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Abstract 
 
Background: In the era of social distancing to curb the spread of COVID-19, bubbling is the 
combining of two or more households to create an exclusive larger group. The impact of bubbling on 
COVID-19 transmission is challenging to quantify because of the complex social structures involved.   
 
Methods: We developed a network description of households in the UK, using the configuration 
model to link households. We explored the impact of bubbling scenarios by joining together 
households of various sizes. For each bubbling scenario, we calculated the percolation threshold, 
that is, the number of connections per individual required for a giant component to form, 
numerically and theoretically. We related the percolation threshold to the household reproduction 
number.  
 
Results: We find that bubbling scenarios in which single-person households join with another 
household has a minimal impact on network connectivity and transmission potential. Ubiquitous 
scenarios where all households form a bubble are likely to lead to extensive transmission that is hard 
to control. The impact of plausible scenarios, with variable uptake and heterogeneous bubble sizes, 
can be mitigated with reduced numbers of contacts outside the household.  
 
Conclusions: Bubbling of households comes at an increased risk of transmission, however under 
certain circumstances risks can be modest and could be balanced by other changes in behaviours.  
 

  



Introduction 
 
Transmission of close contact infections, such as COVID-19, fundamentally depends on social 
interactions between individuals. Patterns of social contact determine the rate and extent of spread 
in a population. Social networks are complex and hierarchical due to how society is structured. Social 
distancing has been one of the main methods for controlling SARS-CoV-2 transmission in the 
absence of a vaccine or effective pharmaceutical interventions. In the UK, social distancing measures 
have sought to limit social interactions outside households, due to the inherent challenges of 
preventing household transmission. Limiting all non-household contacts should reduce the 
reproduction number to close to zero, however in practice not all external contacts can be stopped.  
 
Social distancing comes at a cost which disproportionately affects some individuals more than 
others. Detrimental effects include increased loneliness, social isolation, lack of physical and 
emotional support and reduced childcare provision, which can all be associated with a financial cost. 
The formation of ‘bubbles’, defined as small, non-overlapping, groups of households that are 
permitted to come into contact with each other, are intended to maintain benefits of social 
distancing while reducing the negative impacts of isolation. This, in essence, has the effect of 
creating one large household out of two or more smaller households. Social support bubbles have 
been used in various forms in countries including New Zealand, Belgium and the UK.  
 
The precise definition of an allowed bubble has varied over time and between countries, making 
their effectiveness as a strategy difficult to quantify. The epidemiological impact of bubbles depends 
on rates of transmission and mortality, infrastructures for tracking, testing and isolating cases, 
protective work environments and safe transport modes for key workers. In the UK, support bubbles 
are bubbles of two households where one household contains a single adult or young children. 
Childcare bubbles are bubbles where a person from one household provides childcare for another 
household. Christmas bubbles are groups of three households who are permitted to mix closely 
between 23 December and 27 December 2020. In all cases, the bubbles must be exclusive and non-
overlapping and contacts within a bubble should be treated as household contacts if someone in the 
bubble tests positive for COVID-19 (1). 
 
In this work we explore the impact that bubbling strategies have on the ongoing COVID-19 epidemic, 
to provide an evidence base and inform decisions. We use the distribution of household sizes in the 
UK in order to identify the UK conditions that will enable ‘bubbles’ to be safe and effective 
 
Methods 
 
Percolation theory 
Percolation theory has served as a direct analogy for infectious disease transmission. Originating in 
material science to describe the flow of liquid through a porous medium, percolation theory has 
developed through mathematical abstraction to map epidemic transmission models on a social 
network to the purely structural problem of percolation of an underlying network. The epidemic 
threshold, above which an epidemic is very likely, is deeply related to the concept of the percolation 
threshold, above which a percolating cluster appears with a high probability (2). 
Whereas mathematical models have usually focused on network abstractions (lattices or random 
graphs), in the last 20 years compelling empirical evidence has made it clear that the connection 
topology of real systems, such as household networks, are very different from the idealised lattices 
or random graphs traditionally studied in percolation theory. Instead, realistic networks display 
stylised patterns midway between order and disorder (3). and understanding how not only 
epidemics spread (4) but also how percolation can take place in models of complex networks with 
realistic characteristics has been the subject of intense study (see (5,6) and references therein). 



