box plots comparing bias (log scale) for the standard vs. BRACE methods in the presence of 

residual confounding. The hypothetical case where the confounder is measurable is also shown for 

comparison. Figures A, B, and C correspond to rows 4, 5, and 6 from Table 1, respectively. (A) Null 

effects (B) Effective but non-toxic treatment (C) Effective and toxic treatment with negating effects on 

the composite event.  

 

Figure 3. Forest plots comparing mean squared error (MSE) for the standard vs. BRACE methods in 

the presence of residual confounding. The hypothetical case where the confounder is measurable is 

also shown for comparison. Figures A, B, and C correspond to rows 4, 5, and 6 from Table 1, 

respectively. (A) Null effects (B) Effective but non-toxic treatment (C) Effective and toxic treatment with 

negating effects on the composite event.  
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Figure 4. Zip plots comparing coverage probability for the standard vs. BRACE methods in the 

presence of residual confounding. The hypothetical case where the confounder is measurable is also 

shown for comparison. Figures A, B, and C correspond to rows 4, 5, and 6 from Table 1, respectively. 

(A) Null effects (B) Effective but non-toxic treatment (C) Effective and toxic treatment with negating 

effects on the composite event. Treatment effects are shown on the log scale.
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Table 1. Summary statistics comparing standard Cox model vs. Bias Reduction through Analysis of Competing Events (BRACE) method in the 

presence of unmeasured confounding. 

 

 

 

Input Parameters Output* 

γ κ** ω 0 Θ 1 Θ 2 Θ Θ�𝟐𝟐 

Θ�  SE (x 10-2; log scale) Bias (x 10-2; log scale) MSE (x 10-2; log scale) 
Standard BRACE Hypothetical Standard BRACE Hypothetical Standard BRACE Hypothetical Standard BRACE Hypothetical 

0.667 1 0.6 1 1 1 1.000 1.004 1.006 1.005 0.458 0.452 0.457 0.401 0.554 0.486 0.463 0.428 0.463 

0.667 1 0.6 0.5 1 0.7 0.999 0.686 0.704 0.687 0.475 0.311 0.471 -2.01 0.590 -1.94 0.520 0.302 0.520 

0.667 1 0.6 0.84 1.25 1 1.220 0.983 0.983 0.994 0.458 0.454 0.457 -1.79 -1.76 -0.742 0.499 0.490 0.468 

0.667 4 0.6 1 1 1 0.710 0.882 0.952 1.004 0.408 0.329 0.506 -12.5 -4.89 0.410 1.97 0.472 0.485 

0.667 4 0.6 0.5 1 0.7 0.710 0.587 0.714 0.666 0.433 0.212 0.521 -17.6 1.92 -4.97 3.51 0.259 0.742 

0.667 4 0.6 0.84 1.25 1 0.867 0.851 0.902 0.976 0.409 0.258 0.508 -16.2 -10.4 -2.55 3.02 1.25 0.549 

*Outputs are expected values across 500 trials per simulation.Θ1: true effect on event 1. Θ2: true effect on event 2. Θ: true effect on composite event. γ: Weibull parameter. κ: bias parameter. ω 0:  baseline relative hazard for event 1 
vs. composite event. Θ�2 R: estimated effect on event 2. Θ� R: estimated effect on composite event. 
**For the bias parameter κ, when κ = 0, there is no bias and the baseline hazard for event 2 is unchanged by the biasing factor. For all other values of κ, when factor is present, the baseline hazard for event 2 is decreased by 1/3 
and the log odds of being assigned to the treatment group is multiplied by κ. 
***Sample size (n) is 1500 for each trial, except for the bottom row, which had n=250 per trial. 
BRACE: Bias Reduction through Analysis of Competing Events inverse probability of treatment weighting (not observable in clinical data); SE: standard error; MSE: mean squared error 
Key findings are presented in highlighted cells. 
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Supplementary Table 1. Additional summary statistics comparing estimation methods under varying scenarios. 

