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Abstract

Introduction

Safety underreporting is a recurrent issue in clinical trials that can impact patient safety and data

integrity. Clinical Quality Assurance (QA) practices used to detect underreporting rely on on-site

audits, however adverse events underreporting remains a recurrent issue. In a recent project, we

developed a predictive model that enables oversight of Adverse Event (AE) reporting for clinical

Quality Program Leads (QPL). However, there were limitations to using solely a machine

learning model.

Objective

Our primary objective was to propose a robust method to compute the probability of AE

underreporting that could complement our machine learning model. Our model was developed to

enhance patients safety while reducing the need for on-site and manual QA activities in clinical

trials.

Methods

We used a Bayesian hierarchical model to estimate the site reporting rates and assess the risk of

underreporting. We designed the model with Project Data Sphere clinical trial data that is public

and anonymized.

Results

We built a model that infers the site reporting behavior from patient-level observations and

compares them across a study to enable a robust detection of outliers between clinical sites.
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Conclusion

The new model will be integrated into the current dashboard designed for clinical Quality

Program Leads. This approach reduces the need for on-site audits, shifting focus from source

data verification (SDV) to pre-identified, higher risk areas. It will enhance further quality

assurance activities for safety reporting from clinical trials and generate quality evidence during

pre-approval inspections.

The preprint version of this work is available on MedRxiv:

https://doi.org/10.1101/2020.12.18.20245068

Key points

● Safety underreporting is a recurrent issue in clinical trials that can impact patient safety

and data integrity

● We used a Bayesian hierarchical model to estimate the site reporting rates and assess the

risk of underreporting.

● This model complements our previously published machine learning approach and is

used by clinical quality professionals to better detect safety underreporting.

1. Introduction

Adverse event (AE) underreporting has been a recurrent issue raised during Health Authorities

(HA) Good Clinical Practices (GCP) inspections and audits [1]. Moreover, safety underreporting

poses a risk to patient safety and data integrity [2]. The previous clinical Quality Assurance (QA)

practices used to detect AE underreporting rely heavily on investigator site and study audits. Yet

several sponsors and institutions have had repeated findings related to safety reporting, leading

to delays in regulatory submissions.

In a previous project [3], we developed a predictive model that enables pharmaceutical sponsors

oversight of AE reporting at the program, study, site and patient level. We validated and

reproduced our model using a combination of internal data and an external dataset [4].
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While the machine learning model has been successfully implemented since May 2019, there

was a need to address calibration robustness. The first model relied on point predictions at the

visit level and assumed Poisson distributed residuals. The decision to flag underreporting sites

depended on the way these residuals were aggregated and we have been observing instabilities in

longer running studies. This motivated us to tackle the problem by the other end and find a

model for the distribution of adverse events reported by sites. The biggest value of point

estimates from our initial machine learning model is for our stakeholders to direct their

investigations, for instance which patient to target during an investigator site audit. On the other

hand, an automated underreporting alert relies on well-calibrated probabilities for risk estimate.

This was the main motivation for this project. These two solutions will be offered in parallel to

quality professionals at our organization, the probabilistic one to quantify the risk of

underreporting, and the machine learning based model to provide a basis for in-depth

investigations and audits.

The project has been conducted by a team of data scientists, in collaboration with clinical and

QA subject matter experts (SMEs). This project was part of a broader initiative of building

data-driven solutions for clinical QA to complement and augment traditional QA approaches and

to improve the quality and oversight of GCP - and Good Pharmacovigilance Practices (GVP) -

regulated activities.

2. Methods

2.1. Outline

The primary objective was to develop a robust methodology to assess the risk of adverse events

underreporting from investigator sites. The scope remained focused on adverse events -not

adverse drug reactions- that should occur in clinical trials. Good clinical practice requires all

AEs, regardless of a causal relationship between the drug and events, to be reported timely to the

sponsor [2]. Underreporting of safety events is a frequent and repetitive issue in clinical trials

[1,5] with many consequences, e.g. delayed approval of new drugs [6-7] or amplifying

shortcomings of safety data collection in randomized controlled trials [8].
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The traditional way to detect AE underreporting in clinical trials is to conduct thorough site

audits [9], on top of monitoring activities and through manual SDV. For sponsors with thousands

of sites to audit, this is not manually scalable, hence the strong need for a data-driven approach.