 
Constructing networks of households 
 

 
To build the contact network of households, initially we consider the realistic household size 
distribution from the UK 2011 census (see Figure 1a) (7). Then, we assume that all individuals in a 
household form a clique (a fully connected subgraph) and consider each household as a single node 
in the network, effectively going from a network of individuals to a network of households. To 
generate between-household connections, we assume that each individual in a household has the 
same probability of generating external connections, therefore that the degree of a household-node 
is proportional to its size (number of individuals). We therefore say that a household with 𝑛 
individuals is of size 𝑛 and thus constitutes a node with degree 𝑛. As a baseline, we finally assume 
that individuals are connected to individuals in other households at random, and accordingly build 
connections between household-nodes. This process of building the network of households is akin to 
a  configuration model where the degree sequence of household-nodes is fixed (8) (Figure 1b). This 
is termed the baseline network without household bubbles.  
 
 
  

 

 
Figure 1: Schematic of network construction, bubbling and percolation analysis. A) The 
distribution of household sizes from the Office of National Statistics Census in 2011. B) A 
schematic of the formation of a network at random and merging of households  
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Simulating the effect of bubbling 
We modelled bubbling by combining multiple households into larger ones, thus increasing the 
number of external links. Once the bubbled network has been formed, we study how resilient it is 
against random removal of these external links (see next section on percolation analysis), that will in 
turn allow us to associate a certain level of transmission risk to a specific bubbling scenario. We 
considered scenarios where all households behave in the same way, as well as more plausible 
scenarios with variable take-up and behaviours: 
 

• 2-bubbles: All households join together with one other household, chosen at random, to 
create a bubble of two households.  

• 3-bubbles: All households join together with two other households, chosen at random, to 
create a bubble of three households.  

• 1+1: All single-person households (size 1 households) join together with one other single 
person household to make a two-person household.   

• 1+n: All single person households join together with another randomly chosen household of 
any size.  

• 2+n: All households of size 1 or 2 join with another household of any size. 
• Plausible best case: 33% of households form a bubble; half are 2-bubbles and half are 3-

bubbles.   
• Plausible reasonable case: 50% of households form a bubble; half are 2-bubbles and half are 

3-bubbles.   
• Plausible worst case: 75% of households form a bubble; half are 2-bubbles and half are 3-

bubbles.   
 
Percolation analysis 
A component of a network is defined as a connected subgraph, i.e. as a set of nodes where each 
node is reachable to and from any other node following existing links. When the largest connected 
component of a network contains a finite fraction of the nodes of the network, we say the network 
has a giant component. Of course, all finite networks have a giant component (simply, the largest), 
but the concept reaches conceptual relevance in the limit of large networks. 
 
In order to measure the robustness of networks before and after bubbling, we now perform a 
percolation analysis on the resulting networks, which essentially consists of measuring the 
proportion of links that need to be removed to break up the giant component. To do this, we begin 
by removing a proportion, (1 − 𝑝), of links from the network at random for all values of 𝑝 from 1 to 
0, decreasing in increments of 0.01. As (1 − 𝑝) is progressively increased, more between-household 
links are removed from the baseline network and the giant component decreases in size. At a critical 
point, 𝑝𝑐(the so-called percolation threshold) the network fragments abruptly and the giant 
component disappears. We use  𝑝𝑐 as the indicative variable: a network with a low percolation 
threshold is much more risky with respect to a disease propagating over it, as only a handful of 
additional links are needed to get from the non-percolating to the percolating phase. 
 
For 𝑝 ranging in [0,1], we also measure the number of households in the giant component and the 
average size of the other components in the network (also known as the order parameter). As soon 
as the giant component emerges, it quickly accrues most of the nodes of the network, meaning that 
the rest of components will be smaller. A discontinuity (peak) in the profile of this order parameter 
indicates the location of the phase transition, i.e. the threshold that distinguishes the non-
percolating and percolating phases1. We repeated this procedure for each network following 

 
1 Indeed, in the thermodynamic limit, when the number of nodes becomes very large, the order parameter 
diverges(2). 



different bubbling scenarios, estimating the location of the threshold for each case. Since each 
realization of the network is stochastic, we repeated this 100 times for each scenario, and assessed 
the effects of intrinsic noise in the system.  
 