 

Input Parameters Output* 

γ κ** ω 0 Θ 1 Θ 2 Θ Θ�𝟐𝟐 

Θ�  SE (x 10-2; log scale) Bias (x 10-2; log scale) MSE (x 10-2; log scale) 
Standard BRACE Hypothetical Standard BRACE Hypothetical Standard BRACE Hypothetical Standard BRACE Hypothetical 

0.667 0 0.50 1 1 1 1.002 1.005 1.007 1.005 0.458 0.452 0.456 0.492 0.726 0.494 0.456 0.411 0.462 

0.667 0 0.50 0.5 1 0.75 1.001 0.752 0.772 0.752 0.466 0.329 0.465 0.331 2.90 0.307 0.484 0.341 0.490 

0.667 0 0.50 0.8 1.2 1 1.20 1.005 1.005 1.005 0.458 0.455 0.456 0.516 0.548 0.414 0.469 0.459 0.475 

0.667 8 0.6 1 1 1 0.613 0.832 0.979 1.003 0.416 0.314 0.706 -18.4 -2.12 0.317 3.80 0.321 0.726 

0.667 8 0.6 0.5 1 0.7 0.612 0.550 0.727 0.661 0.445 0.261 0.715 -24.1 3.76 -5.76 6.25 0.373 1.05 

0.667 8 0.6 0.84 1.25 1 0.751 0.800 0.911 0.971 0.418 0.241 0.707 -22.4 -9.41 -3.04 5.41 1.08 0.811 

1 4 0.6 0.5 1 0.7 0.709 0.587 0.714 0.666 0.433 0.215 0.521 -17.6 1.93 -4.97 3.51 0.257 0.742 

1.5 4 0.6 0.5 1 0.7 0.709 0.587 0.714 0.666 0.433 0.217 0.521 -17.6 1.95 -4.97 3.51 0.261 0.742 

0.667 4 0.8 0.5 1 0.6 0.710 0.547 0.612 0.583 0.440 0.148 0.534 -9.28 2.03 -2.85 1.31 0.366 0.616 

0.667 4 0.6 0.5*** 1 0.7 0.723 0.584 0.708 0.661 2.64 1.59 3.13 -18.2 1.20 -5.71 5.93 1.27 3.71 
*Outputs are expected values across 500 trials per simulation.Θ1: true effect on event 1. Θ2: true effect on event 2. Θ: true effect on composite event. γ: Weibull parameter. κ: bias parameter. ω 0:  baseline relative hazard for event 1 vs. 
composite event. Θ�2 R: estimated effect on event 2. Θ� R: estimated effect on composite event. 
**For the bias parameter κ, when κ = 0, there is no bias and the baseline hazard for event 2 is unchanged by the biasing factor. For all other values of κ, when factor is present, the baseline hazard for event 2 is decreased by 1/3 and 
the log odds of being assigned to the treatment group is multiplied by κ. 
***Sample size (n) is 1500 for each trial, except for the bottom row, which had n=250 per trial. 
BRACE: Bias Reduction through Analysis of Competing Events inverse probability of treatment weighting (not observable in clinical data); SE: standard error; MSE: mean squared error  
Key findings are presented in highlighted cells. 
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SUPPLEMENTARY INFORMATION 

SAS Macro Used to Generate Simulated Data 

%MACRO compsim (D_OUT,nsims,nobs,f,g,b,w1,w2,omegaplus,theta1,theta2,k3); 
 
data gendat; 
  do r = 1 to &nsims;        
    
       do j = 1 to &nobs; 
 
     stream = r*&nsims. + j*&nobs.; 
      call streaminit(stream); 
 
  *factor is Bernoulli random variable; 
      factor = rand('Bernoulli',&f); 
 
  *group assignment depends on value of factor and g and b parameters; 
      group = rand('Bernoulli',1/(1+exp(-(log(&g/(1-&g))+log(&b)*factor)))); 
 

*omega is proportion of baseline composite event hazard attributable to event 1 
(lambda01/(lambda01+lambda02); 

  *omegaplus is ratio of baseline event hazards lambda01/lambda02 (fixed effect); 
 
  *Weibull values depend on shape (a) and scale (b) parameters; 
  *f(t) = (a/(b^a))*(t^(a-1))*(exp(-(t/b)^a)); 
  *h(t) = (b^(-a))*a*(t^(a-1)); 
  *a < 1 ==> hazard is decreasing; 

*proportional effects on h(t) will multiply scaling parameter b^-a (alternate Weibull 
parametrization); 