Unfortunately, we will never know how many AEs should have been reported, it is something we

have to infer from the data. In other words, we are dealing with an unsupervised anomaly

detection problem where we do not observe the true labels. The typical way to solve this type of

problem is to fit a probability distribution to the data and compare individual data points to that

distribution. To do so, one can compute the likelihood of data points under the distribution and

flag values below a certain threshold. If the distribution is normal, this is equivalent to flagging

points beyond a certain number of standard deviations from the mean. In more general cases, the

likelihood is less interpretable, and one might prefer to compute a tail area under the distribution,

namely the probability to make an observation at least as extreme as a given data point. The

definition of “extreme” will depend on the context and can be adapted to a specific problem. In

our case, we can compute the probability that a random site from a given study would have a

lower reporting rate than the one under consideration.

In a previous work [3], to infer the distribution of adverse events, we exploited the variety of

covariates available at the patient and visit levels to estimate a conditional density

via machine learning. For site-level estimates, we aggregated the visit-level𝑝(𝑦
𝑣𝑖𝑠𝑖𝑡

 | 𝑥
𝑣𝑖𝑠𝑖𝑡

 ;  θ)

distributions to patient-level and then site-level via successive summations. While this method

tracks adverse event data generation at various resolutions, the aggregation introduced biases in

the form of systematic over- or underestimation for certain sites, in particular in longer-running

trials, probably due to the addition of non-independent errors. As a result, the risk assessment of

safety underreporting from investigator sites was not well calibrated. This motivated the

top-down approach presented here, as we were ultimately interested in the selection of sites for

audits.

To further increase the robustness of the risk assessment, we adopted a Bayesian approach to

quantify uncertainties through posterior probability distributions. This is a very appealing

property in sectors where risk management is essential such as healthcare or finance. In our case,

a clear estimate of the probability of underreporting from the different sites enables targeting of
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the riskiest sites to audit, and, on the positive side, to gain confidence in the completeness of the

collected safety data.

The general methodology of Bayesian data analysis is well described in the literature [10]. The

main idea is to build a probabilistic model for the observed data, denoted by X, that contains

unobserved parameters, collectively denoted by . This model relies on a subjective assessmentθ

of the distribution of the parameters in the form of a prior distribution , which is more or𝑝(θ)

less sharp depending on the degree of certainty of the prior knowledge. The relation between the

parameters and the observed data is expressed by the likelihood function . The goal of𝑝(𝑋 | θ)

Bayesian inference is to refine the prior distribution, once the data is observed via the application

of Bayes’ theorem, and obtain the posterior distribution used to𝑝(θ | 𝑋) =  𝑝(𝑋 | θ)𝑝(θ)/𝑝(𝑋)

make decisions, estimate parameters, or assess risks. If the observed data is compatible with the

prior distribution, the posterior distribution will typically have a smaller spread than the prior. If

it is less compatible, then the likelihood and the prior will compete and the posterior distribution

will represent a compromise.

In our problem, the observed data is numbers of AEs reported by the sites, grouped by patients,

and parameters could be unobserved adverse event reporting rates from the individual sites. We

emphasize that there can be several competing models for the observed data, and the goal is to

find one that is complex enough to capture the structures of interest, namely safety

underreporting in our case, but as simple as possible to speed up computations and convey the

clearest insights to stakeholders.

2.2. Data

We developed this project on our sponsored clinical trials, but this methodology is applicable to

any trial. For illustration, we used public data from the project Data Sphere (PDS), "an

independent, not-for-profit initiative of the CEO Roundtable on Cancer's Life Sciences

Consortium (LSC), operates the Project Data Sphere platform, a free digital library-laboratory

that provides one place where the research community can broadly share, integrate and analyze

historical, patient-level data from academic and industry phase III cancer clinical trials" [11].