As described above, the relative location of this phase transition is used to infer the relative impact 
of specific bubbling strategies. For a lower percolation threshold, the underlying network is more 
resilient to link removal; in other words, for the same per link probability of infection, transmission 
on a network with a low percolation threshold will affect a larger proportion of the population than 
a network with a high percolation threshold (see figure 2). Moreover, if the system is at the critical 
point on the baseline network, the relative position of the threshold on equivalent networks under 
different bubbling assumptions will indicate whether a strategy is better (subcritical, no giant 
component) or worse (supercritical, large giant component).   
 
Relating percolation thresholds to transmission potential 
The percolation threshold is the point at which the giant component emerges (or disappears), and 
the network is globally connected (or disconnected). For locally tree-like networks, pc can 
be expressed in terms of the degree and degree fluctuations of the network:  

𝑝" =
< 𝑘 >

< 𝑘# > −< 𝑘 >
 

 
This purely topological property is in turn related to transmission potential and the reproduction 
number in the population(4,9).  
 
Much of the focus in describing COVID-19 transmission has centred on the reproduction number, or 
R, defined as the average number of secondary cases caused by an average infected individual. 
However alternative reproduction numbers can be used to understand transmission at different 
scales, for example the household reproduction number, which is the average number of secondary 
households infected by an average household (10,11).  
 
The household reproduction number is given as  

𝑅$ =,π%𝑓%𝑅&
%

 

where 𝑓% is the expected number of infections within a household of size ℎ, 𝜋%is the proportion of 
households of size ℎ and 𝑅& is the mean number of out-of-household infections by a single infected 
person (10). In our formulation, 𝑅& = 𝑝 
and 𝑓% is ℎ multiplied by the Secondary Attack Rate within households. We use the estimated 
Secondary Attack Rate from UK data of 40%-50% (12). Furthermore, below the percolation 
threshold, 𝑅$ = 0 because the infection is necessarily limited to small disconnected clusters.  
 
Results 
 
With no household bubbling, we estimate a percolation threshold of 0.48, meaning that on average, 
if one out of every two people has a social contact outside of their household then a giant 
component emerges in the network of households and there is the potential for large-scale 
outbreaks. At the percolation threshold, the household reproduction number is estimated to be 0.47 
- 0.59 (Figure 2), therefore even though a giant component exists transmission is not self-sustaining 
(Figure 5).  
 
Single-person households (households of size 1) joining with another single-person household 
(scenario 1+1), or another household of random size (scenario 1+n) has a relatively modest impact 
on network connectivity and transmission. The average bubble size increases by 0.4 and 0.5 persons 



(Figure 2). The percolation threshold is reduced by less than 15%. This translates to an increase in 
the household reproduction number of less than 0.3, and in practice this difference might not be 
observable with heterogeneity in household secondary attack rates (Figure 5 and Table 1).  
 
In the scenario where all households form 2-bubbles there is substantial impact on network 
connectivity and transmission potential. Average bubble size increases to 4.7 persons per bubble. 
The percolation threshold is decreased to 0.23 (Figure 2), which means that one in four people with 
social contact outside their household is sufficient for the giant component to exist. Compared to no 
bubbling, 2-bubbles have the potential to increase network connectivity and increase the household 
reproduction number. For an average of one outside contact per person, the estimated household 
reproduction number is 1.9 - 2.4 (Figure 5 and Table 1).  
 
All households forming 3-bubbles is the worst scenario we considered. As for 2-bubbles, the mean 
bubble size is increased to 7.1. The percolation threshold is 0.15, which means that a giant 
component forms if 1 in 6 persons have an external social contact. For an average of one outside 
contact per person, the estimated household reproduction number is 2.84 - 3.55. 
Table 1: Comparison of bubbling scenarios 

 Average bubble size Theoretical 𝒑𝒄 Measured 𝒑𝒄 𝑹𝑯 when 𝒑𝒄 = 𝟏 

No bubbles 2.4 0.476 0.48 0.96-1.2 
2-bubbles 4.7 0.224 0.23 1.88-2.35 
3-bubbles 7.1 0.146 0.15 2.84-3.55 
1+1 2.8 0.448 0.44 1.12-1.4 
1+n 2.9 0.414 0.41 1.16-1.45 
2+n 3.9 0.319 0.33 1.56-1.95 
Best plausible case 2.9 0.290 0.30 1.16-1.45 
Reasonable 
plausible case 