 
  *theta1 and omegaplus are multipliers on the baseline hazard for event 1; 
  *theta2 and k3 are multipliers on the baseline hazard for event 2; 
  *for a multiplier M, the scaling factor S = (1/M)^(1/w) = M^(-1/w); 
  *default scale = 1; 
 
  scale1 = (&omegaplus*(1-group*(1-&theta1)))**(-1/&w1); 
  scale2 = ((1-group*(1-&theta2))*(1-factor*(1-&k3)))**(-1/&w2); 
 
  *scale1 = 1; 
  *scale2 = 1; 
 
  *if group = 1 then do; 
  * scale1 = (1/(&theta1))**(1/&w1); 
  * scale2 = (1/(&theta2))**(1/&w2); 
  * end; 
  *if factor = 1 then scale2 = (1/(&k3))**(1/&w2); 
 
  t1 = rand('WEIBull', &w1, scale1); 
  t2 = rand('WEIBull', &w2, scale2); 
 
  time  = min(t1, t2); 
 
  if (factor=0 & group=0 & (t1 < t2)) then report=1; 
  else if (factor=0 & group=0 & (t1 > t2)) then report=2; 
  else report=0; 
 
  event1 = 0; 
   event2 = 0; 
 
   if t1 < t2 then event1=1; 
  else event2=1; 
 
  * impose random censoring; 
      censored = (ranuni(834332353)>.66);  
      if censored then do; 
     event1=0; 
     event2=0; 
     end; 
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 2 

 
   output; 
 
     end; 
 end; 
 
 proc sort data = gendat;  
 by group;  
 run; 
 
 data temp; 
  set gendat; 
 drop j; 
 
 event=0; 
 if event1=1 then event=1; 
 if event2=1 then event=1; 
 
 pfs_ci=0; 
 if event1=1 then pfs_ci=1; 
 if event2=1 then pfs_ci=2; 
 
 *scale and map event times; 
 time = round(6000*time)/100 + 6; 
 
 trueomega = &omegaplus./(&omegaplus. + 1 - &f. + &f. * &k3.); 
 truetheta = (&theta1.*&omegaplus. + &theta2. - &theta2. * &f. + &theta2. * &f. * &k3.)/(&omegaplus. + 1 
- &f. + &f. * &k3.); 
 
run; 
 
data &D_OUT; 
 set temp; 
 run; 
 
PROC EXPORT DATA= work.&D_OUT. 
            OUTFILE= "*" 
            DBMS=TAB LABEL REPLACE; 
     PUTNAMES=YES; 
RUN; 
 
%mend compsim; 
 
 

 

 

R Code for Analysis of Simulated Data 
 
library(cmprsk) 
library(gcerisk) 
library(psych) 
library(plyr) 
library(boot) 
library(rsimsum) 
library(ggplot2) 
library(Hmisc) 
library(dplyr) 
library(purrr) 
library(stringr) 
require(MASS) 
require(WeightIt) 
 
########################################################################### 
# 
# DEFINE FUNCTIONS FOR BOOTSTRAP ROUTINES 
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# 
########################################################################### 
 
#function for bootstrap estimates 
superfunct<- function(d,index){ 
   d2<-d[index,] 
    
   dtemp0=subset(d2,group==0) 
   dttx <- basehaz(coxph(Surv(dtemp0$time,dtemp0$event) ~ 1))[,2] 
   dind <- which(abs(log(dttx) - mean(log(dtemp0$time))) == min(abs(log(dttx)-mean(log(dtemp0$time))), 
na.rm=TRUE)) 
   ddwf <- 1-
mean(basehaz(coxph(Surv(dtemp0$time,dtemp0$event1)~1))[dind,1])/mean(basehaz(coxph(Surv(dtemp0$time,dtem
p0$event)~1))[dind,1]) 
   dtheta <- summary(coxph(Surv(d2$time,d2$event) ~ d2$group))$coef[2] 
   dtheta2 <- summary(coxph(Surv(d2$time,d2$event2) ~ d2$group))$coef[2] 
   depsilon = ddwf*(1-dtheta2) 
   dthetaM <- as.numeric(dtheta)+ depsilon 
    
   ithetaM <- exp(coxph(Surv(time, event) ~ group + factor, data=d2, weights=weightit(group ~ factor, 
data=d2, method="ps", estimand="ATT", stabilize=TRUE)$weights)$coef[1]) 
    