PDS data was fit for purpose to demonstrate the approach presented in this paper and are

publicly available (lifting any concerns for data privacy and security). Specifically, we used the

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2021. ; https://doi.org/10.1101/2020.12.18.20245068doi: medRxiv preprint 

https://doi.org/10.1002/sim.1856
https://data.projectdatasphere.org/projectdatasphere/html/home
https://doi.org/10.1101/2020.12.18.20245068
http://creativecommons.org/licenses/by/4.0/


Bayesian modeling for the detection of adverse events underreporting in clinical trials

control arm of the registered clinical trial NCT 00617669 [12]. Of note, the data had been further

curated to remove duplicate adverse events. The dataset included 468 patients from 125 clinical

sites.

From the clinical trial data, we extracted for our analysis the count of adverse events reported by

patient, grouped by investigator site (see Table 1).

2.3. Model

We had access to patient level observations, but we needed to make decisions at the site level

based on comparisons across the whole study, so a hierarchical model was well indicated as it

would capture this three levels structure. Concretely, we assumed that adverse event reporting by

a given site could be modelled by a Poisson process. The observed numbers of adverse events for

each of the patients reported by the i-th site would then be realizations of the corresponding𝑛
𝑖

Poisson process,

.𝑌
1
, 𝑌

2
,...  ,  𝑌

𝑛
𝑖

 ∼𝑃𝑜𝑖(λ
𝑖
)

We further assumed that the reporting rates of sites were drawn from aλ
𝑖
,  𝑖 =  1, 2,  …,  𝑁

𝑠𝑖𝑡𝑒𝑠

single study-level Gamma distribution to model the variability of reportingΓ(µ
𝑠𝑡𝑢𝑑𝑦

, σ
𝑠𝑡𝑢𝑑𝑦

)

behaviours among the sites, and we picked vague hyperpriors for the study parameters

and to account for uncertainty. The parameterization of theµ
𝑠𝑡𝑢𝑑𝑦

∼𝐸𝑥𝑝(0. 1) σ
𝑠𝑡𝑢𝑑𝑦

∼𝐸𝑥𝑝(0. 1)

Gamma distribution by the mean and standard deviation rather than the more usual shape and

rate parameters was intended to make the posterior distribution more interpretable. All these

relations are summarized in a graphical representation (Fig. 1). The circles represent random

variables, shaded when they correspond to observed data. Arrows indicate conditional

dependencies, and plates represent repeated elements, with their labels indicating how many

times. The parameters of the hyperprior distributions were chosen so that data simulated by

sampling the prior distribution had a similar range as the observed adverse events. We also ran

the analysis with wide uniform hyperpriors to check the sensitivity of the inference to the choice

of hyperpriors and obtained essentially the same posterior distributions (see the code and the

analysis in the Supplementary Material #2).
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In this hierarchical model, the posterior distribution of the site reporting rates given theλ
𝑖

observed numbers of AEs per patient reflects how many AEs per patient we expect to see at the

individual sites, and the distribution width indicates the degree of certainty in these estimates.

This width typically depends on the number of observations and their spread. Even for sites with

less patients, the mechanism of information borrowing enabled by the hierarchical structure leads

to more robust estimates of the reporting rates.

The joint posterior distribution of the study level parameters and characterizesµ
𝑠𝑡𝑢𝑑𝑦

σ
𝑠𝑡𝑢𝑑𝑦

safety reporting patterns of a study and depends on the nature of the disease (e.g. cancers vs.

cardiovascular diseases, etc.), the drug mechanism of action, the drug mode of administration,

the design and execution of the clinical trial, and so on. The posterior expectation value of µ
𝑠𝑡𝑢𝑑𝑦

immediately gives the posterior expectation value of the reporting rate of a site taken at random

from that study, and in turn the expected number of adverse events reported by a patient taken at

random from that site. The posterior distribution of characterizes the variability among theσ
𝑠𝑡𝑢𝑑𝑦

sites of that study. If this analysis is repeated on different studies, the posterior distributions of

the parameters and allow us to compare the reporting patterns of the differentµ
𝑠𝑡𝑢𝑑𝑦

σ
𝑠𝑡𝑢𝑑𝑦

studies.

