
Error Rates in SARS-CoV-2 Testing Examined

with Bayesian Inference ∗

P. M. Bentley PhD

December 17, 2020

Abstract

A literature review on SARS-CoV-2 reverse-transcription polymerase
chain reaction (RT-PCR) is used to construct a clinical test confusion
matrix, including false positives and false negatives. A simple correction
of bulk test data results is demonstrated, then the required sensitivity and
specificity are explored for the societal needs. It is indicated that many
of the people with mild symptoms and positive test results are unlikely to
be infected with SARS-CoV-2 in some regions. It is also concluded that
current and foreseen alternative tests cannot be used to “clear” patients,
students or workers as being non-infected. Recommendations are given
that regional authorities must establish a programme to monitor opera-
tional test characteristics before launching large scale testing; and that
large scale testing for tracing infection networks in some regions is not
viable, but may be possible in a focused way that does not exceed the
working capacity of the competent expert laboratories.

1 Introduction

During the ongoing SARS-CoV-2 pandemic, there are understandable
calls for widely available testing procedures 1. The primary use cases
include:

1. Identifying infected people in the population as early as possible,
ideally before symptoms are exhibited, so that measures can be taken
to avoid spreading the disease to others.

2. Confirming SARS-CoV-2 infection in patients exhibiting symptoms,
so that they can be isolated, treated and/or studied separately from
patients with other illnesses.

3. Ruling out SARS-CoV-2 infection, allowing a person to avoid isola-
tion when exhibiting the milder symptoms shared with other infec-
tions of the respiratory tract.

∗This preprint was submitted and has not yet been peer-reviewed.
1Developing and deploying tests for SARS-CoV-2 is crucial. The Economist. 2020 19th

March
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Infected Healthy
Test Negative fn tn
Test Positive tp fp

Table 1: Confusion matrix for a generic test.

A common, moderate cost and efficient SARS-COV-2 test is based
around the reverse-transcription polymerase chain reaction (RT-PCR)
method which is widely referred to — perhaps optimistically — as the
“gold standard”. Indeed, efforts to validate serological testing [1] and
CT-based methods [2] used RT-PCR results in this way, as a reference
of “confirmed cases” by which to measure other testing methods. It is a
relatively simple test, requiring a swab sample that is sent to the lab for
chemical amplification.

Use case 1 would ideally involve a large number of tests being per-
formed on the general public, and a number of governments have expressed
intention to do this at scale. Use cases 2 and 3 are often performed on
admission to a clinical facility. Use case 3 is particularly important for
critical workers in society, allowing them to return to their duties without
fear of spreading the disease [3] and became a deployed strategy in some
regions (e.g. the UK) early in the pandemic.

These use cases, and the policies of many governments, assume low
error rates from the tests. The reality of any test, unfortunately, is that
errors do occur. Moreover, whilst the statistics of testing is a core com-
ponent of undergraduate scientific education, because even seasoned ex-
perts occasionally make statistical mistakes it is worth expending a little
patience to cover the groundwork before tackling the main body of the
problem.

1.1 Test Confusion Matrix

A confusion matrix conveniently encapsulates the reliability characteris-
tics of a test, shown in table 1. One column holds the positive condition
(in this case, “Infected”) and the other column holds the negative (in this
case, “Healthy”). Each row corresponds to a test result, either positive or
negative. Thus one sees that the confusion matrix is a table of test results
that are true positive (tp), true negative(tn), false positive (fp), and false
negative (fn). These numbers could be given as tallies of results, or they
could be normalised so that each column sums to unity and each matrix
element represents a probability of that test result being given for a given
infection status.

The statistical uncertainty of the results derived from tests often fol-
low the well-known Poisson statistics, which states that the estimate of
the measured quantity is the mean of the normally-distributed samples,
and the statistical width (σ) gives the uncertainty and is given by the
square root of the counts of the measured quantity. σ is widely used in
physics, but frequently in medicine one is interested in the 95% statistical
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confidence level, which is ∼ 1.96×σ, and so we have for the estimate and
the radius of the 95% confidence error range:

pest =
npos

n
(1)

err95%(pest) ≈ 1.96

n
√
n

√
nposnneg (2)

i.e. the estimate pest has an error range (pest − err) – (pest + err) with
95% confidence.

The test characteristics are often presented as well-known parameters.
The sensitivity, se, or true positive rate (TPR) measures how much of the
“infected” column is correctly identified. It is given by:

se =
tp

tp + fn
(3)

and the specificity, sp, or true negative rate (TNR) measures how much
of the “healthy” column is correctly identified. It is given by:

sp =
tn

tn + fp
(4)

These are related to the false negative rate (FNR) and false positive
rate (FPR) by

se = 1− FNR (5)

sp = 1− FPR (6)

The false positive and false negative rates are to some degree tuneable
by the test designer. This can be visualised as a “gain” control on an am-
plifier. Turning up the gain makes it more likely to catch fainter, positive
signals, (false negatives decrease). The “gain” here in the amplification
process is therefore correlated very strongly with the statistical sensitivity.
However, increasing sensitivity therefore increases the noise (false positive
rate increases). Conversely, turning down the gain reduces the noise (false
positive rate goes down) but makes it more likely that you miss weaker
signals of interest (false negative rate increases).

Test designers therefore try to balance these two effects to minimise
risk. ROC curve analysis [4] can be used to tune test procedures quite
accurately for a given prevalence. Including cost/benefit analysis in the
test design [5] allows one to adjust the sensitivity of the test relative to
the disease prevalence, which was summarised very well by Kaivanto [6].
As a side note, it seems that some batches of false positive results are
likely to be related to incorrect sensitivity for a particular use case, and
not simply statistical anomalies or quality issues.