   #return(dthetaM) 
   #return(dtheta) 
   return(ithetaM) 
} 
 
#function for Studentized bootstrap estimates 
get_r_var <- function(grv_d, grv_index, its) { 
    
   grv_d2 <- grv_d[grv_index,] 
    
   grv_temp0 = subset(grv_d2, grv_d2$group==0) 
   grv_ttx <- basehaz(coxph(Surv(grv_temp0$time,grv_temp0$event) ~ 1))[,2] 
   grv_ind <- which(abs(log(grv_ttx) - mean(log(grv_temp0$time))) == min(abs(log(grv_ttx)-
mean(log(grv_temp0$time))), na.rm=TRUE)) 
   grv_dwf <- 1-
mean(basehaz(coxph(Surv(grv_temp0$time,grv_temp0$event1)~1))[ind,1])/mean(basehaz(coxph(Surv(grv_temp0$t
ime,grv_temp0$event)~1))[ind,1]) 
   grv_theta <- summary(coxph(Surv(grv_d2$time,grv_d2$event) ~ grv_d2$group))$coef[2] 
   grv_theta2 <- summary(coxph(Surv(grv_d2$time,grv_d2$event2) ~ grv_d2$group))$coef[2] 
   log.boot.thetaM <- log(as.numeric(grv_theta)+ grv_dwf*(1-grv_theta2)) 
   grv_n = nrow(grv_d) 
    
   grv_v <- boot(grv_d, R = its, statistic = superfunct) %>% pluck("t") %>% var(na.rm = TRUE) 
    
   c(log.boot.thetaM, grv_v) 
    
} 
 
#function for Monte Carlo estimates 
montecarlo <- function(d){ 
    
   temp0=subset(d,d$group==0) 
    
   ttx <- basehaz(coxph(Surv(temp0$time,temp0$event) ~ 1))[,2] 
   ind <- which(abs(log(ttx) - mean(log(temp0$time))) == min(abs(log(ttx)-mean(log(temp0$time))), 
na.rm=TRUE)) 
    
   theta <- summary(coxph(Surv(d$time,d$event) ~ d$group))$coef[2] 
   thetase <- summary(coxph(Surv(d$time,d$event) ~ d$group))$coef[3] 
   theta2 <- summary(coxph(Surv(d$time,d$event2) ~ d$group))$coef[2] 
   theta2se <- summary(coxph(Surv(d$time,d$event2) ~ d$group))$coef[3] 
    
   ev1 <- (survfit(coxph(Surv(temp0$time,temp0$event1)~1), ctype = 1)) 
   ev <- (survfit(coxph(Surv(temp0$time,temp0$event)~1), ctype = 1)) 
   ev1.haz <- ev1$cumhaz[ind] 
   ev.haz <- ev$cumhaz[ind]  
   ev1.se <- ev1$std.err[ind] 
   ev.se <- ev$std.err[ind] 
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   B <- array(0, c(studreps)) 
    
   for(b in 1:studreps){ 
       
      set.seed(b*max(d$r)) 
       
      B[b] = theta + (1-rnorm(1,mean=ev1.haz,sd=ev1.se)/rnorm(1,mean=ev.haz,sd=ev.se))*(1-
rnorm(1,mean=theta2,sd=theta2se)) 
       
   } 
    
   return(B) 
} 
 
 
########################################################################### 
# 
# PROCESS SIMULATED DATA 
# 
# G: FOR EACH SIM, STORES VECTOR OF TRIAL-LEVEL STATS 
# 
# H: FOR EACH SIM, STORES 3 THETA/SE ESTIMATES - BIASED, METHOD-ADJ, REG-ADJ 
# 
# J: FOR EACH SIM, STORES VECTOR OF MEAN VALUES ACROSS ALL TRIALS 
# 
########################################################################### 
 
startsim=32 
endsim=33 
nsims=endsim-startsim+1 
trials = 500 
bootreps = 500 
studreps = 1000 
   
#initialize output matrices 
  #G has 1 record per trial  
  G <- array(0, c(trials,43)) 
  colnames(G)=c("r","theta","theta1","theta2","%factor","%group","%factor_G0","%factor_G1","%group_F0", 
                "%group_F1","omega","omega+","epsilon","thetaB_95L","thetaB","thetaB_95U","thetaM", 
                "thetaR_95L","thetaR","thetaR_95U","thetaS0_95L","thetaS0","thetaS0_95U","thetaS1_95L", 
                "thetaS1","thetaS1_95U","diffM_R","truetheta","ivar1","ivar2","thetaI","trueomega", 
                "p_unadj","r_unadj", "diffM_T","p_adj","r_adj","thetaM_95L","thetaM_95U", 
"E.var.thetaM",  
                "p_method","r_method","log_boot_thetaM") 
   
