
Failure to replicate the association of rare loss-of-function variants in type I IFN 
immunity genes with severe COVID-19 

Gundula Povysil1, Guillaume Butler-Laporte2,3, Ning Shang4, Chen Weng4, Atlas Khan4, Manal Alaamery5,6,7, Tomoko 
Nakanishi2,8,9,10, Sirui Zhou2, Vincenzo Forgetta2, Robert Eveleigh11,12, Mathieu Bourgey11,12, Naveed Aziz13, Steven 

Jones13, Bartha Knoppers13, Stephen Scherer13, Lisa Strug13, Pierre Lepage14, Jiannis Ragoussis8,14, Guillaume 
Bourque8,12,14, Jahad Alghamdi15, Nora Aljawini5,6,7, Nour Albes5,6,16, Hani M. Al-Afghani17, Bader Alghamdi5, Mansour 

Almutair5, Ebrahim Sabri Mahmoud7 , Leen Abu Safie18, Hadeel El Bardisy18, Fawz S. Al Harthi18, Abdulraheem 
Alshareef17, Bandar Ali Suliman19, Saleh Alqahtani19,20, Abdulaziz AlMalik21, May M. Alrashed22, Salam Massadeh5,6,7, 
Vincent Mooser8, Mark Lathrop8,13,14,, Yaseen Arabi7,16, Hamdi Mbarek23, Chadi Saad23, Wadha Al-Muftah23, Radja 

Badji23, Asma Al Thani23, Said I. Ismai23, Ali G. Gharavi1,4,24, Malak S. Abedalthagafi18,21, J Brent Richards2,3,8,25*, 
David B. Goldstein1,26*, Krzysztof Kiryluk1,4*  

Affiliations: 
1. Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA. 
2. Lady Davis Institute for Medical Research, Montréal, Québec, Canada 
3. Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, Québec, Canada 
4. Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University. 
5. Developmental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin 

Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), 
Riyadh, Saudi Arabia 

6. KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and 
Technology (KACST), Riyadh, Saudi Arabia 

7. King Abdulaziz City for Science and Technology (KACST)-Saudi Human Genome Satellite Lab at Abdulaziz Medical City, Ministry 
of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia 

8. Department of Human Genetics, McGill University, Montréal, Canada 
9. Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 

Japan 
10. Research Fellow, Japan Society for the Promotion of Science, Japan 
11. Canadian Centre for Computational Genomics, McGill University, Montreal, Canada 
12. McGill Genome Center, McGill University, Montréal, Québec, Canada 
13. Canadian COVID Genomics Network, HostSeq Project, Canada 
14. Canadian Centre for Computational Genomics, McGill University, Montreal, Canada 
15. Saudi Biobank, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, 

Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia 
16. Intensive Care Department, Ministry of National Guard Health Affairs, King Saud Bin Abdulaziz University for Health Sciences, 

King Abdullah International Medical Research Center, Riyadh, Kingdom of Saudi Arabia 
17. Laboratory Department, Security Forces Hospital, General Directorate of Medical Services, Ministry of Interior, Clinical 

Laboratory Sciences, Taibah University, Madina, Saudi Arabia 
18. Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science 

and Technology, Riyadh, Saudi Arabia 
19. The Liver Transplant Unit, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 
20. The Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, USA 
21. Life Science and Environmental Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia 
22. Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia 
23. Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar 
24. Center for Precision Medicine and Genomics. Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia 

University, New York, New York, USA 
25. Department of Twin Research, King’s College London, London, UK 
26. Department of Genetics & Development, Columbia University, New York, New York, USA 

 
* co-corresponding authors: J Brent Richards (brent.richards@mcgill.ca), David B. Goldstein 
(dg2875@cumc.columbia.edu) and Krzysztof Kiryluk (kk473@columbia.edu). 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.12.18.20248226doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:brent.richards@mcgill.ca
mailto:dg2875@cumc.columbia.edu
mailto:kk473@columbia.edu
https://doi.org/10.1101/2020.12.18.20248226
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract: 

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in 

TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed 

whole-exome or whole-genome sequencing of 1,934 COVID-19 cases (713 with severe and 1,221 with mild 

disease) and 15,251 ancestry-matched population controls across four independent COVID-19 biobanks. 

We then tested if rare pLOF variants in these 13 genes were associated with severe COVID-19. We 

identified only one rare pLOF mutation across these genes amongst 713 cases with severe COVID-19 and 

observed no enrichment of pLOFs in severe cases compared to population controls or mild COVID-19 

cases. We find no evidence of association of rare loss-of-function variants in the proposed 13 candidate 

genes with severe COVID-19 outcomes. 