The confusion matrix allows us to write two simultaneous equations
for the situation where a number of tests are used in the field. Let us imag-
ine that in a testing programme, Np of these tests return positive results,
and Nn return negative results. How many are actually infected? Let us
further imagine that, before launching the mass testing programme, one
took the essential step of fully mapping the confusion matrix with a thor-
ough clinical study (currently lacking for SARS-CoV-2 testing). One can
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then establish, from the test result totals, the actual number of infected
patients Ni. We must first eliminate the number of non-infected or clear
patients Nc from

Np = Nifn +Nctn (7)

Nn = Nitp +Ncfn (8)

One can then calculate the correct number of patients infected with SARS-
CoV-2 using the following simple equation:

Ni =
Nptn −Nnfp
tptn − fpfn

(9)

1.2 Bayes’ Theorem and Base Rate Fallacies

If one would like to use a test to diagnose a patient, or to rule out possible
infection so that they can be safely released back into society or a work
function, the confusion matrix alone is insufficient. One must also consider
the base rate, or prevalence, in the context of the test. For example, a test
that has a 90% sensitivity incorrectly clears 10% of those infected. If we
imagine an enclosed group, for example a jail, filled with sick patients in
their beds, it is intuitive that any test results coming back negative from
symptomatic patients in that group should be treated with caution.

Conversely, if one used a test that has a 90% specificity, it still returns
a false positive 10% of the time. If one then attempts to screen millions
of citizens in an attempt to find individuals with a disease afflicting one
in a thousand people, then one intuitively knows that the infected cases
will be buried amongst hundreds of thousands of false positive results.

Ignoring the prevalence of the phenomenon for which one is testing
is a well known statistical error called the base rate fallacy. Taking into
account the base rate, and the confusion matrix, one can introduce combi-
nations of probabilities to study common scenarios. For example, whether
or not a person has symptoms, and is tested, what is the probability that
the person is actually infected, considering that there exist alternative di-
agnoses with similar symptoms, and that some patients remain symptom
free?

The key to tackling these scenarios rapidly, objectively, and conclu-
sively, is Bayes’ theorem. This can be written in the discrete context of
probability functions of Boolean variables of disease evidence e. The ev-
idence e = 1 could be a positive test result, or exhibition of symptoms.
The disease status d = 1 indicates infection, and d = 0 indicates the lack
of infection. In these terms, Bayes’ theorem is:

p(d|e) =
p(e|d)× p(d)

p(e)
(10)

p(d|e) is the conditional probability that we are trying to establish:
given the evidence e, what is the probability that the person has the
disease? In maths and physics, this is known as the “posterior”, and in
the medical community it is known as the “posttest” probability.

p(e|d) is the likelihood of obtaining evidence e, assuming that the
patient has the disease. If the evidence is a test result, and one took
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all the infected patients who had the disease, it is the fraction of those
patients that would be expected to return a positive test result: it is the
true positive rate of the test. If evidence e is a symptom of the disease,
then p(e|d) is the fraction of infected patients who exhibit that symptom,
based on expert clinical studies of the disease.

p(d) is the (“prior”) probability, or base rate, of any individual being
infected, irrespective of the evidence e. In the medical community, it is
called the “pretest” probability.

Lastly, p(e) is the (“marginal”) likelihood of obtaining evidence e con-
sidering both that the patient may have the disease or may not.

One can immediately see, then, why an impressive-sounding test like-
lihood p(e|d) leads people into the base rate fallacy, i.e. forgetting to
normalise by multiplying with the base rate p(d) and dividing by the
marginal term p(e). It is also the current situation facing many with RT-
PCR test results, compounded by the use of laboratory rates of sensitivity
and specificity rather than those in the field.

The marginal term has one final noteworthy utility, that is to remove
the effect of time bracketing of illnesses, symptoms, or statistics gathering.
Some rates are given per day, per week, or per year, and the marginal
allows us to compare fairly disparate definitions of rates.

The marginal term p(e) is conveniently expanded using the law of total
probability:

p(e) = p(e|d)p(d) + p(e|¬d)(p(¬d)) (11)

= p(e|d)p(d) + p(e|¬d)(1− p(d)) (12)

where p(e|¬d) is the probability of obtaining a false test result e from a
non-infected patient. This demonstrates the method of logical combina-
tions of probabilities. If we imagine events P and Q that occur indepen-
dently, with probabilities p(P ) and p(Q) respectively, then:

• p(P ANDQ) = p(P )× p(Q)

• p(P ORQ) = p(P ) + p(Q)

• p(NOTP ) ≡ p(¬P ) = (1− p(P ))

Bayes’ theorem can be applied sequentially to multiple scenarios, where
the “output” posterior probability of one assessment p(d|e) is used as the
“input” prior probability p(d) for a subsequent test, because combining
multiple scenarios with logical AND is simply multiplication.

1.3 Testing and Policy

Despite being refuted by clinical expert input [7], at the time of writing
the strategy of seeking a single negative RT-PCR test result to indicate
an absence of infection remains in use in some areas. In Sweden, for ex-
ample, the public health agency — Folkhälsomyndigheten — states 2 that
“Testing people with symptoms of covid-19 who work in socially impor-
tant activities to be able to rule out disease is important.” Which it is.

2Folkhälsomyndigheten, https://www.folkhalsomyndigheten.se/smittskydd-
beredskap/utbrott/aktuella-utbrott/covid-19/testning-och-smittsparning/smittsparning/.
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The organisation then provides links, via another organisation, identify-
ing which jobs fall into this category. It is then up to the regional powers
to implement guidelines. At the time of writing, people do not have to
isolate after a negative test result once symptoms disappear or waiting
for 7 days 3. This strategy is a mistake because it ignores false negatives:
patients who are infected with SARS-CoV-2 but for whom the test result
is incorrect. It would be expected to reduce the R rate of the disease (the
mean number of infected people per infection) but given the current death
rates perhaps it is time to admit that this isn’t working.

Meanwhile, the advice from the United States Centers for Disease Con-
trol and Prevention stated 4 for a significant part of 2020 that a “positive
test result means you have an infection”. The published threshold for de-
tection at 95% confidence by one major supplier of SARS-CoV-2 test kits
is 136 copies/mL 5, which evidently leads to confidence in the test results,
and by which clinical guidelines have been written that assert laboratory
test specifications as being representative of operational specifications [8].
These both assume, perhaps prematurely, a negligible operational rate of
false positives: patients who are healthy and for whom the test result is
incorrect.

During the writing of this article, the CDC have correctly updated
their guidelines 6. Whilst they still state that a positive test result “indi-
cates that RNA from SARS-CoV-2 was detected, and therefore the patient
is infected with the virus and presumed to be contagious” there are dis-
claimer clauses encouraging clinical observations and context for positive
test results, and that negative test results do not rule out SARS-CoV-2.