  #H has 3 records per trial per sim  
  H <- array(0, c(5*trials, 7, nsims)) 
  colnames(H)=c("dataset","n","baseline","theta","se","model","epsilon") 
   
  #J has vector of mean values, 1 record per sim 
  J <- as.data.frame(array(0, c(44,nsims))) 
  rownames(J)=c("theta","theta1","theta2","%factor","%group","%factor_G0","%factor_G1","%group_F0", 
                "%group_F1","omega","omega+","epsilon","thetaB_95L","thetaB","thetaB_95U","thetaM", 
                "thetaR_95L","thetaR","thetaR_95U","thetaS0_95L","thetaS0","thetaS0_95U","thetaS1_95L", 
                "thetaS1","thetaS1_95U","diffM_R","truetheta","ivar1","ivar2","thetaI","trueomega", 
                "p_unadj","r_unadj", "diffM_T","p_adj","r_adj", "thetaM_95L","thetaM_95U",  
                "E.var.thetaM", "p_method","r_method","log_boot_thetaM","var.thetaM","mse.thetaM") 
 
   
#start loop 
  for (z in 1:nsims) { 
  
data = simlist[[startsim+z-1]]       
#assign("data",get(paste0('sim',startsim+z-1))) 
subset(data, r <= trials) -> data 
 
H[,2,z] = nrow(data)/trials 
H[,3,z] = max(data$base) 
 
for (i in 1:max(data$r)) { 
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   #Matrix Labels   
   H[(5*(i-1)+1),1,z] = i 
   H[(5*(i-1)+2),1,z] = i 
   H[(5*(i-1)+3),1,z] = i 
   H[(5*(i-1)+4),1,z] = i 
   H[(5*(i-1)+5),1,z] = i 
 
   G[i,1] = i 
 
   H[(5*(i-1)+1),6,z] = c("Unadjusted") 
   H[(5*(i-1)+2),6,z] = c("Method") 
   H[(5*(i-1)+3),6,z] = c("IPTW") 
   H[(5*(i-1)+4),6,z] = c("Strat0") 
   H[(5*(i-1)+5),6,z] = c("Strat1") 
    
   #Working Data Sets 
   temp = subset(data,r==i)   
   temp0 = subset(temp,group==0) 
   temp2=subset(temp,factor==0) 
   temp3=subset(temp,factor==1) 
    
   #Mean Values for Each Sample Trial 
   G[i,5] <- mean(temp$factor) 
   G[i,6] <- mean(temp$group) 
   G[i,7] <- mean(subset(temp, group==0)$factor) 
   G[i,8] <- mean(subset(temp, group==1)$factor) 
   G[i,9] <- mean(subset(temp, factor==0)$group) 
   G[i,10] <- mean(subset(temp, factor==1)$group) 
    
   #Unadjusted Effects on Event, Event1, Event2 
   G[i,2] <- summary(coxph(Surv(temp$time,temp$event) ~ temp$group))$coef[2] 
   G[i,3] <- summary(coxph(Surv(temp$time,temp$event1) ~ temp$group))$coef[2] 
   G[i,4] <- summary(coxph(Surv(temp$time,temp$event2) ~ temp$group))$coef[2] 
    
   #Stratified Estimates 
   G[i,21] <- summary(coxph(Surv(temp2$time,temp2$event) ~ temp2$group))$conf[1,3] 
   G[i,22] <- summary(coxph(Surv(temp2$time,temp2$event) ~ temp2$group))$coef[1,2] 
   G[i,23] <- summary(coxph(Surv(temp2$time,temp2$event) ~ temp2$group))$conf[1,4] 
    
   H[(5*(i-1)+4),4,z] = G[i,22] 
   H[(5*(i-1)+4),5,z] = summary(coxph(Surv(temp2$time,temp2$event) ~ temp2$group))$coef[1,3] 
 
   G[i,24] <- summary(coxph(Surv(temp3$time,temp3$event) ~ temp3$group))$conf[1,3] 
   G[i,25] <- summary(coxph(Surv(temp3$time,temp3$event) ~ temp3$group))$coef[1,2] 
   G[i,26] <- summary(coxph(Surv(temp3$time,temp3$event) ~ temp3$group))$conf[1,4] 
    