3.2 0.255 0.26 1.28-1.6 

Worst plausible 
case 

4.3 0.193 0.19 1.72-2.15 

 
For plausible scenarios with variable uptake of bubbling and heterogeneity in bubble sizes, results 
are considerably less dramatic than when all households form a bubble. The best plausible case, with 
one third of households forming 2-household and 3-household bubbles in approximately equal 
proportions, results in household-to-household transmission potential similar to 1+n bubbling. The 
reasonable plausible scenario where 50% of households for a bubble of 2 or 3 households results in 
network connectivity and transmission potential that is slightly greater than the best plausible case, 
however the difference is relatively modest and might be unobservable for heterogeneity in 
secondary attack rates. The impact of reasonable plausible bubbling compared to no-bubbling could 
be mitigated by individuals reducing their external contact rate by 0.25, for example a bubble of four 
individuals could reduce their external contacts from four to three.   
 
Finally, the worst plausible scenario, where 75% of households form a bubble, produces similar 
characteristics to the 2-bubble scenario. Although the average bubble size is slightly smaller (4.3 for 
the worst plausible case versus 4.7 to 2-bubbles), the percolation threshold is lower for the worst 
plausible case due to the occurrence of large bubbles which link up the network (see Figure 3 and 
Table 1).    



 
Figure 2: Percolation analysis for hypothetical bubbling scenarios. A) The proportion of 
households connected to the giant component. B) The mean component size (order parameter) 
for the same bubbling strategies. C) The percolation threshold for the different bubbling 
assumptions.  

 
Discussion 
 
In this analysis, we provide a simple network framework in which to quantify the effect of household 
bubbles on the transmission of COVID-19. We find that the creation of support bubbles between a 
single-person household and another household of any size has a small impact on transmission. The 
ubiquitous generation of bubbles for all households has the potential to make transmission 
extremely hard to control, therefore household bubbles should not be encouraged in general. 
However, we find that for intermediate uptake rates - for example where 50% of households form a 
temporary “Christmas” bubble - that the additional transmission potential could be mitigated by a 
reduction in contacts outside the home.  
There are natural parallels between network theory and disease dynamics, with analogies between 
the link probability and the giant component and the reproduction number and final epidemic size. 
Percolation theory has been used before to describe disease transmission in structured populations 
(4,9), although often using a theoretical framework, rather than to inform interventions (with the 
possible exception of (13)). With regards to the impact of bubbling, our results concord with Leng et 
al (2020) who concluded that bubbling of single-person households have a minimal impact on 
transmission (14).  
 



 
Figure 3: Percolation analysis for plausible bubbling scenarios. A) The proportion of households 
connected to the giant component. B) The mean component size (order parameter) for the 
same bubbling strategies. C) The percolation threshold for the different bubbling assumptions.  

 
There are a number of limitations to our analysis. First, we used a relatively simple network 
formulation in which the number of external contacts was proportional to household size. While this 
is true in general, in reality there are more complex patterns where the number of external contacts 
saturates with household size. Second, the model had no time dependence, therefore we were not 
able to capture the formation and dissolution of bubbles, and this is particularly relevant for 
temporary festive bubbles. Third, the model contains no spatial component. It is likely that forming 
local bubbles is preferable to long-distance bubbles, but we were not able to investigate that 
question here. Fourth, we were limited by a lack of data on current bubbling practices. The ONS 
Opinions and Lifestyle survey (15) reports that around 40% of adults in the UK have formed a 
support bubble in 2020, but we do not have data broken down by household size or on future 
bubbling intentions. Our estimates of the household reproduction number are dependent on the 
secondary attack rate in households, which is also uncertain and probably varies with household 
size. 



 
Figure 4: The percolation threshold for all bubbling scenarios ordered from most vulnerable to 
link removal (left) to least vulnerable (right). 

 

 
Figure 5: Household reproduction number for bubbling scenarios as a function of the number of 
outside infections per person.  

 
This work provides quantitative insight into the impact of bubbling on the transmission dynamics of 
COVID-19. We find that, in a UK setting, the formation of bubbles can be detrimental if taken up by 
a large proportion of the population. Therefore, messaging around bubbling should be framed in a 
way that communicates the negative implications as well as the benefits. In particular, large 
gatherings of many households should be discouraged unless absolutely necessary. It is not clear 
how these conclusions would translate to other settings, where the definition of a household, the 
number of people per household and the out-of-household social mixing vary considerably. Future 
work could use data from other countries to explore the implications of bubbles for different social 
settings.  
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