2.4. Inference and underreporting detection

Efficient sampling of the posterior distribution of hierarchical models requires specialized

methods [13] such as the Hamiltonian Monte Carlo algorithm [14], which is readily implemented

in modern probabilistic programming libraries. We used the PyMC3 library [15], and our code is

available as a Jupyter notebook [16].

Algorithms of the Markov Chain Monte Carlo family return a sequence of samples of the

posterior distribution, in our case a collection of and . Theseµ
^

𝑠𝑡𝑢𝑑𝑦
,σ
^

𝑠𝑡𝑢𝑑𝑦
λ
^

𝑖
,  𝑖 =  1, 2,  …,  𝑁

𝑠𝑖𝑡𝑒𝑠

samples are typically used to compute expectation values with respect to the posterior. We started

with the means and standard deviations of the site reporting rate samples to𝑚𝑒𝑎𝑛(λ
^

𝑖
) 𝑠𝑡𝑑(λ

^

𝑖
) λ

^

𝑖

summarize their distributions, but we were ultimately interested in measuring the risk of

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2021. ; https://doi.org/10.1101/2020.12.18.20245068doi: medRxiv preprint 

https://arxiv.org/abs/1312.0906
https://doi.org/10.1186/s12874-019-0739-3
https://doi.org/10.7717/peerj-cs.55
https://github.com/ybarmaz/bayesian-ae-reporting/
https://doi.org/10.1101/2020.12.18.20245068
http://creativecommons.org/licenses/by/4.0/


Bayesian modeling for the detection of adverse events underreporting in clinical trials

underreporting. One natural way to do it is to compute the expected left tail area of the inferred

site rates under the posterior (study-level) distribution of reporting rates. This corresponds to the

probability that a yet unseen reporting rate drawn randomly from the posterior distribution falls

below the inferred site reporting rates. To estimate this posterior probability, for each pair of

and returned in the sample of the Markov chain, we sampled a reference rateµ
^

𝑠𝑡𝑢𝑑𝑦
σ
^

𝑠𝑡𝑢𝑑𝑦

and for each site computed the proportion of samples of the Markov chainλ
^
 ∼ Γ(µ

^

𝑠𝑡𝑢𝑑𝑦
,  σ

^

𝑠𝑡𝑢𝑑𝑦
)

such that to estimate the rate tail area, .λ
^
 <  λ

^

𝑖
𝑅𝑇𝐴

𝑖
 =  𝑃(λ

^
 <  λ

^

𝑖
)

The output is available in the code repository [16] and a sample of the sites with the top and

bottom tail areas is presented in table 2. The inferred values of site 3046 illustrate interesting

features of this model. Despite having a single observation of zero reported AEs, the inferred rate

is still quite high, driven by information borrowed from the other sites, but with a certain

uncertainty, characterized by a higher standard deviation than other sites with low numbers of

reported AEs.

When it comes to deciding which sites to flag for under-reporting, a threshold has to be set by

quality leads, as the values of the risk metrics cover a wide spectrum displayed in Figure 2.

The relationship between the posterior mean site rates and the corresponding posterior𝑚𝑒𝑎𝑛(λ
^

𝑖
)

rate tail areas follows the cumulative distribution function of the posterior predictive𝑅𝑇𝐴
𝑖

distribution of the reporting rates (Fig. 2). There is no definitive rule to determine how low rate

tail areas indicate underreporting. Low values might be due to the inherent variability of safety

reporting. Nevertheless, auditing efforts should focus on the lowest values, for instance

according to different alert levels at prespecified thresholds, e.g. 0.05 and 0.15, or up to a gap in

the distribution of tail areas for more homogeneity in the QA process.

3. Discussion

The method presented here is applicable to completed studies to assess which sites might pose a

risk of underreporting. In particular, it can demonstrate a degree of certainty in the completeness

of collected safety data. In ongoing studies, patients do not enroll all at the same time which
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introduces more variability in the numbers of reported AEs. The longer a patient has been

enrolled, the more AEs have been reported. We can still apply the same method, provided we

select as observations the accrued number of adverse events for each patient up to the n-th visit

and exclude patients who have not reached that milestone. This analysis can be repeated for

different values of n. In particular, when a study is close to a data-base lock (e.g. before

performing an interim analysis), the model could be used to guide quality leads and/or clinical

operations staff to detect underreporting sites and trigger queries and AE reconciliation. Hence,

this gives reassurance to health authorities inspectors that AE underreporting had been detected,

corrective actions had been implemented and integrity of the data had not been compromised [2].