   H[(5*(i-1)+5),4,z] = G[i,25] 
   H[(5*(i-1)+5),5,z] = summary(coxph(Surv(temp3$time,temp3$event) ~ temp3$group))$coef[1,3] 
 
   #Unadjusted Estimates 
   G[i,14] <- summary(coxph(Surv(temp$time,temp$event) ~ temp$group))$conf[1,3] 
   G[i,15] <- summary(coxph(Surv(temp$time,temp$event) ~ temp$group))$coef[1,2] 
   G[i,16] <- summary(coxph(Surv(temp$time,temp$event) ~ temp$group))$conf[1,4] 
    
   H[(5*(i-1)+1),4,z] = G[i,15] 
   H[(5*(i-1)+1),5,z] = summary(coxph(Surv(temp$time,temp$event) ~ temp$group))$coef[1,3] 
    
   #IPTW (Hypothetical) Estimates 
   G[i,18] <- summary(coxph(Surv(time, event) ~ group + factor, data=temp, weights=weightit(group ~ 
factor, data=temp, method="ps", estimand="ATT", stabilize=TRUE)$weights))$conf[1,3] 
   G[i,19] <- exp(coxph(Surv(time, event) ~ group + factor, data=temp, weights=weightit(group ~ factor, 
data=temp, method="ps", estimand="ATT", stabilize=TRUE)$weights)$coef[1]) 
   G[i,20] <- summary(coxph(Surv(time, event) ~ group + factor, data=temp, weights=weightit(group ~ 
factor, data=temp, method="ps", estimand="ATT", stabilize=TRUE)$weights))$conf[1,4] 
    
   H[(5*(i-1)+3),4,z] = G[i,19] 
   H[(5*(i-1)+3),5,z] = summary(coxph(Surv(time, event) ~ group + factor, data=temp, 
weights=weightit(group ~ factor, data=temp, method="ps", estimand="ATT", 
stabilize=TRUE)$weights))$coef[1,4] 
    
   #BRACE Adjusted Estimates 
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   ttx <- basehaz(coxph(Surv(temp0$time,temp0$event) ~ 1))[,2] 
   ind <- which(abs(log(ttx) - mean(log(temp0$time))) == min(abs(log(ttx)-mean(log(temp0$time))), 
na.rm=TRUE)) 
    
   G[i,11] <- 
basehaz(coxph(Surv(temp0$time,temp0$event1)~1))[ind,1]/basehaz(coxph(Surv(temp0$time,temp0$event)~1))[in
d,1] 
   G[i,12] <- 
basehaz(coxph(Surv(temp0$time,temp0$event1)~1))[ind,1]/basehaz(coxph(Surv(temp0$time,temp0$event2)~1))[i
nd,1] 
   G[i,13] <- (1-G[i,11])*(1-G[i,4]) 
 
   G[i,17] = ifelse((G[i,13] > 0) & (G[i,16] < 1),mean(montecarlo(temp)),G[i,15]) 
 
   H[(5*(i-1)+2),4,z] = G[i,17] 
   H[(5*(i-1)+2),5,z] = ifelse((G[i,13] > 0) & (G[i,16] < 1),sd(montecarlo(temp)),H[(5*(i-1)+1),5,z]) 
    
   H[(5*(i-1)+1),7,z] = G[i,17] - G[i,15] 
   H[(5*(i-1)+2),7,z] = G[i,17] - G[i,15] 
   H[(5*(i-1)+3),7,z] = G[i,17] - G[i,15] 
   H[(5*(i-1)+4),7,z] = G[i,17] - G[i,15] 
   H[(5*(i-1)+5),7,z] = G[i,17] - G[i,15] 
    
   G[i,40] <- var(montecarlo(temp)) 
   G[i,38] <- G[i,17] - 1.96*sd(montecarlo(temp)) 
   G[i,39] <- G[i,17] + 1.96*sd(montecarlo(temp)) 
    
   G[i,43] <- log(mean(montecarlo(temp))) 
 
   #Method vs. IPTW 
   G[i,27] <- G[i,17] - G[i,19]   
 