The UK guidance, from the country’s National Health Service, cur-
rently specifies 7 that a person testing negative does not need to self iso-
late if “everyone you live with who has symptoms tests negative”, amongst
other criteria. However, with a false negative rate of 35%, which is rep-
resentative, just over 1 in 10 infected households would return negative
results for a couple, and more than 1 in 100 would return all negative for
a family of four. The UK advice specifies further mitigating measures,
including that a person who feels sick should still isolate at home, but it
does not offer guidelines as to how long.

In contrast, the French labour ministry specifies a fairly rigorous quar-
antine protocol 8: that anyone encountering a contact with an elevated

3Region Sk̊ane, https://www.1177.se/Skane/sjukdomar--besvar/lungor-och-
luftvagar/inflammation-och-infektion-ilungor-och-luftror/om-covid-19--coronavirus/covid-19-
coronavirus/#section-115771

4Centers for Disease Control and Prevention, https://www.cdc.gov/coronavirus/2019-
ncov/cases-updates/previous-testing-in-us.html

5Quest Diagnostics SARS-CoV-2 RNA, Qualitative Real-Time RT-PCR (Test Code 39433)
Package Insert; 2020.

6Fact Sheet For Patients; 2020, Centers for Disease Control and Preven-
tion (CDC), https://www.cdc.gov/coronavirus/2019-ncov/downloads/Factsheet-for-Patients-
2019-nCoV.pdf.

7https://www.nhs.uk/conditions/coronavirus-covid-19/testing-and-tracing/what-your-
test-result-means/.

8COVID-19: Gestion des cas contact au travail Min-
istère du Travail, de l’Emploi et de l’Insertion, https://travail-
emploi.gouv.fr/IMG/pdf/mteifichescovidgestioncascontact3112020ok.pdf, 2020

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.17.20248402doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.17.20248402
http://creativecommons.org/licenses/by-nc-nd/4.0/


Test Result Infected Healthy
Negative 0.35 (0.32–0.38) 0.83 (0.77–0.90)
Positive 0.65 (0.62–0.68) 0.17 (0.10–0.23)

Table 2: Confusion matrix for the RT-PCR test using data from hospital-
administered tests of more than 1000 patients, reported by Ai et al. The ranges
in parenthesis correspond to the 95% confidence intervals.

risk should isolate for 7 days, then take a test. A positive test result re-
quires 7 further days of isolation. Even with a negative result, a person
with symptoms continues isolation until 48 hours after the fever subsides.
The public health agency states that in the case of a negative test the pa-
tient should inform the doctor and respect their advice 9. This is a sensible
improvement over the Swedish policy, leaving the possibility open for ex-
pert input to rule out false negatives, but it carries possible inconsistency
over a range of interpretations and diagnoses.

2 Existing Literature

It was identified at the early stages of the pandemic that RT-PCR tests
used outside the laboratory setting were underwhelming when used as a
reference for other clinical testing options [2]. The confusion matrix for
RT-PCR tests relative to chest x-ray combined with diagnosis from a qual-
ified medical expert is summarised in table 2. One should note that those
RT-PCR tests were performed in a clinical setting by a trained medical
worker. For home testing kits, drive-thru facilities, or similar, where the
patient or a family member collects the samples, and the processing of
the kits is done at large scale, one should anticipate additional adverse
effects.

2.1 False Negatives

The data from Ai reveal that more than 1/3 of infected people will return
a negative result and return to their usual routine for their region or
workplace, running the risk of infecting others. False negatives can occur
when not enough virus material is present in the sample, either due to the
biological response of the patient or the sampling. They could also occur
due to incorrect processing of the sample. The principal danger with false
negatives is that an infected patient is considered safe and potentially
infects others. There is evidence of multiple false negatives that proved
challenging and time consuming to diagnose [9].

It appears that there is some time dependence as one would expect [10].
Virus shedding is extremely low at the moment of infection, the sensitivity
first passes above 50% around 4-5 days after exposure, reaching a peak
at 8 days, before decreasing slowly. This goes some way to explain the

9https://solidarites-sante.gouv.fr/IMG/pdf/fiche test positif.pdf.
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challenges faced by multiple negative test results in a patient admitted
for hospital care, for example [9].

Even at the peak of sensitivity, one could expect false negative rate
of 21%. After 16 days, the sensitivity drops back below 50% again. Of
course, at some point the lack of measurable virus presence transitions
from a “false negative” to a status of recovered health. Many regions
assume a 14 day quarantine period, and a 14 day reporting statistical
window, which is compatible with this curve.

There has been an effort to address the issues that are the primary
subject of this paper [8]. Whilst Watson et al use a sensitivity of 71%,
which appears consistent with the previously mentioned literature, their
assumed specificity of 95% is based on laboratory test data. Even if
Watson’s assumption is correct, the results of the present study remain
valid. Nonetheless, It appears that the confusion matrix of table 2 from
Ai et al ’s study [2] is still the best measure of the characteristics of RT-
PCR testing for SARS-CoV-2 in the field. Moreover, it will still be shown
in section 4.1 that their assumption, and the USA specificity reverse-
engineered in section 3.3, still lie below what is needed for the use cases
of the RT-PCR test.

2.2 False Positives

The “Healthy” column of table 2 shows the specificity implied by the Ai
et al data. Almost 1/5 of healthy people would be incorrectly identified
as infected.

False positives could occur with contamination and incorrect process-
ing of the sample, amongst other mechanisms [11]. Large “batches” of
false positives have been tied to specific test kits 10, and how they were
used 11 (although, as part of that explanation it appears that there is a
misunderstanding of false negative rates). A major risk scenario is admit-
ting a sick patient, who tests positive, into a SARS-CoV-2 ward when they
actually have a different illness [12]. Fortunately in that example a clinical
assessment intervened and the patient was separated from SARS-CoV-2
patients pending further investigation.

