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Key points: 28 

• Unique EBV deletions are found in European CAEBV patients. 29 

• Loss of deletions occurs following effective treatment and may prove useful in the 30 

management of disease. 31 

 32 

Abstract: 33 

Chronic active Epstein Barr Virus (CAEBV) is a rare and severe condition occurring in previously 34 

healthy individuals associated with persistent EBV viraemia, fever, lymphadenopathy and 35 

hepatosplenomegaly.  36 

Specific deletions in the EBV genome have been found in CAEBV and certain lymphomas. However, it 37 

is unclear how stable these deletions are, whether they are present in different sites and how they 38 

evolve in response to treatment. We sequenced fifteen longitudinal blood samples from three 39 

CAEBV patients, comparing the results with 13 saliva samples from CAEBV patients and sequences 40 

from benign (both primary infection and reactivation) and malignant EBV-related conditions.   We 41 

observed large EBV deletions in blood, some of which are predicted to disrupt viral replication, but 42 

not saliva from patients with CAEBV. Deletions were stable over time but were lost following 43 

successful peripheral blood stem cell transplants (PBSCT) or in one case, treatment with rituximab. 44 

Our results are consistent with the likelihood that certain deletions occurring in virus from patients 45 

with CAEBV are associated with the evolution and persistence of haematological clones. We propose 46 

that the loss of EBV deletions following successful treatment should be investigated as a potential 47 

biomarker to aid management of CAEBV.  48 

 49 

 50 
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Introduction 52 

Epstein-Barr virus (EBV) infects >95% of the population worldwide 1. A small number of patients 53 

develop life-threatening persistence of high level/sustained EBV replication following an infectious 54 

mononucleosis syndrome, often associated with splenomegaly and hepatitis 2. Chronic active EBV 55 

(CAEBV) (see “clinical definitions in Supplementary) is characterised by infiltration of tissues by EBV 56 

positive T, NK or less frequently B cells and can progress into lymphoproliferative disease. Clonal 57 

expansion of EBV-infected T or NK cells is well described 
3,4

.  58 

 59 

To date, CAEBV has been mostly described in Asian or South/Central American patients 
5
. Frequent  60 

deletions in the EBV genome have been found in samples from Japanese CAEBV patients (35%) and 61 

other EBV-driven neoplasms 
6–8

. However, it is unclear if these deletions are specific for Asian EBV 62 

strains, whether they are present in viral genomes in different sites and how they evolve overtime.  63 

 64 

We sequenced EBV from serial blood samples obtained from three UK patients with CAEBV. The 65 

results were compared with sequences from saliva of CAEBV patients and blood and tissue from 66 

other benign and malignant EBV-related conditions.  67 

 68 

Methods 69 

Study design 70 

Fourteen blood samples from three CAEBV patients from Great Ormond Street Hospital (GOSH) 71 

were sequenced (Table 1 and Supplementary). All three received Rituximab, following which 72 

patient 2 became asymptomatic.  Patients 1 and 3 received peripheral blood stem cell transplants 73 

(PBSCTs) due to relapse of EBV driven HLH. The data were compared with 67 EBV sequences from 74 

asymptomatic and other CAEBV patients, infectious mononucleosis (IM), post transfusion 75 

lymphoproliferative disease (PTLD), post solid organ transplant viraemia and lymphomas from 76 

different body-compartments (Table S1). 77 
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Statistical and sequence analysis  78 

Samples were sequenced and analysed using a standard pipeline (Supplementary).  79 

Diversity calculations and haplotype reconstruction have been described elsewhere 
9,10

. All other 80 

statistical analyses were done with in-house R scripts 
11

.  81 

 82 

Results and discussion 83 

EBV genomes in blood and saliva from CAEBV patients 84 

EBV blood genomes from CAEBV patients clustered with European/US sequences; longitudinal 85 

samples, including those after PBSCT, clustered by patient (Supplementary figure 2). Within-host 86 

CAEBV nucleotide diversity (π) was low and comparable to that of EBV from other blood samples 87 