   #Is true theta in Sim Interval? 
   G[i,28] <- mean(temp$truetheta) 
   G[i,33] <- (G[i,14] <= G[i,28]) & (G[i,16] >= G[i,28])+0 
   G[i,36] <- (G[i,18] <= G[i,28]) & (G[i,20] >= G[i,28])+0 
   G[i,41] <- (G[i,38] <= G[i,28]) & (G[i,39] >= G[i,28])+0 
 
   #Method vs. True Theta 
   G[i,35] <- G[i,17] - G[i,28] 
    
   #Is Null in Sim Interval? 
   G[i,32] <- mean(temp$trueomega) 
   G[i,34] <- (G[i,14] > 1) | (G[i,16] < 1)+0 
   G[i,37] <- (G[i,18] > 1) | (G[i,20] < 1)+0 
   G[i,42] <- (G[i,38] > 1) | (G[i,39] < 1)+0 
    
   #Inverse variance weighted estimates 
   G[i,29] <- 1/((summary(coxph(Surv(temp2$time,temp2$event) ~ temp2$group))$coef[3])^2) 
   G[i,30] <- 1/((summary(coxph(Surv(temp3$time,temp3$event) ~ temp3$group))$coef[3])^2) 
   G[i,31] <- (G[i,29]*G[i,22]+G[i,30]*G[i,25])/(G[i,29]+G[i,30]) 
    
#close 2nd for loop      
} 
 
as.data.frame(G) -> G 
assign(paste0("G", startsim+z-1),G) 
 
for (i in 2:ncol(G)) { 
  J[i-1,z] <- mean(G[,i]) 
} 
J[ncol(G),z] = var(G[,17]) 
J[ncol(G)+1,z] = mean((G[,17]-G[,28])^2) 
 
assign(paste0("H", startsim+z-1),as.data.frame(H[,,z])) 
assign(paste0("J", startsim+z-1),as.data.frame(J[,z])) 
 
write.table(assign(paste0("J", startsim+z-1),J[,z]), paste0(paste0("*", startsim+z-1),".txt"), sep="\t") 
write.table(assign(paste0("G", startsim+z-1),G), paste0(paste0("*", startsim+z-1),".txt"), sep="\t") 
write.table(assign(paste0("H", startsim+z-1),H[,,z]), paste0(paste0("*", startsim+z-1),".txt"), 
sep="\t") 
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#close 1st for loop 
} 
 
 
################################################## 
# 
# GENERATE SIM PLOTS 
# 
################################################## 
 
#call sim number here   
sim <- 33 
  
#read in Ordered sim output     
Glist <- list() 
Hlist <- list() 
Jlist <- list() 
 
for (j in sim:sim) { 
    assign(paste0("G",j), read.table(paste0(paste0("*", j),".txt"),header=TRUE,sep="\t"))  
    Glist[[j]] <- get(paste0("G",j)) 
    assign(paste0("H",j), read.table(paste0(paste0("*", j),".txt"),header=TRUE,sep="\t"))  
    Hlist[[j]] <- get(paste0("H",j)) 
    assign(paste0("J",j), read.table(paste0(paste0("*", j),".txt"),header=TRUE,sep="\t"))  
    Jlist[[j]] <- get(paste0("J",j)) 
 
rownames(Jlist[[j]]) =  
c("theta","theta1","theta2","%factor","%group","%factor_G0","%factor_G1","%group_F0","%group_F1","omega"
,"omega+","epsilon","thetaB_95L","thetaB","thetaB_95U","thetaM","thetaR_95L","thetaR","thetaR_95U","thet
aS0_95L","thetaS0","thetaS0_95U","thetaS1_95L","thetaS1","thetaS1_95U","diffM_R","truetheta","ivar1","iv
ar2","thetaI","trueomega","p_unadj","r_unadj", "diffM_T","p_adj","r_adj", "thetaM_95L","thetaM_95U", 
"E.var.thetaM","p_method","r_method","log_boot_thetaM","var.thetaM","mse.thetaM") 
         
colnames(Glist[[j]])=c("r","theta","theta1","theta2","%factor","%group","%factor_G0","%factor_G1","%grou
p_F0","%group_F1","omega","omega+","epsilon","thetaB_95L","thetaB","thetaB_95U","thetaM","thetaR_95L","t
hetaR","thetaR_95U","thetaS0_95L","thetaS0","thetaS0_95U","thetaS1_95L","thetaS1","thetaS1_95U","diffM_R
","truetheta","ivar1","ivar2","thetaI","trueomega","p_unadj","r_unadj","diffM_T","p_adj","r_adj","thetaM
_95L","thetaM_95U", "E.var.thetaM","p_method","r_method","log_boot_thetaM")     
} 
   