False positives are less dangerous in wide screening settings — unlike
Kafkaesque drug testing scenarios, for example — but false positives raise
anxiety and carry social and economic costs that spread into the com-
munity around those tested. There is a risk that a false positive result
creates an understandable yet mistaken belief in possessing some immu-
nity, leading some to potentially place themselves and their close contacts
at increased risk of infection. False positive test results might also affect
plans for vaccination: if a significant fraction of positively-tested patients
have no detectable antibody level, this might be misunderstood as a loss
of immunity rather than incorrect test results. The same applies for anec-
dotal stories of people who report having had mild SARS-CoV-2 in spring,

10Public Health Agency of Sweden, Folkhalsomyndignheten,
https://www.folkhalsomyndigheten.se/smittskydd-beredskap/utbrott/aktuella-
utbrott/covid-19/testning-och-smittsparning/smittsparning/

11https://www.bgi.com/global/company/news/false-positive-test-cases-in-sweden-
explained/
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Test Result Infected Healthy
Negative 0.35 0.83 – 0.974
Positive 0.65 0.17 – 0.026

Table 3: Working confusion matrix for the rest of this study. Specificity of 83%
will be called “pessimistic”, and 97.4% will be called “optimistic”.

then recovering, only to suffer a severe SARS-CoV-2 illness later in the
year. Some of those cases may be false positive test results.

More recent indications of false positive rates [11] indicate possible im-
provements may have been made, raising sensitivity and specificity above
95%. However, on further examination of the cited references (e.g. 12

[13]) one finds that these are again laboratory studies rather than clinical
studies. Mayers and Baker (footnote) admit that in the UK, the opera-
tional false positive rate is unknown. Most recently, Cohen et al reviewed
[14] the available literature and found two clinical studies reporting false
positives. The first by Albendin-Iglesias et al [15] indicates clinical false
positive rates of around 2.6% (CI 0.9-4.3%). The second by Katz et al
[16] reports the use of multiple tests and a clinical false positive rate of
7.1% with disruption to planned medical procedures as a result. Unfor-
tunately, in the Katz et al publication it does not appear that full a data
breakdown of cases and test results is given, with which to estimate the
confidence interval.

It will be shown in section 3.3 that the clinical specificity in the USA
is generally above 91% (i.e. the false positive rate is below 9%).

2.3 Working Confusion Matrix

The working confusion matrix for this study use the sensitivity data im-
plied by Ai et al without modification. Regarding the clinical specificity,
there appears to be more variation. One has a false positive rate of:

• 16.7% (CI 10–23%) from Ai et al [2]

• <9% from section 3.3

• 7.1% from Katz et al [16]

• 2.6% (CI 0.9–4.3%) from Albendin-Iglesias et al [15]

Henceforth, two figures will be generally given, as a range. The pessimistic
is the data of Ai (≡ P−#), and the optimistic is the data of Albendin-
Iglesias (≡ O−#).

2.4 Priors

Once one has established a confusion matrix for the test, one must then
estimate the prior, or pretest, probability of being infected (from the

12Mayers C, Baker K. GOS: Impact of false-positives and false-negatives in the UKs COVID-
19 RT-PCR testing programme; 2020. Paper prepared by the Government Office for Science
(GOS) for the Scientific Advisory Group for Emergencies (SAGE).
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prevalence) and some conditional probabilities of shared symptoms with
other illnesses such as colds and influenza.

One therefore requires answers to the following questions:

1. What is the prevalence of SARS-CoV-2, or what is the probability
of being infected by SARS-CoV-2 within a given time window (e.g.
14 days)?

2. Of those infected with SARS-CoV-2, how many have symptoms
matching colds or influenza?

3. Of those infected with SARS-CoV-2, how many have symptoms that
are unique indicators of SARS-CoV-2 infection?

4. What is the probability of being infected by colds or influenza within
a given time window (e.g. 14 days)

5. What is the probability of suffering serious symptoms (e.g. pneu-
monia, CT anomalies) whilst infected with colds or influenza?

Regarding the first point, the infection rate 1 is tracked by ECDC,
one assumes these data are mainly positive RT-PCR test results, and
at the time of writing places many western countries around 600 cases
per 100,000 citizens in a 14 day window at the autumnal “second wave”
peak in many western countries (= 0.006) 13. This is still a low rate, far
below the error rates of the test. The cumulative of the rate would be
proportional to the seroprevalence as studied by Eckerle and Meyer from
several hot-spots [17]. One sees at most a seroprevalence of just over 7% in
Sweden, and a somewhat higher level above 10% in the most infected areas
around Madrid and Geneva, after a few months of the disease spreading.
An average 14 day infection rate of 600 cases per 100,000 citizens seems
a reasonable working number.

Some of these other questions are partially answered by a study of
passengers aboard the cruise ship “Diamond Princess” [18]. Around 54%
(CI 50–57%) showed cold-like symptoms (q. 2) at the time of testing,
around 10% (CI 7–12%) required intensive care (q. 3) and 2.4% (CI 1–
4%) died (there is an error in their paper). These numbers are about to
be challenged, somewhat, in the next section.

In the absence of SARS-CoV-2, the symptoms of cough and fever
together would indicate influenza, but this correctly identifies influenza
around 2/3 of the time [19]. Clearly, the use of mild respiratory tract in-
fection symptoms is not reliable in distinguishing between SARS-CoV-2,
common colds and influenza.

Regarding more unusual mild symptoms, a recent study by Bénézit
et al [20] linked positive corona tests in France with hyposmia and hy-
pogeusia, with a sensitivity of 42% and specificity of 95%. However, both
of these symptoms are not specific to SARS-CoV-2. Indeed, a study
pre-SARS-CoV-2 by Henkin et al [21] reported around 61% of influenza
patients reporting anomalous taste and smell effects. Moreover, Bénézit’s
study filtered SARS-CoV-2 patients using RT-PCR results! This study
should be considered inconclusive in light of the present article, but a

13https://qap.ecdc.europa.eu/public/extensions/COVID-19/COVID-19.html#global-
overview-tab; 2020.
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similar study focussing on patients admitted to hospital and subject to a
more rigorous assessment would be most interesting.

There are some anecdotal links reported between dysgeusia and pos-
sible SARS-CoV-2 infection, where a metallic/sour taste is experienced
with the other common cold symptoms (including by this author, which
resulted in this article). Lozada-Nur et al [22] and Aziz et al [23] have
reviewed the literature on this topic and suggest that it may be a rather
common symptom, but unfortunately the these studies did not isolate
dysgeusia specifically and bundled all the sensory disturbances under a
common bracket. One therefore, regretfully, must ignore for now the
symptoms as a distinguishing factor.