(Table S1 and Supplementary figure 4-5).  In contrast CAEBV salivary samples showed significantly 88 

higher EBV diversity compared to blood and tumour samples (p<0.001), indicating the presence of 89 

multiple strains (Supplementary figure 6-8). Single nucleotide variants (SNVs) and small (<2kbp) 90 

deletions were present in all samples, largely located in latent genes as well as BPLF1 and BLLF1 91 

[gp350] (Supplementary figures 9-17). Our results showed that EBV shed in saliva has the hallmarks 92 

of lytic replication and frequent mixed infections in line with previous studies 12,13.  93 

Larger Deletions  94 

We identified low frequency larger (>2kb) EBV deletion in patient 1, as well as PTLD (2/4) and HL 95 

(2/7) tumour-tissue at position 120470-158062 (figure 1).  This includes the BART miRNA clusters, as 96 

well as several lytic genes, including scaffold proteins (i.e. BdRF1, BVRF2), glycoproteins (i.e. BILF2, 97 

BXLF2), a tegument protein (BVRF1), and regulators of late gene transcription (BcRF1, BVLF1). 98 

Interestingly, patient 1 also had a nonsense mutation in BXLF2. A second larger deletion at positions 99 

12118-15159, which is part of the major EBV repeat (IR1) was present in blood from CAEBV patients 100 

(4/4) and one patient with PID.  101 

EBV variation overtime in CAEBV patients 102 
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Analysis of variation overtime revealed that the blood from two CAEBV patients (1 and 3) with EBV 103 

present predominantly in T cells, showed higher EBV genomic heterogeneity with increasing number 104 

of low frequency (<50%) variants and deletions than patients with IM (Figure 1D, Supplementary 105 

figures 19-20). In contrast, patient 2, whose EBV was only found in B cells, had fewer SNVs and 106 

deletions with a picture similar to that seen in the blood from patients with PTLD with evidence of 107 

clonality.   In patient 2, larger deletions were stable overtime but were lost after rituximab (Figure 108 

1D). In CAEBV patient 1, larger deletions persisted despite rituximab. Associated clinical 109 

deterioration necessitated PBSCT (Table 1), following which both SNVs and deletions were absent 110 

from virus reactivating asymptomatically.  CAEBV patient 3, who also failed to respond to rituximab, 111 

lost most deletions, including the 12118-15159 IR1 deletion following PBSCT.  112 

Discussion 113 

EBV deletions were previously described only in CAEBV and malignancies patients of Asian origins 6–114 

8, however we show that these deletions occur independently of geographic origin. Data from 115 

mouse models suggest that loss of the BART miRNAs and late lytic genes within 120470-158062 116 

deletion may drive a more lytic phenotype and faster cell growth, this predisposing to tumour 117 

formation 8,14,15. Although, the mechanism is not entirely clear, Murata and colleagues argue that the 118 

abortive EBV replication resulting from the absence of these regions prevents normal cell death 119 

associated with lytic replication 8,16.  120 

The 12118-15159 deletion overlaps with the IR1 which includes BWRF1 and Wp promoters. There is 121 

no direct evidence yet that BWRF1 is biologically significant, however it is known that some 122 

components are essential for the transformation of cells by EBV 
17

. Our deletion is similar to one 123 

identified in strain L591, a Hodking’s lymphoma cell line (breakpoint 125bp upstream of hairpin) 
17,18

.   124 

Persistence in longitudinally sampled blood of larger deletions has been associated with clonal 125 

expansion of the cells in which they are found 6.  Importantly we show that clinical response to 126 

therapy is associated with loss of deletions in virus recovered after treatment. Our findings of low-127 
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level potentially premalignant clones together with evidence of replicating virus in blood from 128 

patients with CAEBV fits with the hypothesis that deletions occur only when a particular subset of 129 

the patient’s blood cells are infected with EBV. Progenitor lymphoid cells have been suggested to be 130 

the target cell type 
16

.  131 

 132 

In conclusion, we confirm that clones containing EBV genomes with specific large deletions are 133 

found in blood but not saliva from CAEBV patients. While rituximab reduced the burden of EBV 134 

deletions in the blood of B cell-associated CAEBV, it had no impact on the prevalence of EBV 135 

deletions in T/NK-associated CAEBV. The absence of these EBV-deletions from virus reactivating 136 

following PBSCT suggests the loss of the pre-malignant clone and raises the possibility that these 137 

large deletions could be useful biomarkers for monitoring the success of treatments for CAEBV. 138 