An added benefit of the proposed Bayesian approach and the selected risk metrics is that the

outputs are calibrated probabilities. The results of this underreporting risk assessment conducted

on different studies and at different milestones are immediately comparable. A sponsor

overseeing several studies can thus keep an overview of all of them, and monitor the evolution of

the risk of underreporting over time.

Yet this simple Bayesian model ignores the granularity of the available data that goes down to

the visit level, the associated time series structure, and a whole collection of covariates that can

predict the occurrence of AEs. As mentioned in the methods section, we used this information in

our previous work to estimate the number of AEs reported at a single visit, 𝑝(𝑦
𝑣𝑖𝑠𝑖𝑡

 | 𝑥
𝑣𝑖𝑠𝑖𝑡

 ;  θ),

with machine learning algorithms, but the estimated risks were not well calibrated. Now that we

have established that Bayesian methods can address this issue, we plan to explore a middle

ground between classical machine learning and probabilistic modeling, namely in the space of

Bayesian neural networks, where we can find models that use all covariates but still output

calibrated risks of underreporting. This approach will obviously require access to a certain

amount of clinical data, which is possible only for a few selected entities such as big clinical trial

sponsors, so we still think there is value in the simple approach presented here when it comes to

assess individual trials.

In parallel to developing a new model for detection of AE underreporting, we have been piloting

a machine learning model with Quality Assurance (QA) staff since May 2019. The outputs of the

Bayesian approach will be integrated in the current QA dashboard, together with the outputs of
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the ML model [3] that are already available to Quality Program Leads. For example, low values

of the rate tail areas would indicate sites with suspiciously low numbers of reported AEs, and

QA activities should be primarily directed on them. The advantage of combining both

approaches is to have AE patient level predictions (from the ML model) and detection of AE

underreporting at the site level (using the Bayesian approach). This will enhance further the

quality assurance activities for safety reporting from clinical trials.

This model was developed during the Covid-19 pandemic where on-site audits could not be

performed [17]. Having a data product enabling remote monitoring of safety reporting from

investigator sites was essential to ensure business continuity for clinical quality assurance

activities [18]. Our approach has the potential to reduce the need for on-site audits and thereby

shift the focus away from source data validation and verification towards pre-identified, higher

risk areas. It can contribute to a major shift for QA, where advanced analytics can detect and

mitigate issues faster, and ultimately accelerate approval and patient access of innovative drugs.

Jianing Di et al. [19] also proposed the use of Bayesian methods for adverse events monitoring

with a more clinical purpose. Their approach focused on the continuous monitoring of safety

events to address the lack of knowledge of the full safety profile of drugs under clinical

investigation. Their model could be applied for signal detection in early-phase trials and could

also give further evidence to independent data monitoring committees for late stage studies. We

developed a different model as our focus was on sites rather than patients. This illustrates one of

the strengths of Bayesian data analysis, where different models of the same data can be

optimized to answer different questions about the underlying process.

Clinical trials generate large amounts of data traditionally analysed with frequentist methods,

including statistical tests and population parameter estimations, aimed at clinical questions

related to efficacy and safety. There has been a push in recent years for Bayesian adaptive

designs that have the potential to accelerate and optimize clinical trial execution. Examples

include Bayesian sequential design, adaptive randomization, and information borrowing from

past trials. For example, in a study redesigning a phase III clinical trial, a Bayesian sequential

design could shorten the trial duration by 15 to 40 weeks and recruited 231 to 336 fewer patients

[20]. Our approach for the detection of safety underreporting demonstrates the potential of

Bayesian data analysis to address secondary questions arising from clinical trials such as quality
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assurance or trial monitoring. In clinical QA, where the majority of business problems are

anomaly detection or risk assessment, there is a good rationale for exploring further applications

of Bayesian approaches, for example for identification of laboratory data anomalies in clinical

trials or in identifying issues with the number of unreported/reported protocol deviations by

clinical study sites.