Question 4 is answered by Eccles [24], and is in the range 2-5 per year.
The calculations in the present study will use 4/yr as a working number.
Assuming each cold/flu lasts on average a week, one can scale 4/yr to
compare with 14 day infection rates of SARS-CoV-2. This 14 day cold
rate (15%) is the prior that will be used for common colds and influenza.

Question 5 has been tracked by the US Centers for Disease Control
and Prevention (CDC) 14 where, for example, the 2017-2018 influenza
season resulted in a hospitalisation rate of 1.8% and a death rate of 0.14%
out of a total of around 44.8 million cases for influenza.

As mentioned earlier, a number of studies are using RT-PCR tests as
a “gold standard” reference, without referring to the matrix of confusion
as given in table 2. Therein lies our problem. For example, if the entire
Diamond Princess population of 3711 people were healthy, then a RT-
PCR test campaign will nonetheless return approximately P-619 or O-96
positive results (all false). In reality, 712 tests were returned positive,
indicating a non-zero infection rate on the ship, but the number of infected
people was clearly not 712.

If one were to look at country data, for example Sweden, the European
Centre for Disease Control (ECDC) reports 15 that 1000-2500 tests were
performed per week per 100,000 population. Assuming the number is at
the low end of that range, this is a total of 100,000 tests per week for
a population of ∼10 million. Were the whole population healthy, one
would record 16,667 false positives per week, which is P-2381 or O-371
false positives per day. This should be compared with the daily reported
case rate averaged over 14 days for the same period, i.e. 4007 cases per
day. Again we see that the actual infection rate is non-zero, but the false
positive rate of the RT-PCR test would suggest that the real infection
rate is lower than the reported cases.

3 Results

3.1 Correction of Diamond Princess Data

The pessimistic estimate of specificity is appropriate in this case, since
the work was done early in the pandemic and likely using similar RT-

14https://www.cdc.gov/flu/about/burden/2017-2018.htm
15https://qap.ecdc.europa.eu/public/extensions/COVID-19/COVID-19.html#global-

overview-tab; 2020.
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PCR kits to those used by Ai et al. Using the correction equation 9 and
the pessimistic specificity, we are solving the simultaneous equations:

2999 = 0.347Ni + 0.833Nc (13)

712 = 0.653Ni + 0.167Nc (14)

Solving yields the total number of infected patients aboard Diamond
Princess to be Ni = 192, and of which 37 patients required intensive
care (≈19%, CI 14–25%) and there were 9 deaths (≈5%, CI 2–8%). The
remaining 189 symptomatic patients were possibly suffering from a dif-
ferent infection spreading through the ship. The false positive rate may
also explain why passengers who had been isolated in their rooms were
reported to be testing positive — at the time the air ventilation systems
were hypothesised to be responsible for the transmission, but for some of
those patients it is likely that the false positive rate of the test is a more
plausible explanation.

Tabata et al [25] reported that 107 people were taken to a military
hospital after returning positive RT-PCR tests, and the fortunes of 104
patients were followed after 3 withheld consent. 33/104 were asymp-
tomatic at the end of the observation period; 43/104 had mild symptoms
and 28/104 had more “severe” symptoms. Of the 33 asymptomatic peo-
ple, 17 had abnormal radio-graphical lung findings which are linked with
SARS-CoV-2 diagnosis [2]. Of the 71 symptomatic patients with positive
RT-PCR results, 52 (73%, CI 63–84%) had abnormal lung radio-graphical
findings.

From these data, it appears that Tabata et al ’s study has captured at
least 52+17=69 of the ∼193 infected patients. These figures indicate that
symptom-free SARS-CoV-2 may be around 17/69=25% of cases (CI 14–
35%) — and conversely 75% (CI 65–86%) of patients exhibit symptoms,
in answer to q. 2.

3.2 Sweden

Likewise for the previous subsection, equation 9 yields Ni = 3336 infected
people per day, slightly lower than the official count of 4007. Swedish state
television reports daily intensive care admissions 16 at 190 per day at the
time of writing, which is 5.6% of cases. The current death rate in Sweden
is 19 per day, suggesting 0.6% mortality rate. These are much less intimi-
dating figures, with a broader social demographic, in comparison to those
of the cruise ship, though the Swedish figures are currently increasing
through an autumnal “second wave” and both hospitalisation and death
are delayed [26], by a median of 12 days and 19 days respectively.

Taking these delays into account, one should look at the case rates over
the time window of 2-4 weeks prior, at which time there were a corrected
Ni = 1147 infections per day at the start of November 2020, implying
that around 17% of patients will require intensive care, and a mortality
rate of approximately 1.7%. These are at the lower end of the range of
confidence of the Diamond Princess cases.

16https://www.svt.se/datajournalistik/corona-i-intensivvarden/
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If one uses the optimistic specificity of 97.4%, the corrected infection
rate increases to Ni = 5797 per day, higher than the official 4007 case
rate because of the false negative rate. Time shifting 2-4 weeks prior,
one obtains Ni = 4100, coincidentally similar to the official up-to-date
case rate. This would imply 4.6% require intensive care, and a mortality
rate of 0.5%. These seem anomalously low. There are a few possible
explanations:

• The test false positive rate in Sweden is much higher than the opti-
mistic rate (most likely explanation)

• Swedish medical care provides outlooks that are significantly supe-
rior to the those of the Diamond Princess population (unlikely)

• The virus in Sweden has evolved to a less dangerous form than ex-
perienced by those infected on Diamond Princess (unlikely)

From this, it seems logical to conclude that in Sweden the false positive
rate for RT-PCR is significantly higher than the optimistic rate, and closer
to the pessimistic values in section 2.3.

3.3 USA

The US CDC 17 reported 79,611,982 tests, of which 6,873,739 were pos-
itive. Applying equation 9 to these data with the pessimistic specificity
yields a negative Ni. This can only happen if the model false positive
data are too high for the USA. This is encouraging. Calculating Ni as a
function of specificity, one sees that Ni first becomes positive for a speci-
ficity just above 91%, suggesting that — in the USA at least — the false
positive rate is less than half of the pessimistic estimate in section 2.3,
and that the approach proposed by Watson et al [8] to use the laboratory
specificity rates of 95% are close to the operational parameters in that
case.