Main Text: 

Host genetic factors related to COVID-19 susceptibility and outcomes are of great interest, as their 

identification could elucidate the mechanisms of SARS-CoV-2 infection and severity, thereby providing 

clues about potential therapeutic targets. Recently, Zhang et al.1 reported deleterious mutations in 13 

candidate genes involved in type I IFN immunity to be associated with COVID-19 severity. The authors 

reported a significant enrichment in predicted loss-of-function (pLOF) variants in 659 severe COVID-19 

cases relative to 534 controls with asymptomatic or benign infection using a burden test under a dominant 

model of inheritance (odds ratio (OR) = 8.28 [1.04-65.64], p=0.01). In addition to the nine pLOFs in cases 

used in the burden test, they detected 109 missense or in-frame indels and tested them experimentally 

in ad hoc overexpression systems; 24 variants (including all the pLOFs) were found to be hypomorphic 

and were detected in 23 patients of various ages (17-77 years) and of both sexes. The authors reported 

the presence of one pLOF in controls but did not provide the total number of other functional variants, or 

whether variants identified in controls were experimentally tested as well. The authors concluded that 

rare deleterious variants in the TLR3, IRF7 and IRF9-dependent type 1 interferon pathway genes explain 

up to 3.5% of severe cases of COVID-19.  

We aimed to replicate these findings using independent datasets. We note that an exact replication of all 

the reported associations is not possible because the study design of Zhang et al does not permit a formal 

statistical comparison of the same variant types in cases and controls. The reason for this is that missense 

variants were reported as functionally characterized in cases but not controls, so the counts of functionally 
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compromised missense variants cannot be evaluated in a statistical test. In order to test the role for rare 

variation in these genes in COVID-19 outcomes, we therefore performed association tests on all rare 

variation that is apparently functional, and specifically focused on predicted loss-of-function variants, 

applying identical rules to case and control variants, as is appropriate in such analyses.  

Our first analysis was based on the cohort of patients recruited by the Columbia University COVID-19 

Biobank (Tables 1 and 2). We performed exome sequencing of 1,153 COVID-19 cases of diverse ethnicities 

who were treated at Columbia University Irving Medical Center at the peak of the New York pandemic, 

between March and May, 2020. Of 1,153 cases, 480 had severe COVID-19 that led to death or required 

endotracheal intubation due to respiratory failure (Table 2 and Methods). In an attempt to replicate the 

findings by Zheng et al., we performed a gene-set based collapsing association test stratified by ancestry 

using 9,589 population controls of similar ancestries (see Methods).  

When testing for pLOF variants with an internal and external minor allele frequency of less than 0.001 in 

any of the 13 genes of interest (see Methods), we did not detect any variant enrichment in cases (OR = 

1.10 [0.03-7.67], p = 1). In fact, only one of the cases and 23 of the controls had a qualifying pLOF variant 

(0.21% vs. 0.24%). We also note that the carrier frequency in controls was dependent on genetic ancestry 

and ranged from 0 to 0.43% across different ancestral clusters. Interestingly, one of the pLOFs reported 

by Zhang et al. to be present in their cases was present in multiple controls from the Columbia University 

COVID-19 Biobank (Table 3). The addition of rare missense variants in the functional model also did not 

improve enrichment (OR = 1.22 [0.84-1.71], p = 0.3). 

We additionally tested 480 patients with severe disease against 673 patients with milder disease that 

recovered from COVID-19 without the need for intubation, and again we observed no clear enrichment 

(OR = 1.45, [0.02-113.51], p = 1). Similarly, even when adding missense variants, we did not detect an 

enrichment (OR = 1.13 [0.74-1.72], p = 0.6). We also looked for any variants in the 13 genes that were 

listed as pathogenic or likely pathogenic in ClinVar but could not find any in our 480 severe cases. Based 

on our power calculations, we have over 80% power to detect odds ratios of 5.5 or greater for rare pLOF 

variants at an alpha of 0.05. We are therefore well powered to replicate the findings by Zhang et al. given 

their reported odds ratio of 8.0 (Figure 1).  

The second cohort included patients recruited by the Biobanque Québec COVID-19. In total, 533 

participants were recruited at the Jewish General Hospital in Montreal and underwent genome sequencing 

in partnership with the Canadian HostSeq project. This cohort included 62 severe COVID-19 cases with 

respiratory failure requiring invasive ventilatory support. An additional 471 patients were treated as 
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controls and included 158 individuals with mild COVID-19 that did not require ventilatory support and 313 

SARS-CoV-2 PCR-negative participants. We tested for enrichment of pLOF variants in the 62 severe COVID-

19 cases compared to the 471 controls (see Methods) but did not detect a single pLOF in any of the cases 

or controls, even when we used a more relaxed minor allele frequency threshold of less than 1%. Similarly, 

we observed no significant enrichment under the missense model (OR = 1.24 [0.36-3.46], p = 0.59).  