 139 

Data availability:  140 

Sequence reads for CAEBV and PID patients have been deposited in the European Nucleotide 141 

Archive (ENA)  under BioProject ID PRJEB41945. All accession numbers for the rest of the dataset are 142 

available in Table S1.  143 
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Figure Legends 204 

Figure 1A: Viraemia and treatment in GOSH CAEBV patient.  Patient 1 and 3 received PBSCT (in red) 205 

and all patients received 4 to 5 doses of rituximab (blue lines). Samples sequenced are indicated in 206 

grey filled dots.  207 

Figure 1B: Summary of deletions (> 30 bp). Samples for healthy (healthy-S), infectious 208 

mononucleosis (IM-B), CAEBV (CAEBV-S, CAEBV-B), primary immunodeficiency (PID) as well as EBV-209 

positive solid organ transplant (SOT-B), PTLD (PTLD-B and PTLD-T) and HL (HL-T). Each line 210 

represents an EBV genome from a single patient (if multiple samples from one patient were 211 

available, only the one with the highest read depth was included here).  212 

Figure 1C: Representation of the IR1 deletion in CAEBV. Representative portion of the alignment 213 

file for a blood CAEBV sample to demonstrate IR1 deletion (represented by red reads and black 214 

lines) compared to a IM blood sample where the deletion is not present (reads in grey).  215 

Figure 1D: Analysis of longitudinal samples in CAEBV patients. Genes affected by larger deletions (≥ 216 

2k) are shown in the heatmap; overtime all larger deletions are lost. Non-synonymous low frequency 217 

variants (<50%) are shown in the bubble plot.  218 

  219 
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Pat Sex Description  Treatment Transplant Reactivation N 
samples 

P1  
 

M o EBV driven HLH 

o primary and secondary 

immunodeficiency excluded 

o HLH 94 protocol  

o 5 doses of Rituximab 

(pre-transplant) 

Alemtuzumab/Fludarabine/Melphalan 
conditioned matched unrelated donor 
(MUD) peripheral blood stem cell 
transplant (PBSCT) 
 

4 months post HST had 
reactivation of EBV without signs 
of PTLD and resolved without 
therapy 
 

7 

P2  F o EBV driven HLH 

o primary and secondary 

immunodeficiency excluded 

o HLH 94 protocol  

o 4 doses of Rituximab  

The patient did not proceed to BMT as 
she responded well to HLH treatment 
and had no evidence of ongoing HLH 
activity despite ongoing EBV viraemia  

Remained EBV PCR positive for 
3.5years without symptoms. As 
for November 2018 EBV PCR is 
negative. 
 

3 

P3  F o EBV driven HLH, spontaneously 

resolved without treatment.  

o Over the following 6 months she 

had two further EBV-related HLH 

relapses treated with steroids. 

Although her HLH associated 

symptoms rapidly responded, her 

EBV viraemia continued to risk. 

o primary and secondary 

immunodeficiency excluded 

o During the 3rd HLH relapse 

treatment course patient had 

multiple complications (renal failure 

requiring haemofiltration, atrial 

fibrillation requiring DC 

cardioversion, adenovirus and CMV 

viremias, invasive candida 

parapsilosis enteritis, facial palsy) 

 
 
 

o 4 dosed of rituximab 

with successfully 

depleted B cells but 

not reduced EBV viral 

load (pre-transplant) 

o After, 3rd HLH relapse 

and was commenced 

on etoposide as per 

HLH 94 protocol with 

resolution of clinical 

symptoms and reducti

on in EBV viral load. 

o 1 dose of rituximab 

after transplant 

 

Alemtuzumab/Fludarabine/Treosulfan 
conditioned matched sibling donor 
(MSD) peripheral blood stem cell 
transplant 
 

EBV reactivation that resolved 
after 1 dose of Rituximab. 
 

5 

Table 1: Patients descriptions and clinical details. HLH= Haemophagocytic lymphohystiocitosis.  220 
 221 
 222 
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