The optimistic specificity yields a solution Ni = 7, 659, 736, again this
is higher than the official count because it corrects for the false negative
rate.

3.4 Bayesian Inference

3.4.1 Summary of Priors

The accumulated prior probabilities from the first half of this article are
summarised in table 4. Note that the entry “Cold/flu Rate” combines
both the illness rate and the probability of exhibiting symptoms.

Armed with these data, one can proceed to examine scenarios such
as “If someone has a cough, and receives a negative RT-PCR test result,
how probable is it that they do not have SARS-CoV-2 and are able to
return to work?” or “If we test a person who appears healthy, and they
test positive, what is the probability of infection?”

17Centers for Disease Control and Prevention, https://www.cdc.gov/coronavirus/2019-
ncov/cases-updates/previous-testing-in-us.html.
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Parameter Symbol Value
14d Cvd Rate rc 0.006
14d Cold/flu Rate rf 0.15
Cvd Symptoms if infected sc 0.75
Cvd hospitalisation rate hc 0.19
Flu hospitalisation rate hf 0.018

Table 4: Parameters used in the Bayesian analysis. “Cvd” here denotes SARS-
CoV-2. rc of 0.006 corresponds to 600 cases per 100,000 people in a two week
period.

3.4.2 Corrected RT-PCR Test Curves

Taking into account the base rate and marginal probability, and using
the pessimistic specificity in section 2.3, the probability of a correct test
result vs the SARS-CoV-2 prevalence is shown in figure 1. There one can
see that, at a prevalence causing alarm (600 cases per 100k population),
the positive RT-PCR tests almost always yield incorrect results. The
negative curve, on the other hand, matches that of Woloshin et al, and
they have a good online figure for interested readers to explore the maths
with different levels of sensitivity and specificity.

These curves are “blind tests”: one tests everyone, irrespective of
symptoms or other factors. In the following sections, Bayesian inference
will be applied to combine sequentially the effects of reporting symptoms
in combination of taking tests for some scenarios of interest.

3.4.3 Mild Symptoms and Positive Test Result

The first example is a person from a social pool with 600 cases per 100k
population, who has only mild symptoms and either they are requested
to take a test because of employment, or they are worried. The analysis
is shown in table 5. Without a test, they have a 2% probability of being
infected by SARS-CoV-2, and with a positive test result this increases to
an 11–42% probability of being infected, depending on whether one uses
the pessimistic or optimistic false positive rate respectively. As a result,
58–89% of such people will believe they have corona without actually
having the disease. Any antibody studies performed on these individuals
later will be erroneous, because it is unlikely that any antibodies will be
detected.

3.4.4 No Symptoms and Positive Test Result

The next patient to consider is someone from a social pool with 600 cases
per 100k population who has no symptoms, but they take a test either
as a mass-screening project or because through a tracing system someone
they have contacted was identified as being positive for SARS-CoV-2.
The analysis is shown in table 6. Before testing, this person has a 0.1%
probability of being infected. After a positive test, they have a 0.6% –
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Figure 1: The probability of a correct RT-PCR test result, for both positive and
negative test results, vs the prevalence of SARS-CoV-2 in the test pool per 100k
population. Two curves are given for each, where (P) indicates a pessimistic
17% false positive rate, and (O) indicates optimistic 2.6% false positive rate.
At the time of writing, many western countries are experiencing a prevalence of
0.6% (600 cases per 100k population in a 2 week period).

Description Posterior Likelihood Prior Marginal
Baseline / prior 0.006
+ Cold/flu symptoms 0.0286 0.754 0.006 0.16
+ Positive test (P) 0.11 0.653 0.0286 0.181
+ Positive test (O) 0.42 0.653 0.0286 0.0439

Table 5: Sequential Bayesian inference of a positive SARS-CoV-2 test on a
person with cold/flu symptoms, assuming 600 cases per 100k population. The
final, posterior probability of SARS-CoV-2 infection is 11% with the pessimistic
false positive rate, and 42% with the optimistic number.
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Description Posterior Likelihood Prior Marginal
Baseline / prior 0.006
+ No symptoms 0.00148 0.246 0.006 0.995
+ Positive test (P) 0.00580 0.653 0.00148 0.167
+ Positive test (O) 0.0360 0.653 0.00148 0.0269

Table 6: Sequential Bayesian inference of a positive SARS-CoV-2 test on a
person with no symptoms, assuming 600 cases per 100k population. The final,
posterior probability of SARS-CoV-2 infection is 0.6% with the pessimistic false
positive rate, and 4% with the optimistic false positive rate.

Description Posterior Likelihood Prior Marginal
Baseline / prior 0.006
+ Severe symptoms 0.294 0.192 0.006 0.0039
+ Positive test (P) 0.620 0.653 0.294 0.310
+ Positive test (O) 0.913 0.653 0.294 0.211

Baseline / prior 0.006
+ Severe symptoms 0.294 0.192 0.006 0.0039
+ Negative test (P) 0.145 0.347 0.294 0.690
+ Negative test (O) 0.129 0.347 0.294 0.789

Table 7: Sequential Bayesian inference of a positive or negative SARS-CoV-2
test result from a person admitted to hospital with severe symptoms, assuming
600 cases per 100k population. The final, posterior probability of SARS-CoV-2
infection is 62–91% for the positive test result, and 13–15% for the negative test
result, depending on whether one is pessimistic or optimistic regarding false
positives, respectively.

4% probability of being infected. This person also represents a spurious
data point in any future research, since they most likely do not possess
any immunity.

3.4.5 Severe Symptoms

This patient from a social pool with 600 cases per 100k population is
admitted to hospital complaining of severe symptoms and are immediately
given a test. The analysis is shown in table 7. Before testing, the patient
has a 29% probability of being infected. If the test is positive, they have
a 62–91% probability of being infected (depending on the false positive
rate), and if negative they have a 13–15% probability of being infected.