The third cohort was recruited in Saudi Arabia and sequenced in partnership with the Saudi Genome 

project. Exome sequencing was performed in 307 patients with COVID-19, including 148 severe cases, 159 

participants with mild COVID-19 and 218 COVID-19 PCR negative controls. (see Methods). We could not 

find any cases with a rare pLOF or missense variant in any of the 13 tested genes. 

The fourth cohort was collected by the Qatar Genome Project. Of 14,060 Qatar biobank participants with 

genome sequence data, there were 700 patients with COVID-19 of which 60 were defined as severe cases 

and 640 were mild or asymptomatic cases (see Methods). Limiting the analysis to unrelated individuals, 

there were 5,385 participants including 23 severe COVID-19 and 231 mild or asymptomatic COVID-19 

samples. We did not find any individuals with rare pLOF variants in the 13 genes analyzed and also could 

not find any with a rare missense variant in COVID-19 samples. 

In a meta-analysis of all four cohorts, we were also not able to detect any significant enrichment for pLOFs 

(OR = 1.10 [0.03-7.67], p = 1) or pLOFs and missense variants combined (OR = 1.17 [0.83-1.63], p = 0.34).  

In summary, in our analysis of four international COVID-19 biobanks including a total of 1,934 sequenced 

COVID-19 cases (713 severe and 1,221 mild), we could only find a single rare pLOF variant in a severe case 

and another single rare pLOF variant in a case with mild disease. We therefore observed no enrichment 

in pLOF variants in type I IFN immunity genes among cases of severe COVID-19 compared to mildly 

affected patients or to ancestry-matched population controls.  

These results are further corroborated by a recent analysis of exomes from participants in the UK Biobank 

performed by Regeneron Inc.2 In the association testing of 1,184 COVID-19 cases vs. 422,318 controls, there 

was no association between pLOFs at these genes after careful adjustment for population stratification and 

multiple testing. Moreover, there was no association signal when the association tests were repeated 

including rare deleterious missense variants, or when the case group was limited only to severe COVID-19 

cases (N=471). 

Between this study and the independent report by Regeneron Inc, there were a total of 3,118 cases of 

COVID-19, including 1,184 cases with severe disease used to test this hypothesis. Despite large sample size, 
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our collective results did not support the key conclusion by Zheng et al. that 3.5% of severe COVID-19 cases 

are explained by rare inborn errors in type I interferon immunity genes. While the age of our case cohort 

is slightly higher (mean age 65.9 years in our study vs. mean age 51.8 years in Zheng et al), the age of variant 

carriers reported by Zheng et al. ranged from 17 to 77 years, and the great majority of our cases fall within 

this range. Further, we have not undertaken any functional studies of missense variants identified in our 

cohorts. We also recognize that the inheritance pattern for deleterious variants in type I IFN immunity 

genes is often recessive, and that the penetrance of such variants might be dependent on male sex. 

However, Zheng et al. found bi-allelic variants only in a small number of cases and analyzed deleterious 

variants in both sexes jointly. Taken together, our negative results suggest that the findings by Zheng et al 

are not generalizable and highlight the need to rigorously adhere to accepted study design principles when 

reporting new genetic associations for a set of candidate genes3,4. 

Methods: 

Columbia University COVID-19 Biobank Cohort: 

The study includes a multiethnic cohort of 1,153 COVID-19 patients treated at the Columbia University 

Irving Medical Center. All cases had PCR-confirmed SARS-CoV-2 infection. The patients were recruited to 

the Columbia University COVID-19 Biobank between March and May 2020, at the peak of the New York 

pandemic. A total of 480 patients were classified as having severe COVID-19. All 480 severe COVID-19 

cases were defined by either death from COVID-19 (N=317), or acute respiratory failure due to COVID-19 

requiring endotracheal intubation (N=163). This cohort was composed of 288 males and 192 females; the 

average age was 67 (range 2-101); 45% of the participants were predicted to be Hispanic/Latino, 40% 

African, 6% Middle Eastern, 6% European, 2% East Asian, 0.6% South Asian, and 0.2 % Admixed (see below 

for details about ancestry determination).  

For comparisons of variant frequencies, we used an internal dataset of 9,589 local population controls 

with exome and genome sequence data generated by Columbia University’s Institute for Genomic 

Medicine (IGM). The controls are derived from the same general patient population as the cases, served 

by the Columbia University Irving Medical Center and sequenced as controls or healthy family members 

for other studies. Additional tests were performed against a cohort of 673 patients with mild COVID-19 

who were recruited to Columbia COVID-19 Biobank during the same time period, but who have recovered 

without the need for endotracheal intubation. This group was composed of 357 males and 316 females; 
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the average age was 59 (range 3-97); 43% of the participants were predicted to be Hispanic/Latino, 40% 

African, 8% Middle Eastern, 6% European, 2% East Asian, and 0.6% South Asian. 