J0 <- as.data.frame(Jlist[[sim]]) 
G0 <- as.data.frame(Glist[[sim]]) 
H0 <- as.data.frame(Hlist[[sim]]) 
 
H0$theta = log(as.numeric(H0$theta)) 
H0$epsilon = as.numeric(H0$epsilon) 
H0$se = as.numeric(H0$se) 
colnames(H0)=c("dataset","n","baseline","log(theta)","se","model","epsilon") 
H0$model[H0$model == "Method"] <- "BRACE" 
H0$model[H0$model == "Unadjusted"] <- "Standard" 
H0$model[H0$model == "IPTW"] <- "Hypothetical" 
H0$baseline = simlist[[sim]]$base[1] 
Htrue=log(Jlist[[sim]][27,]) 
Htrue 
 
H0 = subset(H0,model %in% c("Standard","BRACE","Hypothetical")) 
 
for (i in 2:ncol(G0)) { 
  J0[i-1,1] <- mean(G0[,i]) 
} 
J0[ncol(G0),1] = var(G0[,17]) 
J0[ncol(G0)+1,1] = mean((G0[,17]-G0[,28])^2) 
 
s1 <- simsum( 
   data = H0, estvarname = "log(theta)", se = "se", true = Htrue, 
   methodvar = "model", ref="IPTW", by = c("n", "baseline"), x = TRUE 
) 
 
#Figure 1 
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autoplot(s1, type = "est_ridge") + theme(axis.text.y=element_blank()) + 
viridis::scale_fill_viridis(discrete = TRUE) + viridis::scale_colour_viridis(discrete = TRUE) 
 
#Figure 2 
h0=as.data.frame(cbind(H0$model,H0$`log(theta)`)) 
as.numeric(h0$V2) - log(Jlist[[sim]][27,]) -> h0$V2 
as.factor(h0$V1) -> h0$V1 
fill <- "#4271AE" 
lines <- "#1F3552" 
p10 <- ggplot(h0, aes(x = V1,y = V2)) + 
   geom_boxplot(colour = lines, fill = fill, 
                size = 1) + 
   scale_y_continuous(name = "Bias", 
                      breaks = seq(-0.4, 0.3, 0.1), 
                      limits=c(-0.4, 0.3)) + 
   scale_x_discrete(name = "Model") + 
   ggtitle("") + 
   theme_bw() + 
   theme(panel.grid.major = element_line(colour = "#d3d3d3"), 
         panel.grid.minor = element_blank(), 
         panel.border = element_blank(), 
         panel.background = element_blank(), 
         plot.title = element_text(size = 14, family = "Tahoma", face = "bold"), 
         text=element_text(family = "Tahoma"), 
         axis.title = element_text(face="bold"), 
         axis.text.x = element_text(colour="black", size = 11), 
         axis.text.y = element_text(colour="black", size = 9), 
         axis.line = element_line(size=0.5, colour = "black")) 
p10 
 
#autoplot(summary(s1), type = "forest", stats = "bias")  
 
#Figure 3 
p11 <- autoplot(summary(s1), type = "forest", stats = "mse", colour = lines, fill = fill, size = 1) + 
   scale_y_continuous(name = "MSE", 
                      breaks = seq(0, .040, 0.005), 
                      limits=c(0, .04)) + 
   scale_x_discrete(name = "Model") + 
   ggtitle("") + 
   theme_bw() + 
   theme(panel.grid.major = element_line(colour = "#d3d3d3"), 
         panel.grid.minor = element_blank(), 
         panel.border = element_blank(), 
         panel.background = element_blank(), 
         plot.title = element_text(size = 14, family = "Tahoma", face = "bold"), 
         text=element_text(family = "Tahoma"), 
         axis.title = element_text(face="bold"), 
         axis.text.x = element_text(colour="black", size = 11), 
         axis.text.y = element_text(colour="black", size = 9), 
         axis.line = element_line(size=0.5, colour = "black")) 
p11 
 
#Figure 4 
autoplot(s1, type = "zip") 
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