3.4.6 Exposed Person No Symptoms

This person was taken from an outbreak pool where 2/3 of people are
infected. The analysis is shown in table 8. Before testing, the patient
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Description Posterior Likelihood Prior Marginal
Baseline / prior 0.666
+ No symptoms 0.361 0.246 0.666 0.450
+ Negative test (P) 0.190 0.347 0.361 0.658
+ Negative test (O) 0.167 0.347 0.361 0.658

Baseline / prior 0.666
+ No symptoms 0.361 0.246 0.666 0.450
+ Positive test (P) 0.689 0.653 0.361 0.342
+ Positive test (O) 0.934 0.653 0.361 0.252

Table 8: Sequential Bayesian inference of a SARS-CoV-2 test on a person taken
from a social group with high prevalence and no symptoms. The final, posterior
probability of SARS-CoV-2 infection is 17–19% for a negative test result, and
67–93% for a positive test result, depending if one assumes a pessimistic or
optimistic false positive rate, respectively.

has a 36% probability of being infected. After a negative test result,
they have a 17–19% probability of being infected, depending on the false
positive rate. Almost 1/5 of the “cleared” patients will actually have the
infection. On the other hand, a positive test result indicates a 69–93%
probability of being infected for pessimistic and optimistic false positive
rates respectively.

3.4.7 Exposed Person With Symptoms

This person with symptoms was taken from an outbreak pool where 2/3
of people are infected. The analysis is shown in table 9. Before testing,
the patient has a 91% probability of being infected. After a negative test,
they have a 77–80% probability of being infected. This is perhaps the most
challenging scenario. This person could be “cleared” by the test under
some current policy scenarios. Keeping them quarantined protects others,
but 20–23% of the patients are expected to be clear of SARS-CoV-2 and
holding them back puts them at risk of infection.

On the other hand, after a positive test, they have a 97–99.5% proba-
bility of being infected.

4 Discussion

It is not a new result that low prior probabilities have a significant impact
on posterior probabilities, but nonetheless the worked examples should be
a guide to informed decision making for likely scenarios.

At low prevalences, even if the test result is positive and one assumes
that the false positive rate is at the most optimistic end of the range,
whether the patient has symptoms of respiratory tract infection is the

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.17.20248402doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.17.20248402
http://creativecommons.org/licenses/by-nc-nd/4.0/


Description Posterior Likelihood Prior Marginal
Baseline / prior 0.667
+ Symptoms 0.905 0.754 0.667 0.550
+ Negative test (P) 0.798 0.347 0.905 0.393
+ Negative test (O) 0.772 0.347 0.905 0.407
Baseline / prior 0.667
+ Symptoms 0.905 0.754 0.667 0.550
+ Positive test (P) 0.974 0.653 0.905 0.607
+ Positive test (O) 0.995 0.653 0.905 0.593

Table 9: Sequential Bayesian inference of a negative SARS-CoV-2 test on a
person with symptoms taken from an infected group with high prevalence. The
final, posterior probability of SARS-CoV-2 infection is 77–80% with a negative
test, and 97–99.5% with a positive test, depending on a pessimistic or optimistic
assumed false positive rate, respectively.

differentiating factor, taking the infection probability from 3.6% to 42%,
as shown in tables 5 and 6. Nonetheless, more than half of those testing
positive and having mild symptoms will still not be infected! Scientific
studies using these patients cannot be relied upon, unless some other
expert input has been given in the diagnosis. Such a clinical diagnosis
might include, for example, taking into account contact with a person
who has exhibited more severe SARS-CoV-2 symptoms and had a positive
test.

At the other end of the prevalence scale, one sees that in a group with
2/3 assumed infection prevalence, a negative test result with no symptoms
carries just less than 20% risk of infection, whilst mild symptoms with a
negative test result indicates just under 80% infection risk. Once again,
it is the presence of symptoms that affects the probabilities more than
the test result alone, and knowing that there is a delay of almost a week
before the onset of symptoms those patients should still be quarantined.
For positive test results in this pool, the presence or not of symptoms
becomes irrelevant.

There are anecdotal stories of people being offered repeat tests in order
to reduce the error rate for the combined results. For example, let us
assume that the false negative rate is 35% and the first test is negative
(ignoring prevalence and symptoms). The test is repeated and it is also
negative. The assumption at this stage is that the false negative rate is
0.35 × 0.35 = 0.123. This is incorrect, because the false negative rate is
partly a systematic error due to the virus shedding mechanics [10] — the
two tests are not stochastically independent. The same is true in the effort
to guard against false positives: if the test kits both come from the same
batch, are processed by the same people, in the same facility, using the
same “black box” procedure, then they are unlikely to be stochastically
independent and the errors in both tests are correlated. It is a standard
procedure in science and engineering that the validation of any result
be truly independent, for this reason. It would take an expert eye with
experience in RT-PCR to look at the fluorescence vs cycle curves to guard
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against the false positives in this scenario, which appears to be the key to
Australia’s successful testing programme (see next section).

From figure 1, one might think that as the disease spreads the positive
test results will become more reliable. Whilst that is true, bear in mind
that, in February 2020, the total adult critical care capacity of England
was 4122 beds 18. If one takes the ICU rate, computed for Sweden at
around 17%, and from figure 1 a prevalence of 5,000 – 20,000 cases per
100,000 population (=2.7–10.8 million cases in the UK) then ∼460,000 –
1.8 million ICU admissions would be needed for half of the positive test
results to be accurate in a general mass testing campaign. This does then
beg the question as to what kind of test characteristics one needs?

4.1 Alternatives and Required Test Characteris-
tics

There are two primary use cases:

1. Reliably identifying infected people in the low prevalence population
to isolate and reduce the spreading of the disease.

2. Reliably clearing non-infected people, in high prevalence settings, to
allow them to escape from the high risk situation, or to return to
essential work or education.

The needs for use case 1 is answered in figure 2, where one sees that
a false positive rate needs to be far below the prevalence — the intuitive
result. A false positive rate of < 0.001 is needed to identify positive cases
reliably, which corresponds to a specificity of > 99.9%.

Such figures are not inconceivable. Australia has performed a total
of 9 million tests, of which a total of 1% returned positive results, which
implies that under the right conditions the specificity of RT-PCR can be
excellent. Indeed, informal commentary from an Australian scientist 19

explains why a black-box approach to test protocols with arbitrary thresh-
olds will produce erroneous results, whereas an expert in RT-PCR testing
would use their judgement and experience in running the apparatus. The
variation in operational test characteristics in section 2.3 might be a reflec-
tion of our attempts to scale technical laboratory work beyond the hands
of scientific competence, or issue performance targets and instructions to
“take shortcuts”, in order to deal with an unusually high workload.