All case exomes were captured with the IDT xGen Exome Research Panel V1.0 (Integrated DNA 

Technologies, Coralville, IA, USA) and sequenced on Illumina’s NovaSeq 6000 (Illumina, San Diego, CA, 

USA) platform with 150 bp paired-end reads according to standard protocols. Exome sequencing of 

controls were performed on Illumina’s HiSeq 2000, HiSeq 2500, and NovaSeq 6000 using various exome 

capture kits. Genome controls were all sequenced on Illumina’s NovaSeq 6000. 

All cases and controls were processed with the same bioinformatic pipeline for variant calling. In brief, 

reads were aligned to human reference GRCh37 using DRAGEN (Edico Genome, San Diego, CA, USA)5 and 

duplicates were marked with Picard (Broad Institute, Boston, MA, USA). Variants were called according to 

the Genome Analysis Toolkit (GATK - Broad Institute, Boston, MA, USA) Best Practices recommendations 

v3.66,7. Finally, variants were annotated with ClinEff8 and the IGM’s in-house ATAV9 

(https://github.com/igm-team/atav) was used to add custom annotations including gnomAD v2.1 

frequencies10 and clinical annotations provided by the Human Gene Mutation Database (HGMD)11, 

ClinVar12,13, and Online Mendelian Inheritance in Man (OMIM). A centralized database was used to store 

variant and per site coverage data for all samples enabling well controlled analyses without the need of 

generating jointly called VCF files (see Ren et al. 20209 for details). For each patient, we performed 

ancestry classification into one of the six major ancestry groups (European, African, Latino, East Asian, 

South Asian and Middle Eastern) using a neural network trained on a set of 1000 Genomes samples with 

known ancestry labels. We used a 50% probability cut-off to assign an ancestry label to each sample and 

labeled samples that did not reach 50% for any of the ancestral groups as “Admixed”. 

All included samples had at least 90% of the consensus coding sequence (CCDS release 20)14 covered at 

10x or more. Samples had ≤ 3% contamination levels according to VerifyBamID15. Additionally, we 

removed samples with a discordance between self-declared and sequence-derived gender. We used 

KING16 for the detection of related individuals and removed one of each pair that had an inferred 

relationship of second-degree or closer while favoring the inclusion of COVID-19 cases over controls. 

For ancestry adjustment, we performed Principal Component Analysis on a set of predefined variants as 

previously described in Cameron-Christie et al.17 To identify clusters that reflect ancestry we applied the 

Louvain method of community detection18 to the first 6 principal components (PCs) resulting in 10 clusters 

reflecting not only continental populations, but also more detailed subdivision of Europeans. We 
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performed coverage harmonization (see below) and collapsing within the clusters so that population 

specific variants would be easier to filter out. 

Coverage differences between cases and controls caused by different capture kits or sequencing depth in 

general can potentially introduce a bias in the analysis because without sufficient coverage no variants 

can be called4. Therefore, we used the site-based pruning approach described in Petrovski et al. 201519 

and removed sites with an absolute difference in percentages of cases compared to controls with at least 

10x coverage of greater than 7.0%.  

Using the genes tested by Zhang et al. (TLR3, UNC93B1, TICAM1, TRAF3, TBK1, IRF3, IRF7, IFNAR1, IFNAR2, 

STAT1, STAT2, IRF9, and IKBKG), we performed a gene set-based collapsing analysis to test for a significant 

difference in the proportion of cases carrying at least one qualifying variant (QV) in the gene set compared 

to controls. A QV was defined as a variant that passes certain filter criteria. For the pLOF model we used 

basic quality control filters (e.g. GATK’s Variant Quality Score Recalibration, QUAL, GQ, QD, …), an internal 

and external minor allele frequency (MAF) of 0.001 and restricted the variant effect to frameshift, stop 

gained, splice acceptor, and splice donor labeled high confidence by LOFTEE10. For the internal MAF filter 

we used a leave-one-out filter, that ensures that singletons are retained even if the sample size is small. 

For the external MAF filtering we used the continental MAFs provided by gnomAD10 and ExAC20. For the 

functional model, we also included missense variants in addition to the pLOF variants while keeping all 

other filters the same. From the results of the individual clusters, we extracted the number of 

cases/controls with and without a QV in the gene-set and used the exact two-sided Cochran-Mantel-

Haenszel (CMH) test21,22 to test for an association between disease status and QV status while controlling 

for cluster membership.  