While the presented method (used together with our machine learning approach [3]) provides a

robust strategy to identify AE underreporting, we acknowledge that in rare situations issues

could remain hidden. As the majority of activities for clinical trial safety quality oversight have

transitioned to be analytics-driven, ad-hoc and on-site quality activities (e.g. clinical investigator

site audits) should remain a back-up option for clinical quality assurance organizations.

4. Conclusion

In this paper, we presented our approach to quantify the risk of AE underreporting from clinical

trial investigator sites. We addressed a shortcoming of the model developed in our previous work

that was good at predicting the evolution of safety reporting in clinical studies but failed to

properly quantify the probabilities of quality issues.

The new model will be integrated into the current dashboard designed for quality leads. This is

part of a broader effort at our Research and Development Quality organization. Similar

approaches using statistical modeling and applied to other key risk areas (e.g. informed consent,

data integrity) are being developed in order to provide a full set of advanced analytics solutions

for clinical quality [3, 4, 17, 21]. We will also continue to explore the application of Bayesian

methods to other datasets generated during the conduct of clinical study for QA purposes (e.g.

protocol deviations).

However, in order to implement routine, remote, and analytics-driven QA operations, sponsors

and agencies will have to continue to collaborate and address challenges such as fit-for-purpose

IT infrastructures, automation, cross-company QA data sharing, QA staff data literacy and model

validation [17, 21, 22]. While the Covid-19 pandemic accelerated the adoption of new ways of

working and pushed innovation further, it also brought new rationales for a change in the QA

paradigm, i.e. where advanced analytics can help conducting QA activities remotely, detecting
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and mitigating issues faster, and ultimately accelerating approval and patient access of innovative

drugs.
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Tables

Clinical Investigator Site Count of observed AEs / patient Number of Patients

site 3001 (4, 1) 2

site 3002 (2, 2, 1, 2, 5, 5, 5, 1) 8

site 3003 (7,4) 2

site 3004 (3, 27 ,8) 3

site 3005 (12, 6) 2

site 3006 (2, 4) 2

site 3007 (5) 1

site 3008 (11, 4, 16, 31, 23, 23) 6

site 3009 (6, 6) 2

site 3010 (21, 10, 6, 17, 10, 26, 19, 18, 1, 18, 23,...) 17

Table 1. - Sample of input data (the whole set includes 125 sites and 468 patients)
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Clinical
Investigator Site

Mean AE
rate

Standard Deviation
AE rate

Rate tail
area

Count of observed AE /
patients

site 3030 0.473701 0.216417 0.00425 (0, 0, 0, 1, 0, 0, 0, 0, 0, 2)

site 3036 0.922081 0.471779 0.01250 (0, 1, 0, 1)

site 3037 1.330058 0.511819 0.02120 (1, 0, 1, 3, 0)

site 3046 1.599186 1.191997 0.03470 (0)

site 3035 2.262649 1.036725 0.05175 (0, 3)

site 3032 2.265597 1.030830 0.05235 (3, 0)

site 3018 2.627988 0.806107 0.06575 (6, 1, 2, 0)

site 3039 2.727528 1.125527 0.06990 (3, 1)

site 3038 2.865798 0.821121 0.07370 (4, 1, 3, 2)

site 3002 3.047176 0.606155 0.08005 (2, 2, 1, 2, 5, 5, 5, 1)

site 3001 3.212805 1.227723 0.08990 (4, 1)

site 3112 3.212392 1.234220 0.09110 (5, 0)

site 3028 3.387632 1.756067 0.09915 (2)

site 3006 3.675763 1.323994 0.10695 (2, 4)

site 3105 4.267382 1.927275 0.13710 (3)

Table 2 - This table displays a sample of the model output with the lowest rate tails areas, together with

summary statistics of the inferred AE reporting rates (out of 468 patients in 125 clinical investigator

sites). The lowest rate tail areas indicate sites with suspiciously low numbers of reported AEs, and QA

activities should be focused on them.
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Figures

Figure 1. Graphical representation of the adverse event reporting model

Fig. 2 - The rate tail area risk metric as a function of the posterior mean site rate.
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