Question 2 is answered in figure 3. In this case, a high prevalence of
0.6 is used. One can see that a false negative rate of < 0.05 is needed
to clear non-infected people reliably, a sensitivity of > 95%. Given the
time dependence of the virus shedding reported by Kucirka et al [10], such
performance characteristics are inconceivable for RT-PCR.

Recent discussions in the literature have since turned to alternatives
to RT-PCR. It is tempting, based on Ai’s study [2], to reach the uncom-
fortable conclusion that CT and clinical diagnosis offer a more reliable

18Critical Care Bed Capacity and Urgent Operations Cancelled 2019-20 Data; 2020, NHS,
https://www.england.nhs.uk/statistics/statistical-work-areas/critical-care-capacity/critical-
care-bed-capacity-and-urgent-operations-cancelled-2019-20-data/

19Mackay IM. The false-positive PCR problem is not a problem; 2020.
https://virologydownunder.com/the-false-positive-pcr-problem-is-not-a-problem/
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Figure 2: With even a relatively high prevalence of 600 cases per 100k popu-
lation, these curves show that a false positive rate of < 0.001 is needed for a
useful test, i.e. a specificity of > 99.9%. This result is not strongly affected by
the true positive rate, as shown by the two curves indicating a perfect test or
with the true positive rate of 0.65 as used in the rest of this paper.

Figure 3: In an extremely high prevalence of 0.6 (60k cases per 100k population)
such as in a hospital, jail, or some other sealed outbreak cluster, these curves
show that a false negative rate of < 0.05 is needed for a useful test to rule out
infection, i.e. a sensitivity of > 95%. This result is not strongly affected by the
specificity, as shown by the two curves indicating a perfect test (specificity = 1)
or with the false positive rate of 0.17 (specificity = 0.83) as used in the rest of
this paper.
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protocol than RT-PCR, a position that is refuted by Hope et al with
good reasoning [27].

Antigen tests, whilst cheaper and faster than RT-PCR, are less sensi-
tive and perhaps comparable in specificity when compared using RT-PCR
as a gold standard [28]. This makes them useful for mass testing to esti-
mate prevalence, but little else.

One must face the possibility that, in the short term, and based upon
the mathematical nature of the problem, it is unlikely that a test exists
that can reliably:

• Clear non-infected people from a pool of potentially infected people,
given the low sensitivity in the early stages of infection (e.g. clearing
staff and patients at medical facilities)

• Identify and isolate infected people who are pre-symptomatic (e.g.
finding people early before they infect others)

4.2 Recommendations

In future clinical studies, general at-scale RT-RCP testing alone, and tests
with similar characteristics, should not be used to establish the ground
truth SARS-CoV-2 cases. It is imperative that a more reliable diagnostic
method is used, before other correlations and effects are calculated. Re-
stricting studies to patients with hospital admissions and thorough expert
diagnosis, using dedicated labs with testing experts, is likely to yield more
reliable results than the non-expert, mass-testing protocols that are being
used in some geographical regions.

RT-RCP tests should not be used generally to “trace” infections through
individual members of the public. Whilst some countries may succeed at
this (e.g. Australia), it depends entirely on the bandwidth of expert labs.
Scaling mass testing outside expert workers [29, 30, 31] appears to be
expensive and futile. Governments would do better in this way:

Step 1 Put in place a rigorous and dedicated expert group to monitor
operational specificity and sensitivity of tests

Step 2 Use these to correct data rates via equation 9 to monitor the
effectiveness of the strategy to inhibit the spread of the disease in
real time

Step 3 Focus the tracing efforts at targeted, critical sub-populations (e.g.
medical workers, care homes) for outbreak clusters using an expert
laboratories and teams dedicated to the task.

These suggestions may prove less expensive and produce more reliable
results.

Negative test results (whatever the test) should not be used to “rule
out” SARS-CoV-2 infection of those with symptoms or significant prob-
ability of being infected unless the test false positive rate is significantly
below the prevalence. If a person exhibits symptoms of a respiratory tract
infection, they should treat it with the respect it deserves and isolate them-
selves from society as best they can, for a duration of time based on the
advice of a medical professional in their geographic location. Whether or
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not the infection is SARS-CoV-2, this will prevent the spread of SARS-
CoV-2 and also minimise the spread of other infections that represent an
enormous cost. In addition to the economic impact of the common cold,
one should not forget that, globally, influenza kills millions of people each
year. Such a general, isolation strategy has the added benefit of driving
the circulating viruses towards lower virulence via natural selection. One
can but hope that the days of sick employees demonstrating their commit-
ment by attending work (and marketing campaigns for over-the-counter
medication targeted as such) are behind us.

5 Conclusions

The confusion matrix of RT-PCR tests for SARS-CoV-2 has been re-
viewed. A simultaneous equation correction procedure for estimating the
true infection rates was demonstrated for two examples: the “Diamond
Princess” cruise ship and the country of Sweden in Autumn 2020, provid-
ing corrected estimates for hospitalisation and mortality rates.

Discrete Bayesian inference was then demonstrated for a few likely
scenarios.

It has been demonstrated that RT-PCR testing is not reliable for three
important use cases:

• RT-PCR alone cannot reliably identify infected patients in a low
prevalence social situation.

• RT-PCR alone cannot reliably clear patients as being non-infected,
if they have symptoms and come from a high prevalence social situ-
ation.

• RT-PCR alone cannot reliably filter patients for subsequent medical
studies such as antibody tests, symptom correlations studies, or new
test candidates.

The results of this study are not entirely discouraging. Recent concern
over the lifetime of SARS-CoV-2 antibodies, occasional anecdotes about
repeat infection, and the need for repeated vaccination, probably need to
be adjusted to take into account that many patients identified as recovered
from SARS-CoV-2 who do not show measurable levels of SARS-CoV-2
antibodies are possibly associated with false positive test results in some
regions (58–89% of people with mild symptoms and positive RT-PCR test
results). This may lead to real world antibody retention from vaccines
exceeding initial expectations.
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