For the purpose of the meta-analysis of all four cohorts, we restricted the Biobanque Québec cohort (see 

below) to individuals of European ancestry and only included population controls, so the final analysis 

included a total of 696 severe COVID-19 cases and 15,047 population controls. We used the CMH test as 

described above and treated the other cohorts as additional clusters, since each of the extra cohorts was 

composed of a single well-defined ancestry. The CMH odds ratios and 95% confidence intervals were 

reported. 

Biobanque Québec COVID-19 Cohort: 

The Biobanque Québec COVID-19 (www.BQC19.ca) is a provincial biobank that prospectively enrolls 

patients with suspected COVID-19, or COVID-19 confirmed through SARS-CoV-2 PCR testing. For this 
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study, we used results from patients with available WGS data and who were recruited at the Jewish 

General Hospital (JGH) in Montreal. The JGH is a university affiliated hospital serving a large multi-ethnic 

adult population and was designated as the primary COVID-19 reference center by the Québec 

government early in the pandemic. In total, there were 533 participants with WGS, including 62 cases of 

COVID-19 who required ventilatory support (BiPAP, high flow oxygen, or endotracheal intubation) or died, 

128 COVID-19 patients who were hospitalized but did not require invasive ventilatory support, 30 

individuals with COVID-19 did not require hospitalization, and 313 SARS-CoV-2 PCR-negative participants. 

Using genetic principal component analysis derived from genome-wide genotyping, we determined that 

76% of participants were of European ancestry, 9% were of African ancestry, 7% were of east Asian 

ancestry, and 5% were of south Asian ancestry. 

We performed WGS at a mean depth of 30x on all included individuals using Illumina’s Novaseq 6000 

platform (Illumina, San Diego, CA, USA). Sequencing results were analyzed using the McGill Genome 

Center bioinformatics pipelines23, in accordance with Genome Analysis Toolkit Best Practices (GATK) 

recommendations7. Reads were aligned to the GRCh38 reference genome. Variant quality control was 

performed using the variantRecalibrator and applyVQSR functions from GATK. Participants had a median 

of 4434 (IQR: 4260-5194) autosomal single nucleotide polymorphisms of minor allele frequency less than 

1% across their exomes (defined using the GENCODE24 reference for protein coding exonic sites). Variant 

filtering was followed by sample filtering on missing rate (minimum 97% of sites called) and minimum 

average read depth (≥ 20x). Genotypes were further filtered by genotype quality (≥20x) and read depth 

(≥10x). 

Predicted LOF variants were annotated using LOFTEE10 and the analysis was restricted to the genes tested 

in Zhang et al. Missense variants were annotated using VEP. Qualifying variants with minor allele 

frequency < 0.1% annotated as high confidence for LOF or as missense variants and which passed quality 

control filters were extracted for the main analysis. Using these variants, we used Fisher’s exact test to 

perform a burden test restricted to individuals of European ancestry comparing 45 of the 62 severe cases 

of COVID-19 to 361 controls. 

Saudi Arabian COVID-19 Cohort: 

The Saudi Human Genome Program (SHGP) aims to sequence the genomes of the Saudi patients with 

COVID-19 confirmed through SARS-CoV-2 PCR as part of COVID19 KACST response 

(https://covid19.kacst.edu.sa/en.html). The study was conducted in accordance with the ethical principles 

of the National Bioethical committee at KACST and approved by the Institutional Review Board Committee 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.12.18.20248226doi: medRxiv preprint 

https://covid19.kacst.edu.sa/en.html)
https://doi.org/10.1101/2020.12.18.20248226
http://creativecommons.org/licenses/by-nc-nd/4.0/


at King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs, Riyadh, 

Ministry of Health, and King Fahad Medical City. The Institutional Review Boards of all participating 

hospitals also approved the study and all patients provided written informed consent. In total, we 

performed WES on 307 individuals with COVID-19, which included 148 (48%) cases of severe disease that 

required mechanical ventilation or admission to an intensive care unit for septic shock or organ failure 

and 159 (52%) patients with mild or asymptomatic disease. Our control group included 218 individuals 

negative by SARS-CoV-2 PCR test. The 159 severe cases included 32% females and 68% males, and the 148 

mild/asymptomatic patients were 44% females and 56% males. The age of the 307 patients included in 

this study ranged from 6 months to 98 years old. All samples were of Arab ancestry.  

WES was performed using Ion Torrent S5 XL System (Thermo Fisher Scientific, Carlsbad, CA USA) includes 

the Torrent Suite™ Software package, which automatically processes sequences, base calling, read 

alignment, and variant calling. This automated and streamlined data analysis workflow performs 

annotation and mutation identification on FASTQ, SFF, BAM, and VCF output files. Variant call format 

(VCF) files were filtered to remove unusually poor-quality or low-coverage reads. All variants retained in 

the analysis had quality ≥ 30 and coverage ≥ 10. Variant files were annotated using the VEP version 100 

and referencing the GRCh37/hg19 build within dbSNP, the NCBI database of genetic variation.  

Predicted LOF variants were annotated using LOFTEE10 and the analysis was restricted to the 13 genes 

tested in Zhang et al. Rare variants (minor allele frequency < 1%) annotated as high confidence for LOF by 

LOFTEE and passed quality control filters were extracted for the main analysis. We scanned for these 

variants in our entire cohort of control negative, asymptomatic/mild and severe Saudi Arabian COVID-19 

patients, and surprisingly, none were present in any patient.  

Qatar Genome Program COVID-19 Cohort: 

The Qatar Genome Program (QGP) is a population-based project launched by the Qatar Foundation to 

generate a large whole genome sequence (WGS) dataset, in combination with comprehensive phenotypic 

information collected by the Qatar Biobank. In this retrospective cohort consisting of 14,060 WGS 

samples, we extracted information from electronic medical records (EMR) on the participants that were 

tested positive. The extraction covered the period from early March till early September. There were a 

total of 700 COVID-19 positive cases, including 60 severe cases with hypoxia that required ventilatory 

support (BiPAP, high flow oxygen, or endotracheal intubation) and 640 classified as asymptomatic or mild 

cases without any evidence of pneumonia or hypoxia. The severe COVID-19 cohort consisted of 30 male 

and 30 female patients that were hospitalized for respiratory failure. Of the mild COVID-19 cases, 290 
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were male and 350 were female. The median age was 38 (range 18-89) for the severe and 37 (range 18-

89) for the mild group. All samples used for the analysis were of Qatari Middle Eastern Arabian ancestry. 

After removal of related individuals, 23 severe and 231 mild cases remained. The severe COVID-19 cohort 

consisted of 13 males and 10 females with a median age of 55 (range 28-68). 116 of the mild COVID-19 

cohort were male, 115 female with a median age of 37 range (18-79).  

All samples were sequenced on Illumina Hiseq X instrument (Illumina, San Diego, CA, USA) to a minimum 

average coverage of 30x. Quality control of Fastq files was performed using FastQC (v0.11.2). The 

secondary analyses (read mapping and joint variant calling) were performed using Sentieon’s DNASeq 

pipeline25 v201808.03 (Sentieon, San Jose, CA, USA), following the GATK 3.8 best practices6,7. Reads were 

aligned to GRCh38/hg38 reference genome. Quality control analyses included removal of samples with a 

low genotyping call rate (less than 95%), gender discordance, excess heterozygosity and PCA-based 

population outliers. We then used KING16 for the detection of related individuals and removed one of each 

pair that had an inferred relationship of second-degree or closer. Consequently, 5,385 unrelated samples 

were retained for our analysis. The remaining variants were annotated using VEP (release 99), with LOFTEE 

and dbNSFP plugins. We then performed a gene set-based collapsing analysis, using the same criteria as 

described for the Columbia University COVID-19 Biobank Cohort (pLOF with internal & external MAF < 

0.1%). 

Ethics statement: 

The recruitment and sequencing of participants from the Columbia University COVID-19 Biobank were 

approved by the Columbia University IRB, protocol number AAAS7370. The genetic analyses were 

approved by the Columbia University IRB, under protocol number AAAS7948. The BQC-19 received ethical 

approval for its activities from its multicentric ethics board headed at the Centre Hospitalier de l'Université 

de Montréal. Recruitment of patients at the Jewish General Hospital (JGH) was also approved by the JGH 

ethics board. The Saudi Arabia COVID-19 Biobank study was conducted in accordance with the ethical 

principles of the National Bioethical committee at KACST and approved by the Institutional Review Board 

Committee at King Abdullah International Medical Research Centre, Ministry of National Guard-Health 

Affairs, Riyadh, Ministry of Health, and King Fahad Medical City. The Institutional Review Boards of all 

participating hospitals also approved the study. The recruitment and sequencing of participants from the 

Qatar Biobank (QBB) were approved by the Hamad Medical Corporation Ethics Committee in 2011 and 

continued with QBB Institutional Review Board (IRB) from 2017 onwards. It is renewed on an annual basis, 

IRB protocol number IRB-A-QBB-2019-0017. The genetic analyses presented here were approved 
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following expedited review by the QBB Institutional Review Board under protocol number E-2020-QBB-

Res-ACC-0226-0130. 
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Figure 1. Power curves for a gene set based collapsing test: Power calculations for the Columbia COVID-
19 Biobank cohort of 480 severe COVID-19 cases and 9,589 population controls were performed using 
the samplesizeCMH R package (version 0.0.0) for a dominant model at alpha=0.05 and a range of odds 
ratios (OR). Results are shown for the pLOF and model including pLOFs and missense model. Since 
power is influenced by the carrier frequency, we have adequate power to detect effect sizes as small as 
1.5 for the model including missense variants compared to 5.5 for the rare pLOF variants only model. 
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Table 1. Study Cohorts 

  COVID-19 Cases Severe COVID-19 Mild COVID-19 Population Controls 

Columbia 1,153 480 673 9,589 

Quebec 220 62 158 313 

Saudi Arabia 307 148 159 218 

Qatar 254 23 231 5,131 

Total 1,934 713 1,221 15,251 
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Table 2. Cohort characteristics. 

 
Columbia University  
COVID-19 Biobank 

Biobanque Québec  
COVID-19 

Saudi Arabia 
COVID-19 Biobank 

Qatar Genome Program  
COVID-19 

 
Severe Cases 

N=480 
Mild Cases 

N=673 
Severe Cases 

N=62 
Mild Cases 

N=158 
Severe Cases 

N=148 
Mild Cases 

N=159 
Severe Cases 

N=23 
Mild Cases 

N=231 

Age         

0-9 3 (0.62%) 9 (1.34%) 0 (0.00%) 0 (0.00%) 1 (0.68%) 4 (2.52%) 0 (0.00%) 0 (0.00%) 

10-19 9 (1.88%) 5 (0.74%) 0 (0.00%) 0 (0.00%) 1 (0.68%) 8 (5.03%) 0 (0.00%) 2 (0.87%) 

20-29 5 (1.04%) 34 (5.05%) 2 (3.23%) 6 (3.80%) 0 (0.00%) 56 (35.22%) 1 (4.35%) 57 (24.68%) 

30-39 16 (3.33%) 66 (9.81%) 2 (3.23%) 10 (6.33%) 10 (6.76%) 36 (22.64%) 3 (13.04%) 75 (32.47%) 

40-49 28 (5.83%) 60 (8.92%) 2 (3.23%) 13 (8.23%) 12 (8.11%) 14 (8.81%) 7 (30.43%) 45 (19.48%) 

50-59 62 (12.92%) 124 (18.42%) 9 (14.52%) 27 (17.09%) 20 (13.51%) 22 (13.84%) 7 (30.43%) 37 (16.02%) 

60-69 97 (20.21%) 137 (20.36%) 13 (20.97%) 20 (12.66%) 51 (34.46%) 8 (5.03%) 5 (21.74%) 11 (4.76%) 

70-79 133 (27.71%) 130 (19.32%) 17 (27.42%) 24 (15.19%) 34 (22.97%) 9 (5.66%) 0 (0.00%) 4 (1.73%) 

80-89 89 (18.54%) 72 (10.70%) 11 (17.74%) 40 (25.32%) 17 (11.49%) 2 (1.26%) 0 (0.00%) 0 (0.00%) 

90-99 30 (6.25%) 23 (3.42%) 5 (8.06%) 15 (9.49%) 2 (1.35%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 

≥ 100 1 (0.21%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 

Unknown 7 (1.46%) 13 (1.93%) 1 (1.61%) 3 (1.90%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 

Gender         

Male 288 (60.00%) 357 (53.05%) 44 (70.97%) 64 (40.51%) 100 (67.57%) 89 (55.97%) 13 (56.52%) 116 (50.22%) 

Female 192 (40.00%) 316 (46.95%) 18 (29.03%) 94 (59.49%) 48 (32.43%) 70 (44.03%) 10 (43.48%) 115 (49.78%) 

Ancestry         

African 192 (40.00%) 272 (40.42%) 9 (14.52%) 21 (13.29%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 

East Asian 10 (2.08%) 16 (2.38%) 6 (9.68%) 16 (10.13%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 

European 27 (5.62%) 40 (5.94%) 45 (72.58%) 109 (68.99%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 

Latino 217 (45.21%) 289 (42.94%) 2 (3.23%) 5 (3.16%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 

Middle Eastern 30 (6.25%) 52 (7.73%) 0 (0.00%) 0 (0.00%) 148 (100.00%) 159 (100.00%) 23 (100.00%) 231 (100.00%) 

South Asian 3 (0.62%) 4 (0.59%) 0 (0.00%) 7 (4.43%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 

Admixed 1 (0.21%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 

Comorbidities*         

Diabetes 194 (40.42%) 214 (31.80%) 25 (40.32%) 45 (28.48%) 91 (61.49%) 18 (11.32%) 9 (39.13%) unknown 

Chronic Kidney Disease 111 (23.13%) 109 (16.20%) 11 (17.74%) 20 (12.66%) 19 (12.84%) 1 (0.63%) 2 (8.70%) unknown 

Chronic Lung Disease 139 (28.96%) 142 (21.10%) 14 (22.58%) 25 (15.82%) 18 (12.16%) 6 (3.77%) 2 (8.70%) unknown 

Chronic Heart Disease 132 (27.50%) 152 (22.59%) 14 (22.58%) 19 (12.03%) unknown unknown 1 (4.35%) unknown 

Cancer 131 (27.29%) 174 (25.85%) 5 (8.06%) 7 (4.43%) 5 (3.38%) 0 (0.00%) 0 (0.00%) unknown 

*  Note: Chronic Lung Disease includes asthma, chronic obstructive pulmonary disease, interstitial pulmonary disease, primary pulmonary hypertension; 
Chronic Heart Disease includes coronary artery disease and heart failure.  

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.12.18.20248226doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.18.20248226
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. The complete list of all qualifying pLOF variants found in 1,153 COVID-19 cases (673 mild and 
480 severe) and 9,589 controls from the Columbia COVID-19 Biobank cohort along with the observed 
allelic frequencies.  

Gene Variant ID Effect HGVS_p 
gnomAD 
Exome 
global AF 

gnomAD 
Genome 
global AF 

Sample 
Phenotype 

Gender 
Ancestry 
Cluster 

TLR3 4-187004302-C-T stop_gained p.Arg488* 1.59E-05 0 control female 0 

TLR3 4-187005327-G-A splice_donor_variant 
 

4.04E-06 0 control male 3 

TLR3 4-187005911-C-T stop_gained p.Arg867* 0 0.000159 mild COVID-19 female 1 

TLR3 4-187005080-TAGAC-T frameshift_variant p.Thr751fs 3.98E-05 0 control female 7 

IRF7 11-613078-G-GA frameshift_variant p.Pro439fs 0 3.19E-05 control male 0 

IRF7 11-614300-G-A* stop_gained p.Gln198* 1.22E-05 6.38E-05 control female 0 

IRF7 11-614300-G-A* stop_gained p.Gln198* 1.22E-05 6.38E-05 control female 3 

IRF7 11-614300-G-A* stop_gained p.Gln198* 1.22E-05 6.38E-05 control female 3 

TBK1 12-64879713-CAG-C frameshift_variant p.Val421fs 0 3.19E-05 control male 2 

TBK1 12-64882266-G-A splice_acceptor_variant 
 

0 0 control female 4 

IRF3 19-50165422-CCT-C frameshift_variant p.Arg255fs 1.19E-05 0 control male 0 

IRF3 19-50166771-CCTGGGG-C splice_acceptor_variant  0 0 control female 0 

IRF3 19-50165291-
AGCTCCTCGCTCACT-A 

frameshift_variant p.Val295fs 3.98E-06 0 control female 3 

IRF3 19-50165422-CCTGT-C frameshift_variant p.Asp254fs 1.59E-05 0 control female 3 

IFNAR1 21-34721850-G-A splice_donor_variant 
 

1.26E-05 0 control male 1 

IFNAR1 21-34713304-G-T splice_acceptor_variant 
 

0 3.19E-05 control female 2 

IFNAR1 21-34713304-G-T splice_acceptor_variant 
 

0 3.19E-05 control female 5 

IFNAR1 21-34721439-G-A stop_gained p.Trp277* 1.2E-05 0 control female 5 

IFNAR2 21-34619194-CA-C frameshift_variant p.Leu128fs 8.03E-06 3.18E-05 control female 0 

IFNAR2 21-34621013-G-A splice_acceptor_variant 
 

8.45E-06 0 control female 0 

STAT2 12-56748597-G-A stop_gained p.Gln200* 0 0 control male 0 

STAT2 12-56748365-G-A stop_gained p.Arg223* 0 6.37E-05 control female 1 

STAT2 12-56743896-C-T stop_gained p.Trp398* 0 0 control female 2 

STAT2 12-56750297-TG-T frameshift_variant p.Gln20fs 3.98E-06 0 control male 2 

STAT2 12-56744928-G-A stop_gained p.Arg330* 0 0 severe COVID-19 female 8 

Note: * variant reported in a case by Zhang et al., HGVS_p refers to positions in the Ensembl canonical transcripts: TLR3 - NST00000296795, 
IRF7 - ENST00000397566, TBK1 - ENST00000331710, IRF3 - ENST00000601291, IFNAR1 - ENST00000270139, IFNAR2 - ENST00000342136, 
STAT2 - ENST00000314128 
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